Skip to main content

Ekplexite (Nb,Mo)S2·(Mg1−x Al x )(OH)2+x , kaskasite (Mo,Nb)S2·(Mg1−x Al x )(OH)2+x and manganokaskasite (Mo,Nb)S2·(Mn1−x Al x )(OH)2+x , three new valleriite-group mineral species from the Khibiny alkaline complex, Kola peninsula, Russia

  • I. V. Pekov (a1), V. O. Yapaskurt (a1), Y. S. Polekhovsky (a2), M. F. Vigasina (a1) and O. I. Siidra (a2)...

Three new valleriite-group minerals, ekplexite (Nb,Mo)S2·(Mg1−x Al x )(OH)2+x , kaskasite (Mo,Nb)S2·(Mg1−x Al x )(OH)2+x and manganokaskasite (Mo,Nb)S2·(Mn1−x Al x )(OH)2+x are found at Mt Kaskasnyunchorr, Khibiny alkaline complex, Kola Peninsula, Russia. They occur in fenite consisting of orthoclase−anorthoclase and nepheline with fluorophlogopite, corundum, pyrrhotite, pyrite, rutile, monazite-(Ce), graphite, edgarite, molybdenite, tungstenite, alabandite, etc. Ekplexite forms lenticular nests up to 0.2 mm × 1 mm × 1 mm consisting of near-parallel, radiating or chaotic aggregates of flakes. Kaskasite and manganokaskasite mainly occur as flakes and their near-parallel ‘stacks’ (kaskasite: up to 0.03 mm × 1 mm × 1.5 mm; manganokaskasite: up to 0.02 mm × 0.5 mm × 1 mm) epitaxially overgrow Ti-bearing pyrrhotite partially replaced by Ti-bearing pyrite. All three new minerals are opaque, ironblack, with metallic lustre. Cleavage is {001} perfect and mica-like. Flakes are very soft, flexible and inelastic. Mohs hardness is ∼1. D(calc.) = 3.63 (ekplexite), 3.83 (kaskasite) and 4.09 (manganokaskasite) g cm−3. In reflected light all these minerals are grey, without internal reflections. Anisotropism and bireflectance are very strong and pleochroism is strong. The presence of OH groups and an absence of H2O molecules are confirmed by the Raman spectroscopy data. Chemical data (wt.%, electron probe) for ekplexite, kaskasite and manganokaskasite, respectively, are: Mg 6.25, 5.94, 0.06; Al 4.31, 3.67, 3.00; Ca 0.00, 0.04, 0.00; V 0.86, 0.16, 0.15; Mn 0.00, 0.23, 11.44; Fe 0.44, 1.44, 2.06; Nb 18.17, 13.39, 14.15; Mo 15.89, 23.18, 20.08; W 8.13, 7.59, 9.12; S 27.68, 27.09, 24.84; O 16.33, 15.66, 13.36; H (calc.) 1.03, 0.99, 0.89; total 99.09, 99.08, 99.15. The empirical formulae calculated on the basis of 2 S a.p.f.u. are: ekplexite: (Nb0.45Mo0.38W0.10V0.04)S0.97S2· (Mg0.60Al0.37Fe0.02)S0.99(OH)2.36; kaskasite: (Mo0.57Nb0.34W0.10V0.01)S1.02S2· (Mg0.58Al0.32Fe0.06Mn0.01)S0.97(OH)2.32; manganokaskasite: (Mo0.54Nb0.39W0.13V0.01)S1.07S2· (Mn0.54Al0.29Fe0.10Mg0.01)S0.94(OH)2.28. All three minerals are trigonal, space groups P m1, P3m1 or P321, one-layer polytypes (Z = 1). Their structures are non-commensurate and consist of the MeS2-type (Me = Nb, Mo, W) sulfide modules and the brucite-type hydroxide modules. Parameters of the sulfide (main) sub-lattices (a, c in Å, V in Å3) are: 3.262(2), 11.44(2), 105.4(4) (ekplexite); 3.220(2), 11.47(2), 102.8(4) (kaskasite); 3.243(3), 11.61(1), 105.8(3) (manganokaskasite). Parameters of the hydroxide sub-lattices (a, c in Å, V in Å3) are: 3.066(2), 11.52(2), 93.8(4) (ekplexite); 3.073(2), 11.50(2), 94.0(4) (kaskasite); 3.118(3), 11.62(1), 97.9(2) (manganokaskasite). Ekplexite was named from the Greek word έκπληξη meaning surprise, for its exotic combination of major chemical constituents, kaskasite after the discovery locality and manganokaskasite as a Mn analogue of kaskasite.

Corresponding author
Hide All
Barkov, A.Y., Laajoki, K.V.O., Men’shikov, Y.P., Alapieti, T.T. and Sivonen, S.J. (1997) First terrestrial occurrence of titanium-rich pyrrhotite, pyrite and marcasite in a fenitized xenolith from the Khibina alkaline complex, Russia. The Canadian Mineralogist, 35, 875885.
Barkov, A.Y., Martin, R.F., Men’shikov, Y.P., Savchenko, Y.E., Thibault, Y. and Laajoki, K.V.O. (2000a) Edgarite, FeNb3S6, the first natural niobiumrich sulfide from the Khibina alkaline complex, Russian Far North: evidence for chalcophile behavior of Nb in a fenite. Contributions to Mineralogy and Petrology, 138, 229236.
Barkov, A.Y., Martin, R.F., Poirier, G. and Men’shikov, Y.P. (2000b) Zoned tungstenoan molybdenite from a fenitized megaxenolith in the Khibina alkaline complex, Kola Peninsula, Russia. The Canadian Mineralogist, 38, 13771385.
Barkov, A.Y., Fleet, M.E., Martin, R.F. and Men’shikov, Y.P. (2006) Sr-Na-REE titanates of the crichtonite group from a fenitized megaxenolith, Khibina alkaline complex, Kola Peninsula, Russia: first occurrence and implications. European Journal of Mineralogy, 18, 493502.
Browning, L.B. and Bourcier, W.L. (1996) Tochilinite: a sensitive indicator of alteration conditions on the CM asteroidal parent body. Lunar and Planetary Science, 27, 171.
Dawson, P., Hadfield, C.D. and Wilkinson, G.R. (1973) The polarized IR and Raman spectra of Mg(OH)2 and Ca(OH)2. Journal of Physics and Chemistry of Solids, 34, 12171225.
Drábek, M., Hybner, J., Rieder, M. and Böhmová, V. (2010) The system Fe–Nb–S and its geological implications. The Canadian Mineralogist, 48, 10591068.
El Goresy, A., Nagel, K. and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings of the Lunar and Planetary Science Conference, Houston, Texas, 9, 12791303.
Evans, H.T., Jr. and Allmann, R. (1968) The crystal structure and crystal chemistry of valleriite. Zeitschrift für Kristallographie, 127, 7393.
Evans, H.T., Jr., Milton, C., Chao, E.C.T., Adler, I., Mead, C., Ingram, B. and Berner, R.A. (1964) Valleriite and the new iron sulfide, mackinawite. United States Geological Survey Professional Paper 475-D, D64–D69.
Evstigneeva, T.L., Genkin, A.D., Sandomirskaya, S.M. and Trubkin, N.V. (1992) Vyalsovite, a new sulfidehydroxide of iron, calcium and aluminum. American Mineralogist, 77, 201206.
Gressier, P., Rabu, P., Meerschaut, A., Guemas, L. and Rouxel, J. (1997) Misfit layer compounds family (MS)nTS2 (M = Sn, Pb, Bi, rare earth element; T = Nb, Ta; n = 1.08–1.19). Phase Transitions, 30, 3947.
Huhma, M., Vuorelainen, Y., Hakli, T.A. and Papunen, H. (1973) Haapalaite, a new nickel-iron sulfide of the valleriite type from East Finland. Bulletin of the Geological Society of Finland, 45, 103106.
Jambor, J.L. (1976) New occurrences of the hybrid sulfide tochilinite. Geological Survey of Canada Paper, 76-1B, 65-69.
Jellinek, F., Brauer, G. and Müller, H. (1960) Molybdenum and niobium sulfides. Nature, 185, 376377.
Kalikhman, V.L. and Golubnichaya, A.A. (1983) Structure of intermediate phases of quasibinary systems of disulfides of W, Mo and Nb. Soviet Physics, Crystallography, 28, 474475.
Kalikhman, V.L. and Umansky, Y.A. (1972) Chalcogenides of transition metals with layered structure and features of occupancy of their Brillouin zone. Uspekhi Fizicheskikh Nauk, 108, 503528.[in Russian].
Lafond, A., Deudon, C., Meerschaut, A., Palvadeau, P., Moëlo, Y. and Briggs, A. (1999) Structure determination and physical properties of the misfit layered compound (Pb2FeS3)0.58·NbS2. Journal of Solid State Chemistry, 142, 461469.
Makeev, A.B., Evstigneeva, T.L., Troneva, N.V., Vyal’sov, L.N., Gorshkov, A.I. and Trubkin, N.V. (1984) Yushkinite, V1-xS·[n(Mg,Al)(OH)2] – a new mineral. Mineralogicheskii Zhurnal, 6(3), 9197 [in Russian].
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Pp. 7–125 in: Sulfide Mineralogy and Geochemistry (D.J. Vaughan, editor). Reviews in Mineralogy & Geochemistry, 61. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
Men’shikov, Y.P. (1978) Corundum mineralization in the Khibiny alkaline complex. Doklady Akademii Nauk SSSR, 243, 12471249.[in Russian].
Moëlo, Y., Rouer, O., Cario, L. and Cervelle, B. (1999) Re-examination of yushkinite: chemical composition, optical properties and interlayer charge transfer. Mineralogical Magazine, 63, 879889.
Nader, A., Briggs, A. and Gotoh, Y. (1997) Superconductivity in the misfit layer compounds (BiSe)1.11(NbSe2) and (BiS)1.11(NbS2). Solid State Communications, 101, 149153.
Organova, N.I. (1989) Crystal Chemistry of Incommensurate and Modulated Mixed-Layer Minerals. Nauka, Moscow [in Russian].
Organova, N.I., Genkin, A.D., Drits, V.A., Molotkov, S.P., Kuz’mina, O.V. and Dmitrik, A.L. (1971) Tochilinite, a new sulfide-hydroxide of iron and magnesium. Zapiski V sesoyuznogo Mineralogicheskogo Obshchestva, 100, 477487.[in Russian].
Organova, N.I., Drits, V.A. and Dmitrik, A.L. (1972) Structural study of tochilinite. Part I. The isometric variety. Soviet Physics, Crystallography, 17, 761767.
Pekov, I.V., Chukanov, N.V., Boldyreva, M.M. and Dubinchuk, V.T. (2006) Wilhelmramsayite, Cu3FeS3·2H2O, a new mineral from the Khibiny massif, Kola Peninsula. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 135(1), 3848 [in Russian].
Pekov, I.V., Sereda, E.V., Polekhovsky, Y.S., Britvin, S.N., Chukanov, N.V., Yapaskurt, V.O. and Bryzgalov, I.A. (2013a) Ferrotochilinite, 6FeS·5Fe(OH)2, a new mineral from the Oktyabr’sky deposit, Noril’sk district, Siberia, Russia. Geology of Ore Deposits, 55(7), 567–574 [translated from: Zapiski Rossii skogo Mineralogicheskogo Obshchestva, 2012, 141, 111..
Pekov, I.V., Sereda, E.V., Yapaskurt, V.O., Polekhovsky, Y.S., Britvin, S.N. and Chukanov, N.V. (2013b) Ferrovalleriite, 2(Fe,Cu)S·1.5Fe(OH)2: validation as a mineral species and new data. Geology of Ore Deposits, 55(8), 637647 [translated from: Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2011, 141, 29–43].
Schutte, W.J., de Boer, J.L. and Jellinek, F. (1987) Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry, 70, 207209.
Sugaki, A., Shima, H., Kitakaze, A. and Mizota, T. (1981) Hydrothermal synthesis of nukundamite and its crystal structure. American Mineralogist, 66, 398402.
Wang, S.-L. and Johnston, C.T. (2000) Assignment of the structural OH stretching bands at gibbsite. American Mineralogist, 85, 739744.
Wiegers, G.A., Meetsma, A., Haange, R.J., Van Smaalen, S., de Boer, J.L., Meerschaut, A., Rabu, P. and Rouxel, J. (1990) The incommensurate misfit layer structure of (PbS)1.14·NbS2, “PbNbS3”, and (LaS)1.14·NbS2, “LaNbS3”: an X-ray diffraction study. Acta Crystallographica, B46, 324332.
Yakovleva, O.S., Pekov, I.V., Bryzgalov, I.A. and Men’shikov, Y.P. (2010) Chalcogenide mineralization in the alumina-rich fenites of the Khibiny alkaline complex (Kola Peninsula, Russia). New Data on Minerals, 45, 3349.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mineralogical Magazine
  • ISSN: 0026-461X
  • EISSN: 1471-8022
  • URL: /core/journals/mineralogical-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 8 *
Loading metrics...

* Views captured on Cambridge Core between 5th July 2018 - 18th August 2018. This data will be updated every 24 hours.