Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-kpmwg Total loading time: 0.408 Render date: 2021-12-07T22:56:32.154Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A simple system for moist convection: the Rainy–Bénard model

Published online by Cambridge University Press:  09 January 2019

Geoffrey K. Vallis*
Affiliation:
Department of Mathematics, University of Exeter, Exeter EX4 4QF, UK
Douglas J. Parker
Affiliation:
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
Steven M. Tobias
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: g.vallis@exeter.ac.uk

Abstract

Rayleigh–Bénard convection is one of the most well-studied models in fluid mechanics. Atmospheric convection, one of the most important components of the climate system, is by comparison complicated and poorly understood. A key attribute of atmospheric convection is the buoyancy source provided by the condensation of water vapour, but the presence of radiation, compressibility, liquid water and ice further complicate the system and our understanding of it. In this paper we present an idealized model of moist convection by taking the Boussinesq limit of the ideal-gas equations and adding a condensate that obeys a simplified Clausius–Clapeyron relation. The system allows moist convection to be explored at a fundamental level and reduces to the classical Rayleigh–Bénard model if the latent heat of condensation is taken to be zero. The model has an exact, Rayleigh-number-independent ‘drizzle’ solution in which the diffusion of water vapour from a saturated lower surface is balanced by condensation, with the temperature field (and so the saturation value of the moisture) determined self-consistently by the heat released in the condensation. This state is the moist analogue of the conductive solution in the classical problem. We numerically determine the linear stability properties of this solution as a function of Rayleigh number and a non-dimensional latent-heat parameter. We also present some two-dimensional, time-dependent, nonlinear solutions at various values of Rayleigh number and the non-dimensional condensational parameters. At sufficiently low Rayleigh number the system converges to the drizzle solution, and we find no evidence that two-dimensional self-sustained convection can occur when that solution is stable. The flow transitions from steady to turbulent as the Rayleigh number or the effects of condensation are increased, with plumes triggered by gravity waves emanating from other plumes. The interior dries as the level of turbulence increases, because the plumes entrain more dry air and because the saturated boundary layer at the top becomes thinner. The flow develops a broad relative humidity minimum in the domain interior, only weakly dependent on Rayleigh number when that is high.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Ambaum, M. H. P. 2010 Thermal Physics of the Atmosphere. Wiley.CrossRefGoogle Scholar
American Meteorological Society2018 Glossary of meteorology. Available online at http://glossary.ametsoc.org/wiki/.Google Scholar
Berlengiero, M., Emanuel, K. A., Von Hardenberg, J., Provenzale, A. & Spiegel, E. A. 2012 Internally cooled convection: a fillip for Philip. Comm. Nonlin. Sci. Num. Sim. 17 (5), 19982007.CrossRefGoogle Scholar
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I. Thermodynamics and ‘linear’ solutions. J. Atmos. Sci. 44 (14), 18091827.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, C. S. 1988 A theory for nonprecipitating convection between two parallel plates. Part II. Nonlinear theory and cloud field organization. J. Atmos. Sci. 45 (17), 23912415.2.0.CO;2>CrossRefGoogle Scholar
Brun, A. S. & Browning, M. K. 2017 Magnetism, dynamo action and the solar–stellar connection. Living Rev. Solar Phys. 14, 4.CrossRefGoogle Scholar
Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. 2003 Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev. 131 (10), 23942416.2.0.CO;2>CrossRefGoogle Scholar
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B.2016 Dedalus: flexible framework for spectrally solving differential equations. Astrophysics Source Code Library: http://ascl.net/1603.015.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press; reprinted by Dover Publications, 1981.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.Google ScholarPubMed
Christensen, U. 1995 Effects of phase transitions on mantle convection. Annu. Rev. Earth Planet. Sci. 23 (1), 6587.CrossRefGoogle Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 851.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.Google Scholar
Emanuel, K. A., Neelin, J. D. & Bretherton, C. S. 1994 On large-scale circulations in convecting atmospheres. Q. J. R. Meteor. Soc. 120, 11111143.CrossRefGoogle Scholar
Frierson, D. M. W., Held, I. M. & Zurita-Gotor, P. 2006 A gray radiation aquaplanet moist GCM. Part 1. Static stability and eddy scales. J. Atmos. Sci. 63, 25482566.CrossRefGoogle Scholar
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh–Bénard convection. Physica D 10 (3), 249276.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Hernandez-Duenas, G., Majda, A. J., Smith, L. M. & Stechmann, S. N. 2013 Minimal models for precipitating turbulent convection. J. Fluid Mech. 717, 576611.CrossRefGoogle Scholar
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A. et al. 2015 Representation of microphysical processes in cloud-resolving models: spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 53 (2), 247322.CrossRefGoogle Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.CrossRefGoogle Scholar
Lakkaraju, R., Stevens, R., Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2013 Heat transport in bubbling turbulent convection. Proc. Natl Acad. Sci. USA 110 (23), 92379242.CrossRefGoogle ScholarPubMed
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.CrossRefGoogle ScholarPubMed
Ludlam, F. H. 1966 Cumulus and cumulonimbus convection. Tellus 18, 687698.CrossRefGoogle Scholar
Ludlam, F. H. 1980 Clouds and Storms: The Behavior and Effect of Water in the Atmosphere. Penn. State University Press.Google Scholar
Mahrt, L. 1986 On the shallow motion approximations. J. Atmos. Sci. 43, 10361044.2.0.CO;2>CrossRefGoogle Scholar
Marshall, J. C. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Mellor, G. L. & Yamada, T. 1974 A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31 (7), 17911806.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, J. L. & Lora, J. M. 2016 The climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353380.CrossRefGoogle Scholar
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24, 163187.Google Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. 2012 Energetic constraints on precipitation under climate change. Surv. Geophys. 33 (3–4), 585608.CrossRefGoogle Scholar
O’Gorman, P. A. & Schneider, T. 2006 Stochastic models for the kinematics of moisture transport and condensation in homogeneous turbulent flows. J. Atmos. Sci. 63, 29923005.CrossRefGoogle Scholar
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.CrossRefGoogle Scholar
Parodi, A., Emanuel, K. A. & Provenzale, A. 2003 Plume patterns in radiative–convective flows. New J. Phys. 5 (1), 106.CrossRefGoogle Scholar
Parsons, B. & McKenzie, D. 1978 Mantle convection and the thermal structure of the plates. J. Geo. Res.: Sol. Earth 83 (B9), 44854496.CrossRefGoogle Scholar
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8 (1), 295319.CrossRefGoogle Scholar
Pauluis, O. & Schumacher, J. 2011 Self-aggregation of clouds in conditionally unstable moist convection. Proc. Natl Acad. Sci. USA 108 (31), 1262312628.CrossRefGoogle ScholarPubMed
Pierrehumbert, R. T., Brogniez, H. & Roca, R. 2007 On the relative humidity of the atmosphere. In The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges (ed. Schneider, T. & Sobel, A.), pp. 143185. Princeton University Press.Google Scholar
Rayleigh, Lord 1916 On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond. Edinb. Dublin Phil. Mag. J. Sci. 32 (192), 529546.CrossRefGoogle Scholar
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63 (4), 045303.Google Scholar
Romps, D. M. 2014 An analytical model for tropical relative humidity. J. Clim. 27 (19), 74327449.CrossRefGoogle Scholar
Schmidt, L. E., Oresta, P., Toschi, F., Verzicco, R., Lohse, D. & Prosperetti, A. 2011 Modification of turbulence in Rayleigh–Bénard convection by phase change. New J. Phys. 13 (2), 025002.CrossRefGoogle Scholar
Schubert, G. & Soderlund, K. M. 2011 Planetary magnetic fields: observations and models. Phys. Earth Plan. Interiors 187, 92108.CrossRefGoogle Scholar
Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. & Kuo, H.-C. 2001 Potential vorticity in a moist atmosphere. J. Atmos. Sci. 58, 31483157.2.0.CO;2>CrossRefGoogle Scholar
Schumacher, J. & Pauluis, O. 2010 Buoyancy statistics in moist turbulent Rayleigh–Bénard convection. J. Fluid Mech. 648, 509519.CrossRefGoogle Scholar
Scorer, R. S. & Ludlam, F. H. 1953 Bubble theory of penetrative convection. Q. J. R. Meteor. Soc. 79, 94103.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Part I. The basic experiment. Mon. Wea. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Smith, R. K.(Ed.) 2013 The Physics and Parameterization of Moist Atmospheric Convection. Springer.Google Scholar
Spiegel, E. A. 1971 Convection in stars. Part I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9 (1), 323352.CrossRefGoogle Scholar
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447. (Correction: Astrophys. J., 135, 655–656.)CrossRefGoogle Scholar
Spyksma, K., Bartello, P. & Yau, M. K. 2006 A Boussinesq moist turbulence model. J. Turbul. 7, N32.Google Scholar
Sukhatme, J. & Young, W. R. 2011 The advection–condensation model and water-vapour probability density functions. Q. J. R. Meteor. Soc. 137, 15611572.CrossRefGoogle Scholar
Tompkins, A. M. 2001 Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58 (13), 16501672.2.0.CO;2>CrossRefGoogle Scholar
Tsang, Y.-K. & Vanneste, J. 2017 The effect of coherent stirring on the advection–condensation of water vapour. Proc. R. Soc. Lond. A 473, 20170196.CrossRefGoogle ScholarPubMed
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Weidauer, T., Pauluis, O. & Schumacher, J. 2011 Rayleigh–Bénard convection with phase changes in a Galerkin model. Phys. Rev. E 84 (4), 046303.Google Scholar
White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G. & Kipling, Z. 2017 Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys. 17, 1214512175.CrossRefGoogle Scholar
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 (24), 244501.CrossRefGoogle ScholarPubMed
Zhao, M., Golaz, J.-C., Held, I. M., Ramaswamy, V., Lin, S.-J., Ming, Y., Ginoux, P., Wyman, B., Donner, L. J., Paynter, D. et al. 2016 Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. J. Clim. 29 (2), 543560.CrossRefGoogle Scholar

Vallis et al. supplementary movie 1

The evolution from the initial conditions for the four variables, b, q, T and u for Ra = 2 x 10^5 (i.e., Rayleigh number = 200,000). See text for more description.

Download Vallis et al. supplementary movie 1(Video)
Video 10 MB

Vallis et al. supplementary movie 2

Same but for Ra = 2 x 10^7 (i.e., Rayleigh number = 20,000,000).

Download Vallis et al. supplementary movie 2(Video)
Video 3 MB

Vallis et al. supplementary movie 3

Same but for Ra = 5 x 10^7 (i.e., Rayleigh number = 50,000,000).

Download Vallis et al. supplementary movie 3(Video)
Video 16 MB

Vallis et al. supplementary movie 4

Same but for Ra = 2.5 x 10^8 (i.e., Rayleigh number = 250,000,000).

Download Vallis et al. supplementary movie 4(Video)
Video 8 MB
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A simple system for moist convection: the Rainy–Bénard model
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A simple system for moist convection: the Rainy–Bénard model
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A simple system for moist convection: the Rainy–Bénard model
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *