Skip to main content
×
Home
    • Aa
    • Aa

Human gut microbiota: does diet matter?

  • Johanna Maukonen (a1) and Maria Saarela (a1)
Abstract

The human oro-gastrointestinal (GI) tract is a complex system, consisting of oral cavity, pharynx, oesophagus, stomach, small intestine, large intestine, rectum and anus, which all together with the accessory digestive organs constitute the digestive system. The function of the digestive system is to break down dietary constituents into small molecules and then absorb these for subsequent distribution throughout the body. Besides digestion and carbohydrate metabolism, the indigenous microbiota has an important influence on host physiological, nutritional and immunological processes, and commensal bacteria are able to modulate the expression of host genes that regulate diverse and fundamental physiological functions. The main external factors that can affect the composition of the microbial community in generally healthy adults include major dietary changes and antibiotic therapy. Changes in some selected bacterial groups have been observed due to controlled changes to the normal diet e.g. high-protein diet, high-fat diet, prebiotics, probiotics and polyphenols. More specifically, changes in the type and quantity of non-digestible carbohydrates in the human diet influence both the metabolic products formed in the lower regions of the GI tract and the bacterial populations detected in faeces. The interactions between dietary factors, gut microbiota and host metabolism are increasingly demonstrated to be important for maintaining homeostasis and health. Therefore the aim of this review is to summarise the effect of diet, and especially dietary interventions, on the human gut microbiota. Furthermore, the most important confounding factors (methodologies used and intrinsic human factors) in relation to gut microbiota analyses are elucidated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Human gut microbiota: does diet matter?
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Human gut microbiota: does diet matter?
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Human gut microbiota: does diet matter?
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: J. Maukonen, fax +358 20 722 7071, email johanna.maukonen@vtt.fi
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. SM Finegold , VL Sutter , GE Mathisen (1983) Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 331 [ DJ Hentges , editor]. New York, NY: Academic Press.

4. HJM Harmsen , GC Raangs , T He (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68, 29822990.

5. J Marchesi & F Shanahan (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20, 508513.

6. M Wilson (2008) Bacteriology of Humans. Oxford, UK: Blackwell Publishing.

7. JH Cummings & GT Macfarlane (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70, 443459.

9. JH Cummings & GT Macfarlane (1997) Colonic microflora: nutrition and health. Nutrition 13, 476478.

11. M Rajilić-Stojanović , H Smidt & WM De Vos (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9, 21252136.

12. J Qin , R Li , J Raes (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 5965.

15. T Vanhoutte , G Huys , E De Brandt (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48, 437446.

16. P Seksik , L Rigottier-Gois , G Gramet (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237242.

17. PB Eckburg , EM Bik , CN Bernstein (2005) Microbiology: diversity of the human intestinal microbial flora. Science 308, 16351638.

19. J Tap , S Mondot , F Levenez (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11, 25742584.

20. RE Ley , PJ Turnbaugh , S Klein (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444, 10221023.

21. PJ Turnbaugh , M Hamady , T Yatsunenko (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.

22. A Sghir , G Gramet , A Suau (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66, 22632266.

23. C Lay , L Rigottier-Gois , K Holmstrøm (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71, 41534155.

24. S Mueller , K Saunier , C Hanisch (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72, 10271033.

25. J Maukonen , R Satokari , J Mättö (2006) Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J Med Microbiol 55, 625633.

26. V Rochet , L Rigottier-Gois , S Rabot (2004) Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples. J Microbiol Methods 59, 263270.

27. L Rigottier-Gois , A Le Bourhis , G Gramet (2003) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43, 237245.

28. GL Hold , A Schwiertz , RI Aminov (2003) Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 69, 43204324.

29. EG Zoetendal , K Ben-Amor , HJM Harmsen (2002) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68, 42254232.

30. P Marteau , P Pochart , J Doré (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67, 49394942.

31. C Lay , M Sutren , V Rochet (2005) Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7, 933946.

32. K Saunier , C Rouge , C Lay (2005) Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep1156 16S rRNA probe in combination with helper and competitor oligonucleotides. Syst Appl Microbiol 28, 454464.

33. J Doré , A Schir , G Hannequart-Gramet (1998) Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 21, 6571.

34. L Rigottier-Gois , V Rochet , N Garrec (2003) Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rRNA probes. Syst Appl Microbiol 26, 110118.

35. HN Shah (1992) The genus bacteroides and related taxa. In The Prokaryotes, 2nd ed., pp. 3593–607 [ A Balows , HG Trüper , M Dworkin , W Harder , K-H Schleifer , editors]. New York, NY: Springer-Verlag.

36. MC Collado , M Derrien , E Isolauri (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73, 77677770.

37. M Derrien , MC Collado , K Ben-Amor (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74, 16461648.

38. HJM Harmsen , ACM Wildeboer-Veloo , J Grijpstra (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66, 45234527.

39. GR Gibson , GT Macfarlane & JH Cummings (1988) Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65, 103111.

40. A Reyes , M Haynes , N Hanson (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334338.

41. J Doré , G Gramet , I Goderel (1998) Culture-independent characterisation of human faecal flora using rRNA-targeted hybridisation probes. Genet Sel Evol 30, Suppl., S287S296.

42. LF Roesch , G Casella , O Simell (2009) Influence of fecal sample storage on bacterial community diversity. Open Microbiol J 3, 4046.

43. SJ Ott , M Musfeldt , KN Timmis (2004) In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diag Microbiol Infect Dis 50, 237245.

45. NA Kennedy , AW Walker , SH Berry (2014) The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 9, e88982.

46. B Dridi , M Henry , A El Khéchine (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4, e7063.

47. J Maukonen , C Simões & M Saarela (2012) The currently used commercial DNA extraction methods give different results of clostridial and Actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79, 697708.

48. A Salonen , J Nikkilä , J Jalanka-Tuovinen (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81, 127134.

49. L Krogius-Kurikka , A Kassinen , L Paulin (2009) Sequence analysis of percent G + C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria. BMC Microbiol 9, 68.

50. N Nakamura , HR Gaskins , CT Collier (2009) Molecular ecological analysis of fecal bacterial populations from term infants fed formula supplemented with selected blends of prebiotics. Appl Environ Microbiol 75, 11211128.

51. T Matsuki , K Watanabe , J Fujimoto (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70, 72207228.

52. L Hoyles & AL McCartney (2009) What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota? FEMS Microbiol Lett 299, 175183.

53. AW Walker , SH Duncan , P Louis (2014) Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 22, 267274.

54. J Kuczynski , CL Lauber , WA Walters (2011) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13, 4758.

55. JE Corry , B Jarvis , S Passmore (2007) A critical review of measurement uncertainty in the enumeration of food micro-organisms. Food Microbiol 24, 230253.

56. A Ramette (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62, 142160.

57. K Rudi , M Zimonja , P Trosvik (2007) Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 120, 9599.

58. SJ Bent & LJ Forney (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2, 689695.

59. CA Lozupone , M Hamady , ST Kelley (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73, 15761585.

60. JJ Werner , O Koren , P Hugenholtz (2012) Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6, 94103.

62. PJ Turnbaugh , C Quince , JJ Faith (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA 107, 75037508.

63. JA Stewart , VS Chadwick & A Murray (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54, 12391242.

64. CD Simoes , J Maukonen , J Kaprio (2013) Habitual dietary intake is associated with the stool microbiota composition of Finnish monozygotic twins. J Nutr 143, 417423.

65. M Fallani , D Young , J Scott (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51, 7784.

67. M Li , B Wang , M Zhang (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105, 21172122.

68. C De Filippo , D Cavalieri , M Di Paola (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107, 1469114696.

69. M Fallani , S Amarri , A Uusijarvi (2011) Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157, 13851392.

70. C Rougé , O Goldenberg , L Ferraris (2010) Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe 16, 362370.

71. J Penders , C Thijs , C Vink (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511521.

72. JS Alm , J Swartz , B Björkstén (2002) An anthroposophic lifestyle and intestinal microflora in infancy. Pediatr Allergy Immunol 13, 402411.

73. A Schwiertz , B Gruhl , M Löbnitz (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 54, 393399.

74. E Bezirtzoglou , A Tsiotsias & GW Welling (2011) Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17, 478482.

75. CF Favier , WM De Vos & ADL Akkermans (2003) Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9, 219229.

76. C Palmer , EM Bik , DB DiGiulio (2007) Development of the human infant intestinal microbiota. PLoS Biol 5, 15561573.

77. CF Favier , EE Vaughan , WM de Vos (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68, 219226.

78. VO Rotimi & BI Duerden (1981) The development of the bacterial flora in normal neonates. J Med Microbiol 14, 5162.

79. P Songjinda , J Nakayama , Y Kuroki (2005) Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci Biotechnol Biochem 69, 638641.

80. M Wang , S Ahrne , M Antonsson (2004) T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. J Microbiol Methods 59, 5369.

81. MG Dominguez-Bello , EK Costello , M Contreras (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107, 1197111975.

82. F Magne , M Abély , F Boyer (2006) Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol 57, 128138.

83. S Arboleya , A Binetti , N Salazar (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79, 763772.

84. MA Hall , CB Cole , SL Smith (1990) Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child 65, 185188.

85. CL Bullen , PV Tearle & AT Willis (1976) Bifidobacteria in the intestinal tract of infants: an in vivo study. J Med Microbiol 9, 325333.

86. D Mariat , O Firmesse , F Levenez (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9, 123.

87. HJM Harmsen , ACM Wildeboer-Veloo , GC Raangs (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30, 6167.

88. F Magne , W Hachelaf , A Suau (2006) A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol 58, 563571.

89. J Penders , C Vink , C Driessen (2005) Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243, 141147.

90. PL Stark & A Lee (1982) The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol 15, 189203.

91. DJ Hentges (1993) The anaerobic microflora of the human body. Clin Infect Dis 16, Suppl. 4, S175S180.

93. M Rajilic-Stojanovic , HG Heilig , D Molenaar (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11, 17361751.

94. MJ Claesson , S Cusack , O O'Sullivan (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108, Suppl. 1, 45864591.

95. EJ Woodmansey , ME McMurdo , GT Macfarlane (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70, 61136122.

96. M Blaut , MD Collins , GW Welling (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87, Suppl. 2, S203S211.

97. J Maukonen , J Mättö , K Kajander (2008) Diversity and temporal stability of fecal bacterial populations in elderly subjects consuming galacto-oligosaccharide containing probiotic yoghurt. Int Dairy J 18, 386395.

99. MA Kohanski , DJ Dwyer & JJ Collins (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8, 423435.

100. A Sullivan , C Edlund & CE Nord (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1, 101114.

101. S Delgado , AB Flórez & B Mayo (2005) Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol 50, 202207.

103. J Mättö , AHAM van Hoek , KJ Domig (2007) Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int Dairy J 17, 11231131.

104. C Moubareck , F Gavini , L Vaugien (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55, 3844.

106. G Huys , K D'Haene , M Cnockaert (2010) Intra- and interlaboratory performances of two commercial antimicrobial susceptibility testing methods for bifidobacteria and nonenterococcal lactic acid bacteria. Antimicrob Agents Chemother 54, 25672574.

107. P Louis , KP Scott , SH Duncan (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102, 11971208.

108. SH Duncan , P Louis , JM Thomson (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11, 21122122.

109. AW Walker , SH Duncan , E Carol McWilliam Leitch (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71, 36923700.

111. HM Wexler (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20, 593621.

112. HN Shah & SE Gharbia (1993) Ecophysiology and taxonomy of Bacteroides and related taxa. Clin Infect Dis 16, Suppl. 4, S160S167.

113. FH Karlsson , DW Ussery , J Nielsen (2011) A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 61, 473485.

114. M Derrien , EE Vaughan , CM Plugge (2004) Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54, 14691476.

115. A Belenguer , SH Duncan , AG Calder (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72, 35933599.

116. G Falony , A Vlachou , K Verbrugghe (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72, 78357841.

117. JH Hehemann , G Correc , T Barbeyron (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908912.

119. WR Russell , SW Gratz , SH Duncan (2011) High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93, 10621072.

120. KM Tuohy , S Kolida , AM Lustenberger (2001) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides-a human volunteer study. Br J Nutr 86, 341348.

121. GE Walton , EG van den Heuvel , MH Kosters (2012) A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 107, 14661475.

122. SJ Langlands , MJ Hopkins , N Coleman (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53, 16101616.

123. M Rinne , M Kalliomaki , S Salminen (2006) Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J Pediatr Gastroenterol Nutr 43, 200205.

124. R Mohan , C Koebnick , J Schildt (2006) Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol 44, 40254031.

125. A Lyra , L Krogius-Kurikka , J Nikkila (2010) Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes. BMC Gastroenterol 10, 110.

126. SH Duncan , GE Lobley , G Holtrop (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32, 17201724.

127. I Nadal , A Santacruz , A Marcos (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33, 758767.

128. R Puupponen-Pimiä , T Seppänen-Laakso , L Nohynek (2013) Effects of ellagitannin rich berries on blood lipid profiles, gut microbiota and metabolism of phenolic compounds in metabolic syndrome. Mol. Nutr Food Res 57, 22582263.

129. SH Duncan , A Belenguer , G Holtrop (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73, 10731078.

130. HJ Flint , SH Duncan , KP Scott (2007) Interactions and competition within the microbial community of the human colon: links between diet and health: minireview. Environ Microbiol 9, 11011111.

131. BS Drasar , JS Crowther , P Goddard (1973) The relation between diet and the gut microflora in man. Proc Nutr Soc 32, 4952.

133. BS Drasar , F Montgomery & AM Tomkins (1986) Diet and faecal flora in three dietary groups in rural northern Nigeria. J Hyg (Lond) 96, 5965.

134. GD Wu , J Chen , C Hoffmann (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105108.

135. H Hayashi , M Sakamoto & Y Benno (2002) Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46, 819831.

136. B Hippe , J Zwielehner , K Liszt (2011) Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 316, 130135.

137. J Zimmer , B Lange , JS Frick (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66, 5360.

140. S Bartosch , A Fite , GT Macfarlane (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70, 35753581.

141. M Blaut (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41, Suppl. 1, 1116.

142. H Flint , K Scott , S Duncan (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289306.

143. X Ze , SH Duncan , P Louis (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6, 15351543.

144. HJ Flint , EA Bayer , MT Rincon (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6, 121131.

145. WR Russell , L Hoyles , HJ Flint (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16, 246254.

146. KP Scott , SW Gratz , PO Sheridan (2013) The influence of diet on the gut microbiota. Pharmacol Res 69, 5260.

147. HJ Flint (2012) The impact of nutrition on the human microbiome. Nutr Rev 70, Suppl. 1, S10S13.

148. RI Aminov , AW Walker , SH Duncan (2006) Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 72, 63716376.

149. A Barcenilla , SE Pryde , JC Martin (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 16541661.

150. SE Pryde , SH Duncan , GL Hold (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217, 133139.

151. RF Benus , TS van der Werf , GW Welling (2010) Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 104, 693700.

152. P Marquet , SH Duncan , C Chassard (2009) Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 299, 128134.

153. S Karppinen , K Liukkonen , A-M Aura (2000) In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. J Sci Food Agric 80, 14691476.

154. SA Hughes , PR Shewry , GR Gibson (2008) In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol Ecol 64, 482493.

155. MJ Hopkins , HN Englyst , S Macfarlane (2003) Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69, 63546360.

156. WF Broekaert , CM Courtin , K Verbeke (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51, 178194.

157. J Zhao & PC Cheung (2011) Fermentation of beta-glucans derived from different sources by bifidobacteria: evaluation of their bifidogenic effect. J Agric Food Chem 59, 59865992.

158. L De Vuyst & F Leroy (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149, 7380.

159. I Martinez , J Kim , PR Duffy (2010) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 5, e15046.

160. AW Walker , J Ince , SH Duncan (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5, 220230.

161. GCJ Abell , CM Cooke , CN Bennett (2008) Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66, 505515.

163. C Robert & A Bernalier-Donadille (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46, 8189.

164. ML Connolly , JA Lovegrove & KM Tuohy (2010) In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe 16, 483488.

165. EC Leitch , AW Walker , SH Duncan (2007) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9, 667679.

166. GR Gibson , HM Probert , J Van Loo (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17, 259275.

167. GT Macfarlane & JH Cummings (1993) Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? Br Med J 318, 9991003.

168. GW Tannock , K Munro , R Bibiloni (2004) Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70, 21292136.

169. LM Davis , I Martinez , J Walter (2011) Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6, e25200.

170. C Ramirez-Farias , K Slezak , Z Fuller (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101, 541550.

171. M Roberfroid , GR Gibson , L Hoyles (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104, Suppl. 2, S1S63.

172. P Louis , P Young , G Holtrop (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12, 304314.

173. MM Rinne , M Gueimonde , M Kalliomaki (2005) Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol Med Microbiol 43, 5965.

174. PD Cani (2012) Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect 18, Suppl. 4, 5053.

176. DB Silk (1980) Digestion and absorption of dietary protein in man. Proc Nutr Soc 39, 6170.

177. EA Smith & GT Macfarlane (1997) Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe 3, 327337.

179. MC Pitcher & JH Cummings (1996) Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39, 14.

181. A Ortega , LM Varela , B Bermudez (2012) Dietary fatty acids linking postprandial metabolic response and chronic diseases. Food Funct 3, 2227.

182. PC Calder , N Ahluwalia , F Brouns (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106, Suppl. 3, S5S78.

183. F Fava , R Gitau , BA Griffin (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes 37, 216223.

184. GD Brinkworth , M Noakes , PM Clifton (2009) Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr 101, 14931502.

185. BD Pachikian , AM Neyrinck , L Portois (2011) Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutr Metab (Lond) 8, 44.

186. A Santacruz , A Marcos , J Wärnberg (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17, 19061915.

187. LE Willemsen , MA Koetsier , M Balvers (2008) Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr 47, 183191.

188. RC Anderson , AL Cookson , WC McNabb (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10, 316.

189. KA Donato , MG Gareau , YJ Wang (2010) Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 156, 32883297.

190. HJ Urwin , EA Miles , PS Noakes (2014) Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br J Nutr 111, 773784.

191. LS Harbige (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38, 323341.

192. M Medina , E Izquierdo , S Ennahar (2007) Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 150, 531538.

193. A-M Aura (2008) Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 7, 407429.

194. KM Tuohy , L Conterno , M Gasperotti (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem 60, 87768782.

195. MI Queipo-Ortuno , M Boto-Ordonez , M Murri (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95, 13231334.

196. X Tzounis , A Rodriguez-Mateos , J Vulevic (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93, 6272.

197. HC Lee , AM Jenner , CS Low (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157, 876884.

198. HL Alakomi , R Puupponen-Pimia , A-M Aura (2007) Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J Agric Food Chem 55, 39053912.

199. T Requena , M Monagas , MA Pozo-Bayón (2010) Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 21, 332344.

201. CP Champagne , RP Ross , M Saarela (2011) Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. Int J Food Microbiol 149, 185193.

203. A Donnet-Hughes , F Rochat , P Serrant (1999) Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J Dairy Sci 82, 863869.

204. MJ Cox , YJ Huang , KE Fujimura (2010) Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS ONE 5, e8745.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 119
Total number of PDF views: 756 *
Loading metrics...

Abstract views

Total abstract views: 1228 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.