Skip to main content Accessibility help

Adverse effects of consuming high fat–sugar diets on cognition: implications for understanding obesity

  • Martin R. Yeomans (a1)


There is increasing evidence for important roles of key cognitive processes, including attention, memory and learning, in the short-term decision making about eating. There is parallel evidence that people who are overweight or obese tend to perform worse on a variety of cognitive tasks. In this review, the evidence for these two ideas is summarised and then the idea that overconsumption of Western-style high-fat (HF)–high-sugar diets may underlie the association between obesity and poorer cognitive performance is explored. In particular, evidence in animals and human subjects that repeated consumption of HF or HF and sugar (HFS) diets leads to specific impairments in the functioning of the hippocampus, which underpin the consequent changes in cognition is summarised. These findings lead into the vicious cycle model (VCM), which suggests that these cognitive changes have knock-on negative effects for future appetite control, and evidence that altered hippocampal function is also associated with impaired appetite control is explored. The review concludes that there is consistent evidence in the animal literature and emerging evidence from human studies that supports this VCM. It is also noted, however, that to date studies lack the nutritional specificity needed to be able to translate these basic research findings into clear nutritional effects, and concludes that there is an urgent need for additional research to clarify the precise nature of the apparent effects of consuming HFS diets on cognition.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adverse effects of consuming high fat–sugar diets on cognition: implications for understanding obesity
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adverse effects of consuming high fat–sugar diets on cognition: implications for understanding obesity
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adverse effects of consuming high fat–sugar diets on cognition: implications for understanding obesity
      Available formats


Corresponding author

* Corresponding author: Professor M. R. Yeomans, email


Hide All
1. Hellström, PM (2013) Satiety signals and obesity. Curr Opin Gastroenterol 29, 222227.
2. Hussain, S & Bloom, S (2013) The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes 37, 625633.
3. Finlayson, G, Halford, JC, King, NA et al. (2007) The regulation of food intake in humans. In Obesitext - The Source [Matthias, T, editor] Endotext. com.
4. Stroebe, W, Papies, EK & Aarts, H (2008) From homeostatic to hedonic theories of eating: self-regulatory failure in food-rich environments. Appl Psychol 57, 172193.
5. Hess, ME & Brüning, JC (2014) Obesity: the need to eat [mdash] overruling the homeostatic control of feeding. Nat Rev Endocrinol 10, 56.
6. Lowe, MR & Butryn, ML (2007) Hedonic hunger: a new dimension of appetite? Physiol Behav 91, 432439.
7. Herman, CP (2015) The social facilitation of eating. A review. Appetite 86, 6173.
8. Cruwys, T, Bevelander, KE & Hermans, RC (2015) Social modeling of eating: a review of when and why social influence affects food intake and choice. Appetite 86, 318.
9. Yeomans, MR, Blundell, JE & Lesham, M (2004) Palatability: response to nutritional need or need-free stimulation of appetite? Br J Nutr 92, Suppl. 3, S3S14.
10. Yeomans, MR (2007) The role of palatability in control of food intake: implications for understanding and treating obesity. In Appetite and Body Weight: Integrative systems and the Development of Anti-Obesity Drugs, pp. 247269 [Cooper, SJ and Kirkham, TC, editors]. London: Academic Press.
11. Johnson, F & Wardle, J (2014) Variety, palatability, and obesity. Adv. Nutr 5, 851859.
12. Almiron-Roig, E, Tsiountsioura, M, Lewis, HB et al. (2015) Large portion sizes increase bite size and eating rate in overweight women. Physiol Behav 139, 297302.
13. Zlatevska, N, Dubelaar, C & Holden, SS (2014) Sizing up the effect of portion size on consumption: a meta-analytic review. J Mark. 78, 140154.
14. Wansink, B & Van Ittersum, K (2013) Portion size me: plate-size induced consumption norms and win-win solutions for reducing food intake and waste. J Exp Psychol Appl 19, 320.
