Skip to main content

C-start: optimal start of larval fish

  • M. Gazzola (a1), W. M. Van Rees (a1) and P. Koumoutsakos (a1)

We investigate the C-start escape response of larval fish by combining flow simulations using remeshed vortex methods with an evolutionary optimization. We test the hypothesis of the optimality of C-start of larval fish by simulations of larval-shaped, two- and three-dimensional self-propelled swimmers. We optimize for the distance travelled by the swimmer during its initial bout, bounding the shape deformation based on the larval mid-line curvature values observed experimentally. The best motions identified within these bounds are in good agreement with in vivo experiments and show that C-starts do indeed maximize escape distances. Furthermore we found that motions with curvatures beyond the ones experimentally observed for larval fish may result in even larger escape distances. We analyse the flow field and find that the effectiveness of the C-start escape relies on the ability of pronounced C-bent body configurations to trap and accelerate large volumes of fluid, which in turn correlates with large accelerations of the swimmer.

Corresponding author
Email address for correspondence:
Hide All
1. Buche, D., Stoll, P., Dornberger, R. & Koumoutsakos, P. 2002 Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. C 32 (4), 460473.
2. Budick, S. A. & O’Malley, D. M. 2000 Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Expl Biol. 203 (17), 25652579.
3. Conte, J., Modarres-Sadeghi, Y., Watts, M. N., Hover, F. S. & Triantafyllou, M. S. 2010 A fast-starting mechanical fish that accelerates at . Bioinspir. Biomim. 5 (3).
4. Coquerelle, M. & Cottet, G. H. 2008 A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (21), 91219137.
5. Domenici, P. & Blake, R. W. 1997 The kinematics and performance of fish fast-start swimming. J. Expl Biol. 200 (8), 11651178.
6. Epps, B. P. & Techet, A. H. 2007 Impulse generated during unsteady maneuvering of swimming fish. Exp. Fluids 43 (5), 691700.
7. Fontaine, E., Lentink, D., Kranenbarg, S., Muller, U. K., van Leeuwen, J. L., Barr, A. H. & Burdick, J. W. 2008 Automated visual tracking for studying the ontogeny of zebrafish swimming. J. Expl Biol. 211 (8), 13051316.
8. Gazzola, M., Chatelain, P., van Rees, W. M. & Koumoutsakos, P. 2011a Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230 (19), 70937114.
9. Gazzola, M., Vasilyev, O. V. & Koumoutsakos, P. 2011b Shape optimization for drag reduction in linked bodies using evolution strategies. Comput. Struct. 89 (11–12), 12241231.
10. Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3–4), 352370.
11. Hansen, N., Muller, S. D. & Koumoutsakos, P. 2003 Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary Computation 11 (1), 118.
12. Howard, C. H. 1974 Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. J. Theor. Biol. 47 (2), 333350.
13. Hu, W. R., Yu, Y. L., Tong, B. G. & Liu, H. 2004 A numerical and analytical study on a tail-flapping model for fish fast c-start. Acta Mechanica Sin. 20 (1), 1623.
14. Katumata, Y., Muller, U. K. & Liu, H. 2009 Computation of self-propelled swimming in larva fishes. J. Biomech. Sci. Engng 4 (1), 5466.
15. Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.
16. Koumoutsakos, P. 1997 Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (2), 821857.
17. Koumoutsakos, P. & Leonard, A. 1995 High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 138.
18. Muller, U. K., van den Boogaart, J. G. M. & van Leeuwen, J. L. 2008 Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Expl Biol. 211 (2), 196205.
19. Muller, U. K. & van Leeuwen, J. L. 2004 Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J. Expl Biol. 207 (5), 853868.
20. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. 2009 Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 238 (12), 29753015.
21. Tytell, E. D. & Lauder, G. V. 2002 The c-start escape response of polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J. Expl Biol. 205 (17), 25912603.
22. Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. 2005 Do faster starts increase the probability of evading predators? Funct. Ecol. 19 (5), 808815.
23. Weihs, D. 1973 The mechanism of rapid starting of slender fish. Biorheology 10, 343350.
24. Weihs, D. & Webb, P. W. 1984 Optimal avoidance and evasion tactics in predator–prey interactions. J. Theor. Biol. 106 (2), 189206.
25. Winckelmans, G. S. & Leonard, A. 1993 Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109, 247273.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Gazzola et al. supplementary movie
Vorticity fields of the 3D best solution found during the optimization (isosurfaces are based on vorticity magnitude | ω |, while the coloring blue -negative- and red -positive- is based on the z-component of ω)

 Video (5.1 MB)
5.1 MB
Supplementary materials

Gazzola et al. supplementary material

 PDF (227 KB)
227 KB

Gazzola et al. supplementary movie
Vorticity fields of the 2D best solution found during the optimization (blue -negative- and red -positive- vorticity ω)

 Video (886 KB)
886 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed