Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T09:39:04.063Z Has data issue: false hasContentIssue false

Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation

Published online by Cambridge University Press:  05 May 2023

Serhii D. Koval
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada Department of Mathematics, Kyiv Academic University, 36 Vernads’koho Blvd, 03142 Kyiv, Ukraine
Alexander Bihlo
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
Roman O. Popovych*
Affiliation:
Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01024 Kyiv, Ukraine
*
*Correspondence author. Emails: skoval@mun.ca, abihlo@mun.ca, rop@imath.kiev.ua

Abstract

We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.

Type
Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B. & Govinder, K. S. (2008) Master partial differential equations for a type II hidden symmetry. J. Math. Anal. Appl. 343 (1), 525530.CrossRefGoogle Scholar
Abramowitz, M. J. & Stegun, I. (1970). Handbook on Mathematical Functions, National Bureau of Standards Appl. Math. Series, Vol. 55, U.S. Govt. Printing Office, Washington, D.C. Google Scholar
Arnon, D. S. (1988) Geometric reasoning with logic and algebra. Artif. Intell. 37 (1-3), 3760.CrossRefGoogle Scholar
Bihlo, A., Dos Santos Cardoso-Bihlo, E. & Popovych, R. O. (2012) Complete group classification of a class of nonlinear wave equations. J. Math. Phys. 53 (12), 123515.CrossRefGoogle Scholar
Bihlo, A. & Popovych, R. O. (2010) Point symmetry group of the barotropic vorticity equation. Proceedings of 5th Workshop “Group Analysis of Differential Equations & Integrable Systems” (June 6–10, 2010, Protaras, Cyprus), Nicosia: University of Cyprus, 15–27.Google Scholar
Bihlo, A. & Popovych, R. O. (2017) Group classification of linear evolution equations. J. Math. Anal. Appl. 448 (2), 9821005.CrossRefGoogle Scholar
Bluman, G. (1980) On the transformation of diffusion processes into the Wiener process. SIAM J. Appl. Math. 39 (2), 238247.CrossRefGoogle Scholar
Bluman, G. & Shtelen, V. (2004) Nonlocal transformations of Kolmogorov equations into the backward heat equation. J. Math. Anal. Appl. 291 (2), 419437.CrossRefGoogle Scholar
Bluman, G. W., Cheviakov, A. F. & Anco, S. C. (2010). Applications of Symmetry Methods to Partial Differential Equations, Springer, New York.CrossRefGoogle Scholar
Bluman, G. W. & Kumei, S. (1989). Symmetries and Differential Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
Bluman, G. W. & Yüzbaşı, Z. K. (2020) How symmetries yield non-invertible mappings of linear partial differential equations. J. Math. Anal. Appl. 491 (2), 124354.CrossRefGoogle Scholar
Boyko, V. M., Kunzinger, M. & Popovych, R. O. (2016) Singular reduction modules of differential equations. J. Math. Phys. 57 (10), 101503.CrossRefGoogle Scholar
Cherkasov, I. D. (1957) On the transformation of the diffusion process to a Wiener process. Theory Probab. Appl. 2: 373377.CrossRefGoogle Scholar
Davydovych, V. (2015) Preliminary group classification of $(2+1)$ -dimensional linear ultraparabolic Kolmogorov–Fokker–Planck equations. Ufimsk. Mat. Zh. 7 (3), 38–46.CrossRefGoogle Scholar
Dos Santos Cardoso-Bihlo, E., Bihlo, A. & Popovych, R. O. (2011) Enhanced preliminary group classification of a class of generalized diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 16 (9), 36223638.CrossRefGoogle Scholar
Güngör, F. (2018) Equivalence and symmetries for variable coefficient linear heat type equations. I. J. Math. Phys. 59 (5), 051507.CrossRefGoogle Scholar
Güngör, F. (2018) Equivalence and symmetries for variable coefficient linear heat type equations. II. Fundamental solutions. J. Math. Phys. 59 (5), 061507.CrossRefGoogle Scholar
Johnpillai, I. K. & Mahomed, F. M. (2001) Singular invariant equation for the (1+1) Fokker–Planck equation. J. Phys. A 34 (49), 1103311051.CrossRefGoogle Scholar
Kolmogoroff, A. (1934) Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. Math. (2) 35: 116117.CrossRefGoogle Scholar
Kovalenko, S. S., Kopas, I. M. & Stogniy, V. I. (2013) Preliminary group classification of a class of generalized linear Kolmogorov equations. Res. Bull. Natl. Tech. Univ. Ukraine “Kyiv Polytechnic Institute” 4: 6772.Google Scholar
Lie, S. (1881). Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichungen, Arch. for Math. 6, 328–368. [Translated by Ibragimov, N. H.: Lie, S. (1995) On integration of a class of linear partial differential equations by means of definite integralsCRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2, CRC Press, Boca Raton, FL, 328368.]Google Scholar
Matveev, V. B. & Salle, M. A. (1991). Darboux Transformations and Solitons, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Morozov, O. (2003) Contact equivalence problem for linear parabolic equations, arXiv: mathph/0304045.Google Scholar
Olver, P. J. (1999). Classical Invariant Theory, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Olver, P. J. (2000). Application of Lie Groups to Differential Equations, Springer, New York.Google Scholar
Opanasenko, S., Bihlo, A. & Popovych, R. O. (2017) Group analysis of general Burgers–Korteweg–de Vries equations. J. Math. Phys. 58 (8), 081511.CrossRefGoogle Scholar
Opanasenko, S. & Popovych, R. O. (2022) Mapping method of group classification. J. Math. Anal. Appl. 513 (2), 126209.CrossRefGoogle Scholar
Patera, J. & Winternitz, P. (1977) Subalgebras of real three and four-dimensional Lie algebras. J. Math. Phys. 18 (7), 14491455.CrossRefGoogle Scholar
Patera, J., Winternitz, P. & Zassenhaus, H. (1975) Continuous subgroups of the fundamental groups of physics. I. General method and the Poincaré group. J. Math. Phys. 16: 15971614.CrossRefGoogle Scholar
Pocheketa, O. A. & Popovych, R. O. (2017) Extended symmetry analysis of generalized Burgers equations. J. Math. Phys. 58 (10), 101501.CrossRefGoogle Scholar
Popovych, R. O. (2006) Classification of admissible transformations of differential equations. Collection Works Inst. Math. NAS Ukraine 3 (2), 239254.Google Scholar
Popovych, R. O., Boyko, V. M., Nesterenko, M. O. & Lutfullin, M. W. (2003) Realizations of real low-dimensional Lie algebras. J. Phys. A 36 (26), 73377360.CrossRefGoogle Scholar
Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010) Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 109 (2), 315359.CrossRefGoogle Scholar
Popovych, R. O., Kunzinger, M. & Ivanova, N. M. (2008) Conservation laws and potential symmetries of linear parabolic equations. Acta Appl. Math. 2 (2), 113185.CrossRefGoogle Scholar
Spichak, S. & Stognii, V. (1999) Symmetry classification and exact solutions of the one-dimensional Fokker–Planck equation with arbitrary coefficients of drift and diffusion. J. Phys. A 32 (47), 83418353.CrossRefGoogle Scholar
Spichak, S., Stogniy, V. & Kopas, I. (2011). Symmetry properties and exact solutions of the linear Kolmogorov equation, Res. Bull. Natl. Technic. Univ. Ukraine “Kyiv Polytechnic Institute”, 4, 9397 (in Ukrainian).Google Scholar
Spichak, S. & Stogny, V. (1997) Symmetry analysis of the Kramers equation. Rep. Math. Phys. 40 (1), 125130.CrossRefGoogle Scholar
Turkowski, P. (1988) Low-dimensional real Lie algebras. J. Math. Phys. 29 (10), 21392144.CrossRefGoogle Scholar
Vaneeva, O. O., Bihlo, A. & Popovych, R. O. (2020) Generalization of the algebraic method of group classification with application to nonlinear wave and elliptic equations. Commun. Nonlinear Sci. Numer. Simul. 91: 105419.CrossRefGoogle Scholar
Vaneeva, O. O., Popovych, R. O. & Sophocleous, C. (2021) Extended symmetry analysis of two-dimensional degenerate Burgers equation. J. Geom. Phys. 169: 104336.CrossRefGoogle Scholar
Zhang, Z.-Y., Zheng, J., Guo, L.-L. & Wu, H.-F. (2020) Lie symmetries and conservation laws of the Fokker–Planck equation with power diffusion. Math. Methods Appl. Sci. 43 (15), 88948905.CrossRefGoogle Scholar