15. Livingstone, MBE & Pourshahidi, LK (2014) Portion size and obesity. Adv. Nutr 5, 829834.
16. Hargrave, SL, Jones, S & Davidson, TL (2016) The outward spiral: a vicious cycle model of obesity and cognitive dysfunction. Curr Opin Behav Sci 9, 4046.
17. Kanoski, SE & Davidson, TL (2011) Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 103, 5968.
18. Schachter, S (1968) Obesity and eating. Science 161, 751756.
19. Robinson, E, Aveyard, P, Daley, A et al. (2013) Eating attentively: a systematic review and meta-analysis of the effect of food intake memory and awareness on eating. Am J Clin Nutr, 92, 728742.
20. Prescott, J, Taylor, A & Roberts, D (2004) Psychological processes in flavour perception. In Flav Percept pp. 256277 [Taylor, AJ and Roberts, D, editors] London: Blackwell Publishing.
21. Small, DM & Prescott, J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 166, 345357.
22. Yeomans, MR (2006) The role of learning in development of food preferences. In Psychology of Food Choice, pp. 93112 [Shepherd, R and Raats, M, editors]. Wallingford, Oxford: CABI.
23. Havermans, RC & Jansen, A (2011) Acquired tastes: establishing food (dis-) likes by flavour–flavour learning. In Handbook of Behavior, Food and Nutrition, pp. 7384 [Preedy, VR, Watson, RR and martin, CR, editors]. New York: Springer.
24. Rozin, P, Dow, S, Moscovitch, M et al. (1998) What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients. Psychol Sci 9, 392396.
25. Higgs, S & Donohoe, JE (2011) Focusing on food during lunch enhances lunch memory and decreases later snack intake. Appetite 57, 202206.
26. Higgs, S, Williamson, AC & Attwood, AS (2008) Recall of recent lunch and its effect on subsequent snack intake. Physiol Behav 94, 454462.
27. Higgs, S & Woodward, M (2009) Television watching during lunch increases afternoon snack intake of young women. Appetite 52, 3943.
28. Higgs, S (2008) Cognitive influences on food intake: the effects of manipulating memory for recent eating. Physiol Behav 94, 734739.
29. Piech, RM, Pastorino, MT & Zald, DH (2010) All I saw was the cake. Hunger effects on attentional capture by visual food cues. Appetite 54, 579582.
30. Tapper, K, Pothos, EM & Lawrence, AD (2010) Feast your eyes: hunger and trait reward drive predict attentional bias for food cues. Emotion 10, 949.
31. Mogg, K, Bradley, BP, Hyare, H et al. (1998) Selective attention to food-related stimuli in hunger: are attentional biases specific to emotional and psychopathological states, or are they also found in normal drive states? Behav Res Ther 36, 227237.
32. Siep, N, Roefs, A, Roebroeck, A et al. (2009) Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res 198, 149158.
33. Castellanos, EH, Charboneau, E, Dietrich, MS et al. (2009) Obese adults have visual attention bias for food cue images: evidence for altered reward system function. Int J Obes (Lond) 33, 10631073.
34. Braet, C & Crombez, G (2003) Cognitive interference due to food cues in childhood obesity. J Clin Child Adolesc 32, 3239.
35. Nijs, IM, Franken, IH & Muris, P (2010) Food-related Stroop interference in obese and normal-weight individuals: behavioral and electrophysiological indices. Eat Behav 11, 258265.
36. Nijs, IM, Muris, P, Euser, AS et al. (2010) Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite 54, 243254.
37. Yokum, S, Ng, J & Stice, E (2011) Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity 19, 17751783.
38. Werthmann, J, Roefs, A, Nederkoorn, C et al. (2011) Can (not) take my eyes off it: attention bias for food in overweight participants. Health Psychol 30, 561.
39. Kemps, E, Tiggemann, M & Hollitt, S (2014) Biased attentional processing of food cues and modification in obese individuals. Health Psychol 33, 1391.
40. Doolan, KJ, Breslin, G, Hanna, D et al. (2014) Visual attention to food cues in obesity: an eye-tracking study. Obesity 22, 25012507.
41. Deluchi, M, Costa, FS, Friedman, R et al. (2017) Attentional bias to unhealthy food in individuals with severe obesity and binge eating. Appetite 108, 471476.
42. Gao, X, Wang, Q, Jackson, T et al. (2011) Biases in orienting and maintenance of attention among weight dissatisfied women: an eye-movement study. Behav Res Ther 49, 252259.
43. Werthmann, J, Roefs, A, Nederkoorn, C et al. (2013) Attention bias for food is independent of restraint in healthy weight individuals – an eye tracking study. Eat Behav 14, 397400.
44. Gibson, EL & Brunstrom, JM (2007) Learned influences on appetite, food choice and intake: evidence in human beings. In Appetite and Body Weight: Integrative Systems and the Development of Anti-Obesity Drugs, pp. 271300 [Kirkham, TC and Cooper, SJ, editors] London: Academic Press.
45. Benoit, SC, Davis, JF & Davidson, T (2010) Learned and cognitive controls of food intake. Brain Res 1350, 7176.
46. Yeomans, MR & Mobini, S (2006) Hunger alters the expression of acquired hedonic but not sensory qualities of food-paired odors in humans. J Exp Psychol Anim Behav Proc 32, 460466.
47. Mobini, S, Chambers, LC & Yeomans, MR (2007) Effects of hunger state on flavour pleasantness conditioning at home: flavour-nutrient learning versus flavour-flavour learning. Appetite 48, 2028.
48. Brunstrom, JM, Downes, CR & Higgs, S (2001) Effects of dietary restraint on flavour-flavour learning. Appetite 37, 197206.
49. Brunstrom, JM & Mitchell, GL (2007) Flavor-nutrient learning in restrained and unrestrained eaters. Physiol Behav 90, 133141.
50. Gunstad, J, Paul, R, Cohen, R et al. (2006) Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight DisordStud Anorexia Bulimia Obes 11, e15e19.
51. Cournot, M, Marquie, J, Ansiau, D et al. (2006) Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 67, 12081214.
52. Gunstad, J, Lhotsky, A, Wendell, CR et al. (2010) Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology 34, 222229.
53. Cheke, LG, Simons, JS & Clayton, NS (2016) Higher body mass index is associated with episodic memory deficits in young adults. Q J Exp Psychol 69, 23052316.
54. Miller, LA, Crosby, RD, Galioto, R et al. (2013) Bariatric surgery patients exhibit improved memory function 12 months postoperatively. Obes Surg 23, 15271535.
55. Coppin, G, Nolan-Poupart, S, Jones-Gotman, M et al. (2014) Working memory and reward association learning impairments in obesity. Neuropsychologia 65, 146155.
56. Sabia, S, Kivimaki, M, Shipley, MJ et al. (2009) Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study. Am J Clin Nutr 89, 601607.
57. Barkin, SL (2013) The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes 2013.
58. Kuo, HK, Jones, RN, Milberg, WP et al. (2006) Cognitive function in normal-weight, overweight, and obese older adults: an analysis of the advanced cognitive training for independent and vital elderly cohort. J Am Geriatr Soc 54, 97103.
59. Molteni, R, Barnard, R, Ying, Z et al. (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803814.
60. Stranahan, AM, Norman, ED, Lee, K et al. (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18, 10851088.
61. Kanoski, SE & Davidson, TL (2010) Different patterns of memory impairments accompany short-and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Proc 36, 313.
62. Jurdak, N, Lichtenstein, AH & Kanarek, RB (2008) Diet-induced obesity and spatial cognition in young male rats. Nutr Neurosci 11, 4854.
63. Pistell, PJ, Morrison, CD, Gupta, S et al. (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 219, 2532.
64. Valladolid-Acebes, I, Stucchi, P, Cano, V et al. (2011) High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol Learn Mem 95, 8085.
65. Tran, DM & Westbrook, RF (2015) Rats fed a diet rich in fats and sugars are impaired in the use of spatial geometry. Psychol Sci, 26, 19471957.
