Skip to main content Accessibility help
×
×
Home

GLOBAL ATTRACTOR FOR WEAKLY DAMPED, FORCED mKdV EQUATION BELOW ENERGY SPACE

Abstract

We prove the existence of the global attractor in ${\dot{H}}^{s}$ , $s>11/12$ for the weakly damped and forced mKdV on the one-dimensional torus. The existence of global attractor below the energy space has not been known, though the global well-posedness below the energy space has been established. We directly apply the $I$ -method to the damped and forced mKdV, because the Miura transformation does not work for the mKdV with damping and forcing terms. We need to make a close investigation into the trilinear estimates involving resonant frequencies, which are different from the bilinear estimates corresponding to the KdV.

Copyright

References

Hide All
[1] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , Geom. Funct. Anal. 3(3) (1993), 209262.
[2] Chen, W., Tian, L. and Deng, X., Global attractor of dissipative MKdV equation , J. Jiangsu Univ. Nat. Sci. 28(1) (2007), 8992.
[3] Chen, W., Tian, L. and Deng, X., The global attractor and numerical simulation of a forced weakly damped MKdV equation , Nonlinear Anal. Real World Appl. 10(3) (2009), 18221837.
[4] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Sharp global well-posedness for KdV and modified KdV on ℝ and T , J. Amer. Math. Soc. 16(3) (2003), 705749.
[5] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Multilinear estimates for periodic KdV equations, and applications , J. Funct. Anal. 211(1) (2004), 173218.
[6] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Resonant decompositions and the I-method for cubic nonlinear Schrodinger on R 2 , Discrete Contin. Dyn. Syst. 21(3) (2008), 665686.
[7] Dlotko, T., Kania, M. B. and Yang, M., Generalized Korteweg–de Vries equation in H 1(ℝ) , Nonlinear Anal. 71(9) (2009), 39343947.
[8] Ghidaglia, J. M., Finite-dimensional behavior for weakly damped driven Schrödinger equations , Ann. Inst. H. Poincaré Anal. Non Linéaire 5(4) (1988), 365405.
[9] Ghidaglia, J. M., Weakly damped forced Korteweg–de Vries equations behave as a finite-dimensional dynamical system in the long time , J. Differential Equations 74(2) (1988), 369390.
[10] Ghidaglia, J. M., A note on the strong convergence towards attractors of damped forced KdV equations , J. Differential Equations 110(2) (1994), 356359.
[11] Goubet, O., Regularity of the attractor for a weakly damped nonlinear Schrödinger equation , Appl. Anal. 60(1–2) (1996), 99119. Harvard.
[12] Goubet, O. and Molinet, L., Global attractor for weakly damped Nonlinear Schrödinger equations in L 2(ℝ) , Nonlinear Anal. 71(1–2) (2009), 317320.
[13] Guo, B. and Li, Y., Attractor for dissipative Klein–Gordon–Schrödinger equations in ℝ3 , J. Differential Equations 136(2) (1997), 356377.
[14] Haraux, A., Two remarks on dissipative hyperbolic problems , Res. Notes Math. 122 (1985), 161179.
[15] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations , Lect. Notes Math. 448 (1975), 2570.
[16] Lu, K. and Wang, B., Global attractors for the Klein–Gordon–Schrödinger equation in unbounded domains , J. Differential Equations 170(2) (2001), 281316.
[17] Miura, R. M., Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation , J. Mathematical Phys. 9 (1968), 12021204.
[18] Miura, R. M., The Korteweg–de Vries equation: a survey of results , SIAM Rev. 18(3) (1976), 412459.
[19] Miyaji, T. and Tsutsumi, Y., Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on T , Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7) (2017), 17071725.
[20] Nakanishi, K., Takaoka, H. and Tsutsumi, Y., Local well-posedness in low regularity of the mKdV equation with periodic boundary condition , Discrete Contin. Dyn. Syst. 28(4) (2010), 16351654.
[21] Takaoka, H. and Tsutsumi, Y., Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition , Int. Math. Res. Not. 56 (2004), 30093040.
[22] Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. Springer-Verlag, New York, 1997.
[23] Tsugawa, K., Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index , Commun. Pure Appl. Anal. 3(2) (2004), 301318.
[24] Wang, M., Li, D., Zhang, C. and Tang, Y., Long time behavior of solutions of gKdV equations , J. Math. Anal. Appl. 390(1) (2012), 136150.
[25] Yang, X., Global attractor for the weakly damped forced KdV equation in Sobolev spaces of low regularity , Nonlinear Differ. Equ. Appl. 18(3) (2011), 273285.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed