Skip to main content
×
Home

Taylor–Couette turbulence at radius ratio ${\it\eta}=0.5$ : scaling, flow structures and plumes

  • Roeland C. A. van der Veen (a1), Sander G. Huisman (a1), Sebastian Merbold (a2), Uwe Harlander (a2), Christoph Egbers (a2), Detlef Lohse (a1) (a3) and Chao Sun (a1) (a4)...
Abstract

Using high-resolution particle image velocimetry, we measure velocity profiles, the wind Reynolds number and characteristics of turbulent plumes in Taylor–Couette flow for a radius ratio of 0.5 and Taylor number of up to $6.2\times 10^{9}$ . The extracted angular velocity profiles follow a log law more closely than the azimuthal velocity profiles due to the strong curvature of this ${\it\eta}=0.5$ set-up. The scaling of the wind Reynolds number with the Taylor number agrees with the theoretically predicted $3/7$ scaling for the classical turbulent regime, which is much more pronounced than for the well-explored ${\it\eta}=0.71$ case, for which the ultimate regime sets in at much lower Taylor number. By measuring at varying axial positions, roll structures are found for counter-rotation while no clear coherent structures are seen for pure inner cylinder rotation. In addition, turbulent plumes coming from the inner and outer cylinders are investigated. For pure inner cylinder rotation, the plumes in the radial velocity move away from the inner cylinder, while the plumes in the azimuthal velocity mainly move away from the outer cylinder. For counter-rotation, the mean radial flow in the roll structures strongly affects the direction and intensity of the turbulent plumes. Furthermore, it is experimentally confirmed that, in regions where plumes are emitted, boundary layer profiles with a logarithmic signature are created.

Copyright
Corresponding author
Email address for correspondence: chaosun@tsinghua.edu.cn
References
Hide All
Ahlers G., Bodenschatz E. & He X. 2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436467.
Andereck C. D., Liu S. S. & Swinney H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Brauckmann H. J. & Eckhardt B. 2013 Intermittent boundary layers and torque maxima in Taylor–Couette flow. Phys. Rev. E 87, 033004.
Brauckmann H. J., Salewski M. & Eckhardt B. 2016 Momentum transport in Taylor–Couette flow with vanishing curvature. J. Fluid Mech. 790, 419452.
Chouippe A., Climent E., Legendre D. & Gabillet C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids 26 (4), 043304.
Couette M. 1890 Études sur le frottement des liquides. Ann. Chim. Phys. 21, 433.
Dong S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.
Donnelly R. J. 1991 Taylor–Couette flow: the early days. Phys. Today 44 (11), 3239.
Dubrulle B., Dauchot O., Daviaud F., Longgaretti P. Y., Richard D. & Zahn J. P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.
Eckhardt B., Grossmann S. & Lohse D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.
Fardin M. A., Perge C. & Taberlet N. 2014 ‘The hydrogen atom of fluid dynamics’ – Introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10, 35233535.
Fenstermacher P. R., Swinney H. L. & Gollub J. P. 1979 Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103128.
van Gils D. P. M., Huisman S. G., Grossmann S., Sun C. & Lohse D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.
Grossmann S., Lohse D. & Sun C. 2014 Velocity profiles in strongly turbulent Taylor–Couette flow. Phys. Fluids 26, 025114.
Grossmann S., Lohse D. & Sun C. 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
He X., Funfschilling D., Nobach H., Bodenschatz E. & Ahlers G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.
van Hout R. & Katz J. 2011 Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor–Couette flow. Phys. Fluids 23 (10), 105102.
Huisman S. G., van Gils D. P. M., Grossmann S., Sun C. & Lohse D. 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.
Huisman S. G., Scharnowski S., Cierpka C., Kähler C., Lohse D. & Sun C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.
Huisman S. G., van der Veen R. C. A., Sun C. & Lohse D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.
Ji H., Burin M., Schartman E. & Goodman J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.
Kiefer J. 1953 Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4, 502506.
Kraichnan R. H. 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 13741389.
Lakkaraju R., Stevens R. J. A. M., Verzicco R., Grossmann S., Prosperetti A., Sun C. & Lohse D. 2012 Spatial distribution of heat flux and fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 86, 056315.
Lathrop D. P., Fineberg J. & Swinney H. S. 1992 Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 15151518.
Lewis G. S. & Swinney H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.
López-Caballero M. & Burguete J. 2013 Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow. Phys. Rev. Lett. 110, 124501.
Mallock A. 1896 Experiments on fluid viscosity. Phil. Trans. R. Soc. Lond. A 187, 4156.
Marusic I., Monty J. P., Hultmark M. & Smits A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Merbold S., Brauckmann H. J. & Egbers C. 2013 Torque measurements and numerical determination in differentially rotating wide gap Taylor–Couette flow. Phys. Rev. E 87, 023014.
Merbold S., Fischer S. & Egbers C. 2011 Torque scaling in Taylor–Couette flow – an experimental investigation. J. Phys.: Conf. Ser. 318 (8), 082017.
Ostilla-Mónico R., Huisman S. G., Jannink T. J. G., van Gils D. P. M., Verzicco R., Grossmann S., Sun C. & Lohse D. 2014a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26 (1), 015114.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014c Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico R., Verzicco R., Grossmann S. & Lohse D. 2016 The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.
Paoletti M. S., van Gils D. P. M., Dubrulle B., Sun C., Lohse D. & Lathrop D. P. 2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astron. Astrophys. 547, A64.
van der Poel E. P., Ostilla-Mónico R., Verzicco R., Grossmann S. & Lohse D. 2015 Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 115, 154501.
Ravelet F., Delfos R. & Westerweel J. 2010 Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys. Fluids 22 (5), 055103.
Shang X.-D., Tong P. & Xia K.-Q. 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.
Taylor G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104, 213218.
Tokgoz S., Elsinga G. E., Delfos R. & Westerweel J. 2011 Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow. J. Phys.: Conf. Ser. 318 (8), 082018.
van der Veen R. C. A., Huisman S. G., Dung O.-Y., Tang H. L., Sun C. & Lohse D. 2016 Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids 1, 024401.
Wendt F. 1933 Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 136 *
Loading metrics...

Abstract views

Total abstract views: 288 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.