66. Beilharz, JE, Maniam, J & Morris, MJ (2014) Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun 37, 134141.
67. Murray, AJ, Knight, NS, Cochlin, LE et al. (2009) Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEB J 23, 43534360.
68. Francis, H & Stevenson, R (2013) The longer-term impacts of Western diet on human cognition and the brain. Appetite 63, 119128.
69. Kanoski, SE, Hsu, TM & Pennell, S (2014) Obesity, Western diet intake, and cognitive impairment. In Omega-3 Fatty Acids in Brain and Neurological Health, pp. 5762 [Watson, RR and De Meester, F, editors]. New York: Academic Press.
70. Kalmijn, S, Van Boxtel, M, Ocke, M et al. (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62, 275280.
71. Morris, M, Evans, D, Bienias, J et al. (2004) Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology 62, 15731579.
72. Gibson, EL, Barr, S & Jeanes, YM (2013) Habitual fat intake predicts memory function in younger women. Front Hum Neurosci 7, 838.
73. Akbaraly, TN, Singh-Manoux, A, Marmot, MG et al. (2009) Education attenuates the association between dietary patterns and cognition. Dement Geriatr Cogn 27, 147154.
74. Francis, HM & Stevenson, RJ (2011) Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci 125, 943955.
75. Francis, H & Stevenson, R (2013) Validity and test–retest reliability of a short dietary questionnaire to assess intake of saturated fat and free sugars: a preliminary study. J Hum Nutr Dietet 26, 234242.
76. Brannigan, M, Stevenson, RJ & Francis, H (2015) Thirst interoception and its relationship to a Western-style diet. Physiol Behav 139, 423429.
77. Attuquayefio, T, Stevenson, RJ, Boakes, RA et al. (2016) A high-fat high-sugar diet predicts poorer hippocampal-related memory and a reduced ability to suppress wanting under satiety. J Exp Psychol Animal Learn Cogn 42, 415428.
78. Jacka, FN, Cherbuin, N, Anstey, KJ et al. (2015) Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med 13, 215.
79. Edwards, LM, Murray, AJ, Holloway, CJ et al. (2011) Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB J 25, 10881096.
80. Holloway, CJ, Cochlin, LE, Emmanuel, Y et al. (2011) A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr 93, 748755.
81. Davidson, TL, Tracy, AL, Schier, LA et al. (2014) A view of obesity as a learning and memory disorder. J Exp Psychol Animal Learn Cogn 40, 261279.
82. Parent, MB, Darling, JN & Henderson, YO (2014) Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 306, R701R713.
83. Davidson, T, Kanoski, SE, Walls, EK et al. (2005) Memory inhibition and energy regulation. Physiol Behav 86, 731746.
84. Davidson, TL, Kanoski, SE, Schier, LA et al. (2007) A potential role for the hippocampus in energy intake and body weight regulation. Curr Opp Pharmacol 7, 613616.
85. Berthoud, H-R & Morrison, C (2008) The brain, appetite, and obesity. Ann Rev Psychol 59, 5592.
86. Cota, D, Proulx, K, Smith, KAB et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312, 927930.
87. Kanoski, SE & Grill, HJ (2017) Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol Psychiatr, 81, 748756.
88. Hannapel, RC, Henderson, YH, Nalloor, R et al. (2017) Ventral hippocampal neurons inhibit postprandial energy intake. Hippocampus, 27, 274284.
89. Preston, AR & Eichenbaum, H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23, R764R773.
90. Schiller, D, Eichenbaum, H, Buffalo, EA et al. (2015) Memory and space: towards an understanding of the cognitive map. J Neurosci 35, 1390413911.
91. Zeidman, P & Maguire, EA (2016) Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat Rev Neurosci 17, 173182.
92. Clifton, PG, Vickers, SP & Somerville, EM (1998) Little and often: ingestive behavior patterns following hippocampal lesions in rats. Behav Neurosci 112, 502.
93. Henderson, YO, Smith, GP & Parent, MB (2013) Hippocampal neurons inhibit meal onset. Hippocampus 23, 100107.
94. Sample, CH, Jones, S, Hargrave, SL et al. (2016) Western diet and the weakening of the interoceptive stimulus control of appetitive behavior. Behav Brain Res 312, 219230.
95. Sample, CH, Martin, AA, Jones, S et al. (2015) Western-style diet impairs stimulus control by food deprivation state cues: implications for obesogenic environments. Appetite 93, 1323.
96. Batterink, L, Yokum, S & Stice, E (2010) Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage 52, 16961703.
97. Epstein, LH, Dearing, KK, Temple, JL et al. (2008) Food reinforcement and impulsivity in overweight children and their parents. Eat Behav 9, 319327.
98. Mobbs, O, Crepin, C, Thiery, C et al. (2010) Obesity and the four facets of impulsivity. Patient Educ Couns 79, 372377.
99. Nederkoorn, C, Braet, C, Van Eijs, Y et al. (2006) Why obese children cannot resist food: the role of impulsivity. Eat Behav 7, 315322.
100. Schag, K, Schonleber, J, Teufel, M et al. (2013) Food-related impulsivity in obesity and binge eating disorder – a systematic review. Obes Rev 14, 477495.
101. Yeomans, MR, Leitch, M & Mobini, S (2008) Impulsivity is associated with the disinhibition but not restraint factor from the Three Factor Eating Questionnaire. Appetite 50, 469476.
102. Lumley, J, Stevenson, RJ, Oaten, MJ et al. (2016) Individual differences in impulsivity and their relationship to a Western-style diet. Pers Indiv Differ 97, 178185.
103. Yudkin, JS, Kumari, M, Humphries, SE et al. (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148, 209214.
104. Danesh, J, Whincup, P, Walker, M et al. (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321, 199204.
105. Halaris, A (2013) Inflammation, heart disease, and depression. Curr Psychiatr Rep 15, 400.
106. Figaro, MK, Kritchevsky, SB, Resnick, HE et al. (2006) Diabetes, inflammation, and functional decline in older adults. Diabetes Care 29, 20392045.
107. Wellen, KE & Hotamisligil, GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115, 11111119.
108. Dantzer, R, O'Connor, JC, Freund, GG et al. (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9, 4656.
109. Wang, Y, Lam, KS, Kraegen, EW et al. (2007) Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 53, 3441.
110. Shoelson, SE, Herrero, L & Naaz, A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132, 21692180.
111. Spyridaki, EC, Avgoustinaki, PD & Margioris, AN (2016) Obesity, inflammation and cognition. Curr Opin Behav Sci 9, 169175.
112. Esser, N, Legrand-Poels, S, Piette, J et al. (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diab Res Clin Pract 105, 141150.
113. Cazettes, F, Cohen, JI, Yau, PL et al. (2011) Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res 1373, 101109.
114. Sobesky, JL, Barrientos, RM, Henning, S et al. (2014) High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1β, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun 42, 2232.
115. Boitard, C, Cavaroc, A, Sauvant, J et al. (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40, 917.
116. Castanon, N, Luheshi, G & Layé, S (2015) Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci 9, 229.
117. Cunha, C, Brambilla, R & Thomas, KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3, 1.
118. Lu, Y, Christian, K & Lu, B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89, 312323.
119. Kanoski, SE, Meisel, RL, Mullins, AJ et al. (2007) The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res 182, 5766.
120. Lee, J, Duan, W & Mattson, MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82, 13671375.
121. Gustafson, D, Karlsson, C, Skoog, I et al. (2007) Mid-life adiposity factors relate to blood–brain barrier integrity in late life. J Int Med 262, 643650.
122. Kanoski, SE, Zhang, Y, Zheng, W et al. (2010) The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimers Dis 21, 207219.
123. Freeman, LR & Granholm, A-CE (2012) Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab 32, 643653.
124. Flock, MR, Rogers, CJ, Prabhu, KS et al. (2013) Immunometabolic role of long-chain omega-3 fatty acids in obesity-induced inflammation. Diab Metab Res Rev 29, 431445.
125. Lorente-Cebrián, S, Costa, AG, Navas-Carretero, S et al. (2015) An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem 71, 341349.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed