Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T19:19:23.429Z Has data issue: false hasContentIssue false

Section 1 - Newborn and Infant Physiology for Anesthetic Management

Published online by Cambridge University Press:  09 February 2018

Mary Ellen McCann
Affiliation:
Harvard Medical School, Boston, MA, USA
Christine Greco
Affiliation:
Harvard Medical School, Boston, MA, USA
Kai Matthes
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Odegard, KC, DiNardo, JA, Laussen, PC. Anesthesia for Congenital Heart Disease, in Gregory’s Pediatric Anesthesia, 5th edn. Oxford: Wiley-Blackwell; 2012.Google Scholar
2.Mielke, G, Benda, N. Cardiac output and central distribution of blood flow in the human fetus. Circulation. 2001;103:1662–8.Google Scholar
3.Schneider, DJ, Moore, JW. Patent ductus arteriosus. Circulation. 2006;114:1873–82.Google Scholar
4.Walther, FJ, Siassi, B, Ramadan, NA, Ananda, AK, Wu, PY. Pulsed Doppler determinations of cardiac output in neonates: normal standards for clinical use. Pediatrics. 1985;76:829–33.CrossRefGoogle ScholarPubMed
5.Brusseau, R, McCann, ME. Anaesthesia for urgent and emergency surgery. Early Hum Dev. 2010;86:703–14.CrossRefGoogle ScholarPubMed
6.Tan, KL. Blood pressure in full-term healthy neonates. Clin Pediatr (Phila). 1987;26:21–4.CrossRefGoogle ScholarPubMed
7.Second Task Force on Blood Pressure Control in Children. Task Force on Blood Pressure Control in Children: National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics. 1987;79:125.Google Scholar
8.van der Linde, D, Konings, EE, Slager, MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.CrossRefGoogle ScholarPubMed
9.Kenna, AP, Smithells, RW, Fielding, DW. Congenital heart disease in Liverpool: 1960–69. Q J Med. 1975;44:1744.Google Scholar
10.Wren, C, Reinhardt, Z, Khawaja, K. Twenty-year trends in diagnosis of life-threatening neonatal cardiovascular malformations. Arch Dis Child Fetal Neonatal Ed. 2008;93:F33–5.Google Scholar
11.Hoffman, JI. It is time for routine neonatal screening by pulse oximetry. Neonatology. 2011;99:19.CrossRefGoogle ScholarPubMed
12.Chang, RK, Gurvitz, M, Rodriguez, S. Missed diagnosis of critical congenital heart disease. Arch Pediatr Adolesc Med. 2008;162:969–74.Google Scholar
13.Ainsworth, S, Wyllie, JP, Wren, C. Prevalence and clinical significance of cardiac murmurs in neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80:F43–5.Google Scholar
14.Rennie, J, ed. Robertson’s textbook of Neonatology. 4th ed. Oxford: Elsivier; 2005.Google Scholar
15.Hertzberg, T, Lagercrantz, H. Postnatal sensitivity of the peripheral chemoreceptors in newborn infants. Arch Dis Child. 1987;62:1238–41.CrossRefGoogle ScholarPubMed
16.Martin, RJ, Bookatz, GB, Gelfand, SL, et al. Consequences of neonatal resuscitation with supplemental oxygen. Sem Perinatol. 2008;32:355–66.Google Scholar
17.Craven, PD, Badawi, N, Henderson-Smart, DJ, O’Brien, M. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Cochrane Database of Syst Rev. 2003:CD003669.Google ScholarPubMed
18.Cote, CJ, Zaslavsky, A, Downes, JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy: a combined analysis. Anesthesiology. 1995;82:809–22.CrossRefGoogle ScholarPubMed
19.Kett, JC. Anemia in infancy. Pediatr Rev. 2012;33:186–7.CrossRefGoogle ScholarPubMed
20.Rosenkrantz, TS. Polycythemia and hyperviscosity in the newborn. Semin Thromb Hemost. 2003;29:515–27.Google ScholarPubMed
21.Diaz-Miron, J, Miller, J, Vogel, AM. Neonatal hematology. Semin Pediatr Surg. 2013;22:199204.CrossRefGoogle ScholarPubMed
22.Ignjatovic, V, Lai, C, Summerhayes, R, et al. Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One. 2011;6:e17213.Google Scholar
23.Kamphuis, MM, Paridaans, NP, Porcelijn, L, Lopriore, E, Oepkes, D. Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics. 2014;133:715–21.CrossRefGoogle ScholarPubMed
24.Morrison, SF, Nakamura, K, Madden, CJ. Central control of thermogenesis in mammals. Exp Physiol. 2008;93:773–97.CrossRefGoogle ScholarPubMed
25.Grijalva, J, Vakili, K. Neonatal liver physiology. Semin Pediatr Surg. 2013;22:185–9.Google Scholar
26.Dennery, PA, Seidman, DS, Stevenson, DK. Neonatal hyperbilirubinemia. N Engl J Med. 2001;344:581–90.CrossRefGoogle ScholarPubMed
27.Treluyer, JM, Cheron, G, Sonnier, M, Cresteil, T. Cytochrome P-450 expression in sudden infant death syndrome. Biochem Pharmacol. 1996;52:497504.CrossRefGoogle ScholarPubMed
28.Alcorn, J, McNamara, PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet. 2002;41:959–98.CrossRefGoogle ScholarPubMed
29.Sulemanji, M, Vakili, K. Neonatal renal physiology. Semin Pediatr Surg. 2013;22:195–8.CrossRefGoogle ScholarPubMed
30.Schwartz, GJ, Brion, LP, Spitzer, A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.Google Scholar
31.Tau, GZ, Peterson, BS. Normal development of brain circuits. Neuropsychopharmacol. 2010;35:147–68.CrossRefGoogle ScholarPubMed
32.SYSTOLIC blood pressure determination in the newborn and infant. Anesthesiol. 1952;13:648–9.Google Scholar
33.Watson, J, Cortes, C. Community associated methicillin resistant Staphylococcus aureus infection among healthy newborns: Chicago and Los Angeles County, 2004. JAMA. 2006;296:36–8.Google Scholar
34.Da Cunha, ML, Procianoy, RS, Franceschini, DT, De Oliveira, LL, Cunha, ML. Effect of the first bath with chlorhexidine on skin colonization with Staphylococcus aureus in normal healthy term newborns. Scand J Infect Dis. 2008;40:615–20.CrossRefGoogle ScholarPubMed
35.Mullany, LC, Darmstadt, GL, Khatry, SK, et al. Topical applications of chlorhexidine to the umbilical cord for prevention of omphalitis and neonatal mortality in southern Nepal: a community-based, cluster-randomised trial. Lancet. 2006;367:910–18.Google Scholar
36.Tielsch, JM, Darmstadt, GL, Mullany, LC, et al. Impact of newborn skin-cleansing with chlorhexidine on neonatal mortality in southern Nepal: a community-based, cluster-randomized trial. Pediatrics. 2007;119:e330–40.CrossRefGoogle Scholar
37.L’Allemand, D, Gruters, A, Heidemann, P, Schurnbrand, P. Iodine-induced alterations of thyroid function in newborn infants after prenatal and perinatal exposure to povidone iodine. J Pediatr. 1983;102:935–8.Google ScholarPubMed
38.Cantatore-Francis, JL, Glick, SA. Childhood acne: evaluation and management. Dermatol Ther. 2006;19:202–9.Google Scholar
39.Wassner, AJ, Modi, BP. Endocrine physiology in the newborn. Semin Pediatr Surg. 2013;22:205–10.CrossRefGoogle ScholarPubMed
40.Fisher, DA, Klein, AH. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981;304:702–12.CrossRefGoogle ScholarPubMed
41.Dimmick, S, Badawi, N, Randell, T. Thyroid hormone supplementation for the prevention of morbidity and mortality in infants undergoing cardiac surgery. Cochrane Database Syst Rev. 2004:CD004220.Google Scholar
42.Shih, JL, Agus, MS. Thyroid function in the critically ill newborn and child. Curr Opin Pediatr. 2009;21:536–40.CrossRefGoogle ScholarPubMed
43.Soliman, AT, Taman, KH, Rizk, MM, et al. Circulating adrenocorticotropic hormone (ACTH) and cortisol concentrations in normal, appropriate-for-gestational-age newborns versus those with sepsis and respiratory distress: cortisol response to low-dose and standard-dose ACTH tests. Metabolism. 2004;53:209–14.Google Scholar

References

1.Holzman, R, Mancuso, TJ, Polaner, DM. A Practical Approach to Pediatric Anesthesia. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. 601–8.Google Scholar
2.Hamilton, BE, Hoyert, DL, Martin, JA, Strobino, DM, Guyer, B. Annual summary of vital statistics: 2010–2011. Pediatrics. 2013;131:548–58.CrossRefGoogle ScholarPubMed
3.Costarino, AT. Neonatology and premature birth outcome: a primer for pediatric anesthesiologists. Lecture presented at Society for Pediatric Anesthesia. October 11, 2013, San Francisco, CA.Google Scholar
4.Stoll, BJ, Hansen, NI, Bell, EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010; 126(3):442–56.CrossRefGoogle ScholarPubMed
5.Taneja, B, Srivastava, V, Saxena, KN. Physiological and anesthetic considerations for the preterm neonate undergoing surgery. J Neonat Surg. 2012;1:14.Google ScholarPubMed
6.Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):18.CrossRefGoogle ScholarPubMed
7.Volpe, JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009.;8(1):110–24.Google Scholar
8.Cook, DR, Marcy, JH Neonatal Anesthesia. Pasadena, CA: Appleton Davies, Inc.; 1988.Google Scholar
9.Fanaroff, AA, Fanaroff, JM. Klaus & Fanaroff’s Care of the High-Risk Neonate. 6th edn. New York: Elsevier Saunders; 2013.Google Scholar
10.MacDonald, M, Mullet, M, Seshia, M. Avery’s Neonatology. Pathophysiology and Management of the Newborn, 6th edn. New York: Lippincott Williams and Wilkins; 2005. 284303.Google Scholar
11.Tanner, K, Sabrine, N, Wren, C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116(6):e833e838.CrossRefGoogle ScholarPubMed
12.Welzing, L, Kribs, A, Eifinger, F, et al. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Pediatr Anes. 2010;20(7):605–11.Google Scholar
13.Sale, SM, Read, JA, Stoddart, PA, Wolf, AR. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniorrhaphy. Br J Anaesth. 2006;96:774–8.Google Scholar

References

1.McCullough, E. Good Old Coney Island: A Sentimental Journey Into the Past. The Most Rambunctious, Scandalous, Rapscallion, Splendiferous, Pugnacious, Spectacular, Illustrious, Prodigious, Frolicsome Island on Earth. New York: Fordham University Press; 1957.Google Scholar
2.Apgar, V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953;32:260–7.CrossRefGoogle ScholarPubMed
3.National Perinatal Information System/Quality Analytic Services. Special care nursery admissions. www.npic.org. Prepared by March of Dimes Perinatal Data Center, 2011.Google Scholar
4.Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):18.Google Scholar
5.Lai, MC, Yang, SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol. 2011;2011:609813.CrossRefGoogle ScholarPubMed
6.Chen, J, Stahl, A, Hellstrom, A, Smith, LE. Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr. 2011;23(2):173–8.CrossRefGoogle ScholarPubMed
7.Jansson, LM, Velez, M. Neonatal abstinence syndrome. Curr Opin Pediatr. 2012;24(2):252–8.CrossRefGoogle ScholarPubMed
8.Hamrick, SE, Hansmann, G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125(5):1020–30.CrossRefGoogle ScholarPubMed
9.Steinhorn, RH. Neonatal pulmonary hypertension. Pediatr Crit Care Med. 2010;11(2 Suppl):S79–84.CrossRefGoogle ScholarPubMed
10.Silberbach, M, Hannon, D. Presentation of congenital heart disease in the neonate and young infant. Pediatr Rev. 2007;28(4):123–31.CrossRefGoogle ScholarPubMed
11.Moore, KL, Persaud, TVN (2002). The Developing Human: Clinically Oriented Embryology, 7th edn. Philadelphia, PA: Saunders.Google Scholar
12.Wapner, R, Jobe, AH. Controversy: antenatal steroids. Clin Perinatol. 2011;38(3):529–45.Google Scholar
13.Kattwinkel, J, Perlman, JM, Aziz, K, et al. Neonatal resuscitation: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Pediatrics. 2010;126(5):e1400–13.Google Scholar
14.Martin, RJ, Fanaroff, AA. The preterm lung and airway: past, present, and future. Pediatr Neonatol. 2013;54(4):228–34.Google Scholar
15.Baraldi, E, Filippone, M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–55.CrossRefGoogle ScholarPubMed
16.Ehrenkranz, RA, Walsh, MC, Vohr, BR, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–60.CrossRefGoogle ScholarPubMed
17.Morrison, JJ, Rennie, JM, Milton, PJ. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995;102(2):101–6.CrossRefGoogle ScholarPubMed
18.Guglani, L, Lakshminrusimha, S, Ryan, RM. Transient tachypnea of the newborn. Pediatr Rev. 2008;29(11):e59–65.Google Scholar
19.Brown, MK, DiBlasi, RM. Mechanical ventilation of the premature neonate. Respir Care. 2011;56(9):1298–311; discussion 1311–13.Google Scholar
20.Neumann, RP, von Ungern-Sternberg, BS. The neonatal lung: physiology and ventilation. Paediatr Anaesth. 2014;24(1):1021.Google Scholar
21.Davis, PG, Lemyre, B, de Paoli, AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2001;3:CD003212.Google Scholar
22.Roberts, CT, Davis, PG, Owen, LS. Neonatal non-invasive respiratory support: synchronised NIPPV, non-synchronised NIPPV or bi-level CPAP: what is the evidence in 2013? Neonatology. 2013;104(3):203–9.CrossRefGoogle ScholarPubMed
23.Soll, RF. Elective high-frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Neonatology. 2013;103(1):78; discussion 8–9.Google Scholar
24.Peng, W, Zhu, H, Shi, H, Liu, E. Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):158–65.Google Scholar
25.Pillow, JJ. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit Care Med. 2005;33(3 Suppl.):S135–41.Google Scholar
26.Bhuta, T, Henderson-Smart, DJ. Elective high frequency jet ventilation versus conventional ventilation for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2000;2:CD000328.Google Scholar
27.Neu, J, Walker, WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.Google Scholar
28.Christison-Lagay, ER, Kelleher, CM, Langer, JC. Neonatal abdominal wall defects. Semin Fetal Neonatal Med. 2011;16(3):164–72.CrossRefGoogle ScholarPubMed
29.Maisels, MJ. Neonatal jaundice. Pediatr Rev. 2006;27(12):443–54.CrossRefGoogle ScholarPubMed
30.Modi, N. Management of fluid balance in the very immature neonate. Arch Dis Child Fetal Neonatal Ed. 2004;89(2):F108–11.Google Scholar
31.O’Brien, F, Walker, IA. Fluid homeostasis in the neonate. Paediatr Anaesth. 2014;24(1):4959.Google Scholar
32.Ringer, SA. Core concepts: thermoregulation in the newborn part I – basic mechanisms. Neoreviews. 2013;14;e161–7.Google Scholar
33.Shah, BA, Padbury, JF. Neonatal sepsis: an old problem with new insights. Virulence. 2013;5(1):170–8.Google Scholar
34.Raval, MV, Moss, RL. Current concepts in the surgical approach to necrotizing enterocolitis. Pathophysiology. 2014; 21(1):105–10.Google Scholar
35.Bass, JL, Wilson, N. Transcatheter occlusion of the patent ductus arteriosus in infants: experimental testing of a new Amplatzer device. Catheter Cardiovasc Interv. 2014;83(2):250–5.CrossRefGoogle ScholarPubMed
36.Malviya, MN, Ohlsson, A, Shah, SS. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2013;28(3): CD003951.Google Scholar
37.Finer, NN, Woo, BC, Hayashi, A, Hayes, B. Neonatal surgery: intensive care unit versus operating room. J Pediatr Surg. 1993;28(5):645–9.CrossRefGoogle ScholarPubMed
38.Hall, NJ, Stanton, MP, Kitteringham, LJ, et al. Scope and feasibility of operating on the neonatal intensive care unit: 312 cases in 10 years. Pediatr Surg Int. 2012;28(10):1001–5.Google Scholar
39.Jenkins, IA, Kelly Ugarte, LR, Mancuso, TJ. Where should we operate on the preterm neonate? Paediatr Anaesth. 2014;24(1):127–36.Google Scholar
40.Anand, KJ, Sippell, WG, Aynsley-Green, A. Pain, anaesthesia, and babies. Lancet. 1987;2(8569):1210.CrossRefGoogle ScholarPubMed
41.Taddio, A, Katz, J, Ilersich, AL, Koren, G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet. 1997;349(9052):599603.Google Scholar
42.Walker, SM, Franck, LS, Fitzgerald, M, et al. Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain. 2009;141(1–2):7987.Google Scholar
43.Walker, SM. Neonatal pain. Paediatr Anaesth. 2014;24(1):3948.Google Scholar
44.Marlow, N. Anesthesia and long-term outcomes after neonatal intensive care. Paediatr Anaesth. 2014;24(1):60–7.Google Scholar
45.Guimarães, H, Rocha, G, Bellieni, C, Buonocore, G. Rights of the newborn and end-of-life decisions. J Matern Fetal Neonatal Med. 2012;25(Suppl 1):76–8.Google Scholar
46.Lorenz, JM. Ethical dilemmas in the care of the most premature infants: the waters are murkier than ever. Curr Opin Pediatr. 2005;17(2):186–90.CrossRefGoogle ScholarPubMed
47.Robertson, JA. Extreme prematurity and parental rights after Baby Doe. Hastings Cent Rep. 2004;34(4):32–9.Google Scholar
48.Pignotti, MS, Donzelli, G. Perinatal care at the threshold of viability: an international comparison of practical guidelines for the treatment of extremely preterm births. Pediatrics. 2008;121(1):e193–8.Google Scholar
49.MacDonald, H, American Academy of Pediatrics, Committee on Fetus and Newborn. Perinatal care at the threshold of viability. Pediatrics. 2002;110(5):1024–7.Google Scholar

References

1.Cote, CJ, Lerman, J, Anderson, B. A Practice of Anesthesia for Infants and Children, 5th edn. Philadelphia, PA: Elsevier; 2013.Google Scholar
2.Rasanen, J, Wood, DC, Weiner, S, Ludomirski, A, Huhta, JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation. 1996;94:1068–73.Google Scholar
3.Wiegerinck, RF, Cojoc, A, Zeidenweber, CM et al. Force frequency relationship of the human ventricle increases during early post-natal development. Pediatr Res. 2009;65:414–19.CrossRefGoogle Scholar
4.Nafiu, OO, Voepel-Lewis, T, Morris, M, et al. How do pediatric anesthesiologists define intraoperative hypotension? Pediatr Anesth. 2009;19:1048–53.Google Scholar
5.Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Report of a Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Arch Dis Child. 1992;67:1221–7.Google Scholar
6.Limperopoulos, C, Bassan, H, Kalish, LA, et al. Current definitions of hypotension do not predict abnormal cranial ultrasound findings in preterm infants. Pediatrics. 2007;120:966–77.CrossRefGoogle Scholar
7.Hegyi, T, Anwar, M, Carbone, MT, et al. Blood pressure ranges in premature infants: II. The first week of life. Pediatrics. 1996;97(3):336–42.CrossRefGoogle ScholarPubMed
8.Hegyi, T, Carbone, MT, Anwar, M, et al. Blood pressure ranges in premature infants: I. The first hours of life. J Pediatr. 1994;124:627–33.Google Scholar
9.Nuntnarumit, P, Yang, W, Bada-Ellzey, HS. Blood pressure measurements in the newborn. Clin Perinatol. 1999;26:981–96.Google Scholar
10.Crossland, DS, Furness, JC, Abu-Harb, M, et al. Variability of four limb blood pressure in normal neonates. Arch Dis Child Fetal Neonatal Ed. 2004;89:F325–7.CrossRefGoogle ScholarPubMed
11.Wolf, AR, Humphry, AT. Limitation and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Pediatr Anesth. 2014;24:59.Google Scholar
12.McCann, ME, Schouten, ANJ. Beyond survival; influences of blood pressure, cerebral perfusion and anesthesia on neurodevelopment. Pediatr Anesth. 2014;24:6873.Google Scholar
13.Logan, JW, O’Shea, TM, Allred, EN, et al. Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns. J Perinatol. 2011;31:524–34.Google Scholar
14.Fanaroff, JM, Wilson-Costello, DE, Newman, NS, et al. Treated hypotension is associated with neonatal morbidity and hearing loss in extremely low birth weight infants. Pediatrics. 2006;117:1131–5.Google Scholar
15.Pellicer, A, Bravo, MC, Madero, R, et al. Early systemic hypotension and vasopressor support in low birth weight infants: impact on neurodevelopment. Pediatrics. 2009;123:1369–76.CrossRefGoogle ScholarPubMed
16.Vutskits, L. Cerebral blood flow in the neonate. Pediatr Anesth. 2014;24:22–9.Google Scholar
17.Paulson, OB, Strandgaard, S, Edvinsson, L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.Google Scholar
18.Greisen, G. To autoregulate or not to autoregulate: that is no longer the question. Semin Pediatr Neurol. 2009;16(4):207–15.Google Scholar
19.Valvilala, MS, Lee, LA, Lam, AM. The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol. 2003;15:307–12.Google Scholar
20.Torvik, A. The pathogenesis of watershed infarcts in the brain. Stroke. 1984;15:221–3.Google Scholar
21.Munro, MJ, Walker, AM, Barfield, CP. Hypotensive extremely low birth weight infants have reduced cerebral blood flow. Pediatrics. 2004;114:1591–6.Google Scholar
22.Tyszczuk, L, Meek, J, Elwell, C, et al. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998;102:337–41.CrossRefGoogle ScholarPubMed
23.Boylan, G, Young, K, Panerai, R, et al. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48:1217.Google Scholar

References

1.Pfund, AH, Gemmill, CL. An infrared absorption method for the quantitative analysis of respiratory and other gases. Bull Johns Hopkins Hosp. 1940;67:61–5.Google Scholar
2.Solomon, RJ. A reliable, accurate CO2 analyzer for medical use. Hewlett-Packard Journal. 1981;32:321.Google Scholar
3.International Organization for Standardization. ISO 9918. Capnometers for use with humans: requirements, 1993.Google Scholar
4.American Association for Respiratory Care. Clinical practice guideline: capnography/capnometry during mechanical ventilation. Respir Care. 1995;40(12):1321–4.Google Scholar
5.Fletcher, R, Werner, O, Nordstrom, L, Jonson, B. Sources of error and their correction in the measurement of carbon dioxide elimination using the Siemens-Elema Co2 analyzer. Br J Anaesth. 1983;55(2):177–85.Google Scholar
6.Williamson, JA, Webb, RK, Cockings, J, Morgan, C. The capnograph: applications and limitations: an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21(5):551–7.Google Scholar
7.Friesen, RH, Alswang, M. End-tidal PCO2 monitoring via nasal cannulae in pediatric patients: accuracy and sources of error. J Clin Monit. 1996;12:155.Google Scholar
8.Gravenstein, N. Capnometry in infants should not be done at lower sampling flow rates. J Clin Monit. 1989;5:63.Google Scholar
9.Sasse, FJ. Can we trust end-tidal carbon dioxide measurements in infants? J Clin Monit. 1985;1:147.Google Scholar
10.Yamanaka, MK, Sue, DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92:832.Google Scholar
11.Hardman, JG, Aitkenhead, AR. Estimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis. Anesth Analg. 2003;97:1846.Google Scholar
12.Knapp, S, Kofler, J, Stoiser, B, et al. The assessment of four different methods to verify tracheal tube placement in the critical care setting. Anesth Analg. 1999;88:766.Google Scholar
13.Ornato, JP, Shipley, JB, Racht, EM, et al. Multicenter study of a portable, hand-size, colorimetric end-tidal carbon dioxide detection device. Ann Emerg Med. 1992;21:518.Google Scholar
14.Vukmir, RB, Heller, MB, Stein, KL. Confirmation of endotracheal tube placement: a miniaturized infrared qualitative CO2 detector. Ann Emerg Med. 1991;20:726.Google Scholar
15.Grmec, S, Mally, S. Prehospital determination of tracheal tube placement in severe head injury. Emerg Med J. 2004;21:518.Google Scholar
16.Goldberg, JS, Rawle, PR, Zehnder, JL, Sladen, RN. Colorimetric end-tidal carbon dioxide monitoring for tracheal intubation. Anesth Analg. 1990;70:191.Google Scholar
17.MacLeod, BA, Heller, MB, Gerard, J, et al. Verification of endotracheal tube placement with colorimetric end-tidal CO2 detection. Ann Emerg Med. 1991;20:267.Google Scholar
18.Kelly, JJ, Eynon, CA, Kaplan, JL, et al. Use of tube condensation as an indicator of endotracheal tube placement. Ann Emerg Med. 1998;31:575.Google Scholar
19.Pollard, BJ, Junius, F. Accidental intubation of the oesophagus. Anaesth Intensive Care. 1980;8:183.Google Scholar
20.Birmingham, PK, Cheney, FW, Ward, RJ. Esophageal intubation: a review of detection techniques. Anesth Analg. 1986;65:886.Google Scholar
21.Falk, JL, Rackow, EC, Weil, MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607.Google Scholar
22.Garnett, AR, Ornato, JP, Gonzalez, ER, Johnson, EB. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512.Google Scholar
23.Monaco, F, Nickerson, BG, McQuitty, JC. Continuous transcutaneous oxygen and carbon dioxide monitoring in the pediatric ICU. Crit Care Med. 1982;10:765–6.Google Scholar
24.Restrepo, RD, Hirst, KR, Wittnebel, L, Wettstein, R. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen. Respir Care. 2012; 57:1955–62.CrossRefGoogle ScholarPubMed
25.Severinghaus, JW. Transcutaneous blood gas analysis. Respir Care. 1982;27:152–9.Google Scholar
26.Tremper, KK, Shoemaker, WC, Shippy, CR et al. Transcutaneous PCO2 monitoring on adult patients in the ICU and the operating room. Crit Care Med. 1981;9:752–5.Google Scholar
27.Tobias, JD. Transcutaneous carbon dioxide monitoring in infants and children. Pediatr Anesth. 2009, 19:434–44.Google Scholar
28.Tobias, JD, Wilson, WR, Meyer, DJ. Transcutaneous monitoring of carbon dioxide tension after cardiothoracic surgery in infants and children. Anesth Analg. 1999;88:531–4.Google ScholarPubMed
29.Grenier, B, Verchere, E, Meslie, A, et al. Capnography monitoring during neurosurgery: reliability in relation to various intraoperative positions. Anesthesiology. 1999;88:43–8.Google Scholar
30.Short, JA, Paris, ST, Booker, BD, et al. Arterial to end-tidal carbon dioxide tension difference in children with congenital heart disease. Br J Anaesth. 2001;86:349–53.Google Scholar
31.Greenhalgh, DG, Warden, GD. Transcutaneous oxygen and carbon dioxide measurements for determination of skin graft “take.” J Burn Care Rehabil. 1992;13:334–9.Google Scholar
32.Tobias, JD, Russo, P, Russo, J. An evaluation of acid–base changes following aortic cross-clamping using transcutaneous carbon dioxide monitoring. Pediatr Cardiol. 2006;27:585–8.Google Scholar
33.McBride, ME, Berkenbosch, JW, Tobias, JD. Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents. Paediatr Anaesth. 2004;14:167–71.CrossRefGoogle ScholarPubMed
34.O’Croinin, D, Chonghaile, MN, Higgins, B, Laffey, JG. Bench-to-bedside review: permissive hypercapnia. Crit Care. 2005;9(1):51–9.Google ScholarPubMed
35.Kazemi, H, Johnson, DC. Regulation of cerebrospinal fluid acid–base balance. Physiol Rev. 1986;66:9531037.CrossRefGoogle ScholarPubMed
36.Fortune, JB, Feustel, PJ, deLuna, C, et al. Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans. J Trauma. 1995;39:463–71.Google Scholar
37.Darby, JM, Yonas, H, Marion, DW, Latchaw, RE. Local “inverse steal” induced by hyperventilation in head injury. Neurosurgery. 1988;23:84–8.Google Scholar
38.Marion, DW, Firlik, A, McLaughlin, MR. Hyperventilation therapy for severe traumatic brain injury. New Horiz. 1995;3:439–47.Google Scholar
39.Weckesser, M, Posse, S, Olthoff, U, et al. Functional imaging of the visual cortex with bold-contrast MRI: hyperventilation decreases signal response. Magn Reson Med. 1999;41:213–16.Google Scholar
40.Vannucci, RC, Brucklacher, RM, Vannucci, SJ. Effect of carbon dioxide on cerebral metabolism during hypoxia-ischemia in the immature rat. Pediatr Res. 1997;42:24–9.Google Scholar
41.De Reuck, J. Cerebral angioarchitecture and perinatal brain lesions in premature and full-term infants. Acta Neurol Scand. 1984;70:391–5.Google Scholar
42.Gleason, CA, Short, BL, Jones, MD Jr. Cerebral blood flow and metabolism during and after prolonged hypocapnia in newborn lambs. J Pediatr. 1989;115:309–14.Google Scholar

References

1.Ulate, K, Zimmerman, J. Common endocrinopathies in the pediatric intensive care unit. In: Fuhrman, B, Zimmerman, J, Carcillo, J, et al., editors. Pediatric Critical Care, 4th edn. Philadelphia, PA: Elsevier Health Sciences; 2011; 1105–23.Google Scholar
2.Jain, V, Chen, M, Menon, R. Disorders of carbohydrate metabolism. In: Gleason, C, Devaskar, S, editors. Avery’s Diseases of the Newborn, 9th edn. Philadelphia, PA: Elsevier Health Sciences; 2012; 1320–30.Google Scholar
3.Hawdon, J, Cheetham, T, Schenk, D, et al. Metabolic and endocrine disorders. In: Rennie, J, editor. Rennie and Roberton’s Textbook of Neonatology, 5th edn. London: Churchill Livingstone; 2012; 850–67.Google Scholar
4.Elphick, MC, Wilkinson, AW. The effects of starvation and surgical injury on plasma levels of glucose, free fatty acids, and neutral lipids in newborn babies suffering from various congenital anomalies. Pediatr Res. 1981;15(4):313–18.Google Scholar
5.Burns, CM, Rutherford, MA, Boardman, JP, et al. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglcyemia. Pediatrics. 2008;122(1):6574.Google Scholar
6.Kinnala, A, Rikalainen, H, Lapinleimu, H, et al. Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglcyemia. Pediatrics. 1999;103(4):724–9.Google Scholar
7.Duvanel, DB, Fawer, C, Cotting, J, et al. Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational age and preterm infants. J Pediatr. 1999;134(4):492–8.Google Scholar
8.Boluyt, N, van Kempen, A, Offringa, M. Neurodevelopment after neonatal hypoglcyemia: a systematic review and design of an optimal future study. Pediatrics. 2006;177(6):2231–43.Google Scholar
9.Sieber, F, Traystman, R. Special issues: glucose and the brain. Crit Care Med. 1992;20(1):104–14.Google Scholar
10.Vannucci, RC, Vannucci, SJ. Glucose metabolism in the developing brain. Semin Perinatol. 2000;24(2):107–15.Google Scholar
11.Murat, I, Humblot, A, Girault, L, et al. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24(3):365–74.Google Scholar
12.Poindexter, B, Denne, S. Parenteral nutrition. In: Gleason, C, Devaskar, S, editors. Avery’s Diseases of the Newborn, 9th edn. Philadelphia, PA: Elsevier Health Sciences; 2012; 963–72.Google Scholar
13.O’Brien, F, Walker, I. Fluid homeostasis in the neonate. Paediatr Anaesth. 2014;24(1):4959.Google Scholar
14.Association of Paediatric Anaesthetists of Great Britain and Ireland. APA consensus guideline on perioperative fluid management in children, 2007. Available at: www.apagbi.org.uk/sites/default/files/Perioperative_Fluid_Management_2007.pdf.Google Scholar
15.Leelanukrom, R, Cunliffe, M. Intraoperative fluid and glucose management in children. Paediatr Anaesth. 2000;10(4):353–9.Google Scholar
16.Wintergest, KU, Buckhingham, B, Gandrud, L, et al. Association of hypoglcyemia, hyperglcyemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.Google Scholar
17.Hays, SP, Smith, EO, Sunehag, AL. Hyperglcyemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics. 2006;118(5):1811–18.Google Scholar
18.Steven, J, Nicolson, S. Perioperative management of blood glucose during open heart surgery in infants and children. Paediatr Anaesth. 2011;21(5):530–7.Google Scholar
19.Paut, O, Lacroix, F. Recent developments in the perioperative fluid management for the paediatric patient. Curr Opin Anaesthesiol. 2006;19(3):268–77.Google Scholar
20.Murat, I, Dubois, M. Perioperative fluid therapy in pediatrics. Paediatr Anaesth. 2008;18(5):363–70.Google Scholar
21.Berleur, MP, Dahan, A, Murat, I, et al. Perioperative infusions in paediatric patients: rationale for using Ringer-lactate solution with low dextrose concentration. J Clin Pharm Ther. 2003;28(1):3140.Google Scholar
22.de Ferranti, S, Gauvreau, K, Hickey, PR, et al. Intraoperative hyperglycemia during infant cardiac surgery is not associated with adverse neurodevelopmental outcomes at 1, 4 and 8 years. Anesthesiology. 2004;100(6):1345–52.Google Scholar
23.Redfern, N, Addison, GM, Meakin, G. Blood glucose in anaesthetised children. Comparison of blood glucose concentrations in children fasted for morning and afternoon surgery. Anaesthesia. 1986;41(3):272–5.Google Scholar
24.Nilsson, K, Larsson, LE, Andreasson, S, et al. Blood glucose concentrations during anaesthesia in children: effects of starvation and perioperative fluid therapy. Br J Anaesth. 1984;56(4):375–9.CrossRefGoogle ScholarPubMed
25.Larsson, LE, Nilsson, K, Niklasson, A, et al. Influence of fluid regimens on perioperative blood glucose concentrations in neonates. Br J Anaesth. 1990;64(4):419–24.Google Scholar
26.Sandstrom, K, Nilsson, K, Andreasson, S, et al. Metabolic consequences of different perioperative fluid therapies in the neonatal period. Acta Anaesthesiol Scand. 1993;37(2):170–5.Google Scholar
27.Pierro, A, Eaton, S. Metabolism and nutrition in the surgical neonate. Semin Pediatr Surg. 2008;17(4):276–84.Google Scholar
28.Anand, KJS, Brown, MJ, Causon, RC, et al. Can the human neonate mount an endocrine and metabolic response to surgery? J Pediatr Surg. 1985;20(1):41–8.Google Scholar
29.Srinivasan, G, Jain, R, Pildes, RS, et al. Glucose homeostasis during anesthesia and surgery in infants. J Pediatr Surg. 1986;21(8):718–21.Google Scholar
30.Anand, JS, Aynsley-Green, A. Measuring the severity of surgical stress in newborn infants. J Pediatr Surg. 1988;23(4):297305.Google Scholar
31.Lindahl, S. Energy expenditure and fluid and electrolyte requirements in anesthetized infants and children. Anesthesiology. 1988;69(3):377–82.Google Scholar
32.Holliday, MA, Segar, WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823–32.Google Scholar
33.Wolf, AR, Doyle, E, Thomas, E. Modifying infant stress responses to major surgery: spinal vs extradural vs opioid analgesia. Paediatr Anaesth. 1988;8(4):305–11.Google Scholar
34.Wolf, AR, Eyres, RL, Laussen, PC, et al. Effect of extradural analgesia on stress responses to abdominal surgery in infants. Br J Anaesth. 1993;70(6):654–60.Google Scholar
35.Gouyet, L, Dubois, M, Murat, I. Blood glucose and insulin level during epidural anaesthesia in children receiving dextrose-free solution. Paediatr Anaesth. 1994;4(5):307–11.Google Scholar
36.Nakamura, T, Takasaki, M. Metabolic and endocrine stress responses to surgery during caudal analgesia in children. Can J Anaesth. 1991;38(8):969–73.Google Scholar
37.Anand, KJ, Sippell, WG, Aynsley-Green, A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1(8524):62–6.Google Scholar
38.Bailey, AG, McNaull, PP, Jooste, E, et al. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg. 2010;110(2):375–90.Google Scholar
39.Nishina, K, Mikawa, K, Maekawa, N, et al. Effects of exogenous intravenous glucose on plasma glucose and lipid homeostasis in anesthetized infants. Anesthesiology. 1995;83(2):258–63.Google Scholar
40.Sumpelmann, R, Mader, T, Dennhardt, N, et al. A novel isotonic balanced electrolyte solution with 1% glucose for intraoperative fluid therapy in neonates: results of a prospective multicentre observational postauthorisation safety study (PASS). Paediatr Anaesth. 2011;21(11):1114–18.Google Scholar
41.Fosel, TH, Uth, M, Wilhelm, W, et al. Comparison of two solutions with different glucose concentrations for infusion therapy during laparotomies in infants. Infusionsther Transfusionsmed. 1996;23(2):80–4.Google Scholar

References

1.Comroe, JH Jr., Bahnson, ER, Coates, EO Jr. Mental changes occurring in chronically anoxemic patients during oxygen therapy. J Am Med Assoc. 1950;143:1044–8.Google Scholar
2.Sola, A, Rogido, MR, Deulofeut, R. Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr. 2007;96:801–2.Google Scholar
3.Saugstad, OD. Take a breath: but do not add oxygen (if not needed). Acta Paediatr. 2007;96:798800.Google Scholar
4.Vento, M, Sastre, J, Asensi, MA, Vina, J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.Google Scholar
5.Sola, A, Golombek, S, Montes Bueno, MT, et al. Safe oxygen saturation targeting and monitoring in preterm infants: can we avoid hypoxia and hyperoxia? Acta Paediatr. 2014;103:164–80.CrossRefGoogle ScholarPubMed
6.Chow, LC, Wright, KW, Sola, A. Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111:339–45.Google Scholar
7.Sola, A. Oxygen in neonatal anesthesia: friend or foe? Curr Opin Anaesthesiol. 2008;21:332–9.Google Scholar
8.Sola, A, Zuluaga, C. Oxygen saturation targets and retinopathy of prematurity. J AAPOS. 2013;17:650–2.Google Scholar
9.Deulofeut, R, Critz, A, Adams-Chapman, I, Sola, A. Avoiding hyperoxia in infants ≤1250 g is associated with improved short- and long-term outcomes. J Perinatol. 2006;26:700–5.Google Scholar
10.Bizzarro, MJ, Li, FY, Katz, K, et al. Temporal quantification of oxygen saturation ranges: an effort to reduce hyperoxia in the neonatal intensive care unit. J Perinatol. 2014;34:33–8.Google Scholar
11.Aust, AA, Eveleigh, F. Mechanisms of DNA oxidation. Proc Soc Exp Biol Med. 1999;222:246–52.Google Scholar
12.Acworth, IN, Bailey, B. The Handbook of Oxidative Metabolism. Chelmsford, MA: ESA; 1996).Google Scholar
13.Bianconi, E, Piovesan, A, Facchin, F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.Google Scholar
14.Lu, T, Aron, L, Zullo, J, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014;507(7493):448–54.Google Scholar
15.Macey, PM, Woo, MA, Harper, RM. Hyperoxic brain effects are normalized by addition of CO2. PLoS Med. 2007;4(5):e173.Google Scholar
16.Levine, RL. Ischemia: from acidosis to oxidation. FASEB J. 1993;7:1242–6.Google Scholar
17.Berkelhamer, SK, Kim, GA, Radder, JE, et al. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med. 2013;14:5160.Google Scholar
18.Wollen, EJ, Sejersted, Y, Wright, MS, et al. Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes. Pediatric Res. 2014;75:517–26.Google Scholar
19.Meier, P, Ebrahim, S, Otto, C, Casas, JP. Oxygen therapy in acute myocardial infarction – good or bad? Cochrane Database Syst Rev. 2013;8:ED000065. dx.doi.org/10.1002/14651858.ED000065.Google Scholar
20.Kones, R. Oxygen therapy for acute myocardial infarction: then and now. A century of uncertainty. Am J Med. 2011;124(11):1000–5.Google Scholar
21.Valko, M, Izakovic, M, Mazur, M, Rhodes, CJ, Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004:266:3756.CrossRefGoogle ScholarPubMed
22.Yu, JH, Kim, H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev. 2014(2):97102.Google Scholar
23.Pryor, KO, Fahey, TJ 3rd, Lien, CA, Goldstein, PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291:7987.Google Scholar
24.Noh, EJ, Kim, YH, Cho, MK, et al. Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet Gynecol Sci. 2014;57(2):109–14.Google Scholar
25.Yalcin, S, Aydoğan, H, Kucuk, A, et al. Supplemental oxygen in elective cesarean section under spinal anesthesia: handle the sword with care. Rev Bras Anesthesiol. 2013;63(5):393–7.Google Scholar
26.Klimova, NG, Hanna, N, Peltier, MR. Effect of oxygen tension on bacteria-stimulated cytokine production by fetal membranes. J Perinat Med. 2013;41(5):595603.Google Scholar
27.Klimova, NG, Hanna, N, Peltier, MR. Does carbon monoxide inhibit proinflammatory cytokine production by fetal membranes? J Perinat Med. 2013;41(6):683–90.Google Scholar
28.Lye, P. Effect of oxygen on multidrug resistance in the first trimester human placentas. Placenta. 2013;34(9):817–23.Google Scholar
29.Klingel, ML, Patel, SV. Meta-analysis of the effect of inspired oxygen concentration on the incidence of surgical site infection following cesarean section Int J Obstet Anesth. 2013;22(2):104–12.CrossRefGoogle ScholarPubMed
30.Chatmongkolchart, S, Prathep, S. Supplemental oxygen for caesarean section during regional anaesthesia. Cochrane Database Syst Rev. 2013;6:CD006161.Google Scholar
31.Iliodromiti, Z, Zygouris, D. Sifakis, S, et al. Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J Matern Fetal Neonatal Med. 2013;26(17):1696–704.Google Scholar
32.Hamel, MS, Anderson, BL, Rouse, DJ. Oxygen for intrauterine resuscitation: of unproved benefit and potentially harmful. Am J Obstet Gynecol. 2014;211(2):124–7.Google Scholar
33.Felderhoff-Mueser, U, Bittigau, P, Sifringer, M, et al. Oxygen causes cell death in the developing brain. Neurobiol Dis. 2004;17:273–82.Google Scholar
34.Kaindl, AM, Sifringer, M, Zabel, C, et al. Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ. 2006;13:1097–109.Google Scholar
35.Collins, MP, Lorentz, JM, Jelton, R, Paneth, N. Hypocapnia and other ventilation related risk factors for cerebral palsy in low birth weight infants. Pediatr Res. 2001;50:712–19.Google Scholar
36.SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362:1959–69.Google Scholar
37.Stenson, BJ, Tarnow-Mordi, WO, Darlow, BA, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368:2094–104.Google Scholar
38.Schmidt, B, Whyte, RK, Asztalos, EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309:2111–20.Google Scholar
39.Bhakta, KY, Jiang, W, Couroucli, XI, et al. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: implications for hyperoxic lung injury. Toxicol Appl Pharmacol. 2008;233(2):169–78.Google Scholar
40.Lakshminrusimha, S, Swartz, DD, Gugino, SF, et al. Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res. 2009;66(5):539–44.Google Scholar
41.Farrow, KN, Lee, KJ, Perez, M, et al. Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal. 2012;17(3):460–70.Google Scholar
42.Lakshminrusimha, S, Steinhorn, RH, Wedgwood, S, Savorgnan, FJ. Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J Appl Physiol. 2011;111(5):1441–7.Google Scholar
43.Naumburg, E, Bellocco, R, Cnattingius, S, Jonzon, A, Ekbom, A. Supplementary oxygen and risk of childhood lymphatic leukaemia. Acta Paediatr. 2002;91(12):1328–33.Google Scholar
44.Spector, LG. Childhood cancer following neonatal oxygen supplementation. J Pediatrs. 2005;147(1):2731.Google Scholar
45.Wollen, EJ, Kwinta, P, Bik-Multanowski, M, et al. Hypoxia-reoxygenation affects whole-genome expression in the newborn eye. Invest Ophthalmol Vis Sci. 2014;55(3):1393–401.Google Scholar
46.Lagishetty, V, Parthasarathy, PT, Phillips, O, Fukumoto, J, et al. Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury. Am J Physiol Cell Physiol. 2014;306(11):C999–1007.Google Scholar
47.Sengupta, S, Yang, G, McCormack, S, et al. Hyperoxia and phototherapy alter circadian gene expression: implications for cytotoxicity, metabolism and cellular homeostasis. Abstract 58, 2014, Pediatric Academic Societies Annual Meeting.Google Scholar
48.Castillo, A, Sola, A, Baquero, H, et al. Pulse oximetry saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics. 2008;121:882–9.Google Scholar
49.Van Den Brenk, HA, Jamieson, D. Potentiation by anaesthetics of brain damage due to breathing high-pressure oxygen in mammals. Nature. 1962;194:777–8.Google Scholar
50.Phibbs, RH. Oxygen therapy: a continuing hazard to the premature infant. Anesthesiology. 1977;47:486–7.Google Scholar
51.Gressens, P, Rogido, M, Paindaveine, B, Sola, A. The impact of neonatal intensive care practices on the developing brain. J Pediatr. 2002;140:646–53.Google Scholar
52.Bai, X, Yan, Y, Canfield, S, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116(4):869–80.Google Scholar
53.von Ungern-Sternberg, BS, Regli, A, Schibler, A, et al. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg. 2007;104:1364–8.Google Scholar
54.Marcus, RJ, van der Walt, JH, Pettifer, RJA. Pulmonary volume recruitment restores pulmonary compliance and resistance in anesthetized young children. Paediatr Anaesth. 2002;12:570–84.Google Scholar
55.Tusman, G, Bohm, SH, Tempra, A, et al. Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology. 2003;98:1422.Google Scholar
56.Edmark, L, Kostova-Aherdan, K, Enlund, M, Hedenstierna, G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98:2833.Google Scholar
57.Halbertsma, FJJ, van der Hioeven, JG. Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature? Anaesthesia. 2005;60:779–90.Google Scholar
58.Dantzker, DR, Wagner, PD, West, JB. Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol. 1975;38:886–95.Google Scholar
59.Darlow, BA, Marschner, SL, Donoghoe, M, et al. Benefits of oxygen saturation targeting: New Zealand (BOOST-NZ) Collaborative Group. J Pediatr. 2014;165:30–5.Google Scholar
60.Sola, A. Oxygen saturation in the newborn and the importance of avoiding hyperoxia-induced damage. Neoreviews. 2015;16(7);e393.Google Scholar
61.Sola, A, Golombek, S. Oxygen saturation monitoring in neonatal period. In: Buonocore G, et al. (eds.), Neonatology. New York: Springer; 2016.Google Scholar
62.Padmanabhan, V, Cardoso, RC, Puttabyatappa, M. Developmental programming: a pathway to disease. Endocrinology. 2016;157(4):1328–40.Google Scholar
63.Verny, T. The pre & perinatal origins of childhood and adult diseases and personality disorders. J Prenat Perinat Psychol Health. 2012;26(3).Google Scholar
64.Chatmongkolchart, S, Prathep, S. Comparing supplemental oxygen with room air for low-risk pregnant women undergoing an elective caesarean section under regional anaesthesia. Cochrane Database Syst Rev. 2016;3:CD006161.Google Scholar

References

1.Day, RL, Caliguiri, L, Kamenski, C, Ehrlich, F. Body temperature and survival of premature infants. Pediatrics. 1964;34:171–81.Google Scholar
2.Herzog, LW, Coyne, LJ. What is fever? Normal temperature in infants less than 3 months old. Clin Pediatr (Phila). 1993;32:142–6.Google Scholar
3.Giesbrecht, GG. Cold stress, near drowning and accidental hypothermia: a review. Aviat Space Environ Med. 2000;71:733–52.Google Scholar
4.Sessler, DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology. 2008;109:318–38.Google Scholar
5.Flick, R. Clinical complications in pediatric anesthesia. In: Gregory, GA, Andropoulos, DB, e. Gregory’s Pediatric Anesthesia, 5th edn. Chichester: Wiley-Blackwell; 2012; 1152–82.Google Scholar
6.Kurz, A. Physiology of thermoregulation. Best Pract Res Clin Anaesthesiol. 2008;22:627–44.Google Scholar
7.Lenhardt, R, Greif, R, Sessler, DI, et al. Relative contribution of skin and core temperatures to vasoconstriction and shivering thresholds during isoflurane anesthesia. Anesthesiology. 1999;91:422–9.Google Scholar
8.Himms-Hagen, J. Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr. 1985;5:6994.Google Scholar
9.Luginbuehl, I, Bissonnette, B, Davis, PJ. Thermoregulation: physiology and perioperative disturbances. In: Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. Philadelphia, PA: Mosby; 2011; 157–78.Google Scholar
10.Murphy, JD, Rabinovitch, M, Goldstein, JD, Reid, LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. 1981;98:962–7.Google Scholar
11.Walsh-Sukys, MC, Tyson, JE, Wright, LL, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics. 2000;105:1420.Google Scholar
12.Brismar, B, Hedenstierna, G, Lundh, R, Tokics, L. Oxygen uptake, plasma catecholamines and cardiac output during neurolept-nitrous oxide and halothane anaesthesias. Acta Anaesthesiol Scand. 1982;26:541–9.Google Scholar
13.Lyon, AJ, Freer, Y. Goals and options in keeping preterm babies warm. Arch Dis Child Fetal Neonatal Ed. 2011;96:F71–4.Google Scholar
14.Siddik-Sayyid, SM, Abdallah, FW, Dahrouj, GB. Thermal burns in three neonates associated with intraoperative use of Bair Hugger warming devices. Paediatr Anaesth. 2008;18:337–9.Google Scholar
15.Shankaran, S, Pappas, A, McDonald, SA, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012;366:2085–92.Google Scholar
16.Jonas, R. Hypothermia, reduced flow, and circulatory arrest. In: Jonas, R, editor. Comprehensive Surgical Management of Congenital Heart Disease. London: Hodder; 2004; 161–73.Google Scholar

References

1.Aziz, K, Chadwick, M, Baker, M, Andrews, W. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation. 2008;79:444–52.Google Scholar
2.Saugsted, OD, Rootwelt, T, Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial – the Resair 2 study. Pediatrics. 1998;102:e1.Google Scholar
3.Davis, PG, Tan, A, O’Donnell, CP, Schulze, A. Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet. 2004;364:1329–33.Google Scholar
4.Rabi, Y, Rabi, D, Yee, W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation. 2007;72:353–63.Google Scholar
5.Wyckoff, MH, Aziz, K, Escobedo, MB, et al. Part 13: Neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S543–60.Google Scholar
6.Wang, CL, Anderson, C, Leone, TA, et al. Resuscitation of preterm neonates by room air or 100% oxygen. Pediatrics. 2008; 121: 1083–9.Google Scholar
7.Rabi, Y, Singhal, N, Nettel-Aguirre, A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics. 2011; 128: e374.Google Scholar
8.Escrig, R, Arruza, L, Izquierdo, I, et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective randomized trial. Pediatrics. 2008;121:875–81.Google Scholar
9.Rabi, Y, Yee, W, Chen, SY, Singhal, N. Oxygen saturation trends immediately after birth. J Pediatr. 2006;148:590–4.Google Scholar
10.Hooper, SB, Siew, ML, Kitchen, JM, te Pas, AB. Establishing functional residual capacity in the non-breathing infant. Semin Fetal Neonatal Med. 2013;18:336–43.Google Scholar
11.Schmolzer, GM, Agarwal, M, Kamlin, CO, Davis, PG. Supraglottic airway devices during neonatal resuscitation: an historical perspective, systematic review and meta-analysis of available clinical trials. Resuscitation. 2013;84:722–30.Google Scholar
12.Wisell, TE, Gannon, CM, Jacob, J, et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics. 2000;105:17.Google Scholar
13.Chettri, S, Adhisivam, B, Bhat, BV. Endotracheal suction for nonvigorous neonates born through meconium stained amniotic fluid: a randomized controlled trial. J Pediatr. 2015;166:1208–13.Google Scholar
14.Roberts, D, Dalziel, SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;19(3):CD004454.Google Scholar
16.Rojas-Reyes, MX, Morley, CJ, Soll, R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;14:CD000510.Google Scholar
17.Bahadue, FL, Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11:CD001456.Google Scholar
18.SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer, NN, Carlo, WA, et al. Early CPAP versus surfactant in extremely preterm infants. New Engl J Med. 2010;362:1970–9.Google Scholar
19.SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo, WA, Finer, NN, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362:1959–69.Google Scholar
20.The BOOST II United Kingdom, Australia, and New Zealand collaborative groups. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368:2094–104.Google Scholar
21.Erickson, SJ, Grauaug, A, Gurrin, L, et al. Hypocarbia in the ventilated preterm infant and its effect on intraventricular hemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health. 2002;38:560–2.Google Scholar
22.Ambalayanan, N, Carlo, WA, Wrage, LA, et al. PaCO2 in surfactant, positive pressure, and oxygen randomised trial (SUPPORT). Arch Dis Child Fetal Neonatal Ed. 2014;100:F145–9.Google Scholar
23.Laptook, AR, Salhab, W, Ghaskar, B. Admission temperature of low birth weight infants: predictors and associated morbidities. Pediatrics. 2007;119:e643.Google Scholar
24.Sinclair, JC. Servo-control for maintaining abdominal skin temperature at 36°C in low birth weight infants. Cochrane Database Syst Rev. 2002;1:CD001074.Google Scholar
25.McCall, EM, Alderdice, F, Halliday, HL, Jenkins, JG, Vohra, S. Interventions to prevent hypothermia at birth in preterm and/or low birthweight infants. Cochrane Database Syst Rev. 2010;3:CD004210.Google Scholar
26.te Pas, AB, Lopriore, E, Dito, I, Morley, CJ, Walther, FJ. Humidified and heated air during stabilization at birth improves temperature in preterm infants. Pediatrics. 2010;125:e1427–32.Google Scholar
27.Stoffan, AP, Wilson, JM, Jennings, RW, Wilkins-Haug, LE, Buchmiller, TL. Does the ex utero intrapartum treatment to extracorporeal membrane oxygenation procedure change outcomes for high-risk patients with congenital diaphragmatic hernia? J Pediatr Surg. 2012;47:1053–7.Google Scholar
28.Moldenhauer, JS. Ex Utero Intrapartum Therapy. Semin Pediatr Surg. 2013;22:44–9.Google Scholar
29.Gluckman, PD, Wyatt, JS, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365:663–70.Google Scholar
30.Shankaran, S, Laptook, AR, Ehrenkranz, RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.Google Scholar
31.Azzopardi, DV, Strohm, B, Edwards, AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361:1349–58.Google Scholar
32.Committee on Fetus and Newborn, American Academy of Pediatrics. Hypothermia and neonatal encephalopathy. Pediatrics. 2014;133:1146–50.Google Scholar
33.Chaudhary, R, Farrer, K, Broster, S, McRitchie, L, Austin, T. Active versus passive cooling during neonatal transport. Pediatrics. 2013;132:841–6.Google Scholar

References

1.Bissonette, B, Luginbuehl, I, Marciniak, B, Dalens, B, editors. Syndromes: Rapid Recognition and Perioperative Implications. New York: McGraw-Hill; 2006.Google Scholar
2.Ostermaier, K. Down Syndrome: Clinical Features and Diagnosis. UpToDate®; 2013.Google Scholar
3.Shott, SR. Down syndrome: analysis of airway size and a guide for appropriate intubation. Laryngoscope. 2000;110(4):585–92.Google Scholar
4.Shott, SR. Down syndrome: common otolaryngologic manifestations. Am J Med Genet C Semin Med Genet. 2006;142C(3):131–40.Google Scholar
5.Kraemer, FW, Stricker, PA, Gurnaney, HG, et al. Bradycardia during induction of anesthesia with sevoflurane in children with Down syndrome. Anesth Analg. 2010;111(5):1259–63.Google Scholar
6.McDonald-McGinn, D, Emanuel, B, Zackai, E. 22q11.2 deletion syndrome. GeneReviews® 1999, updated 2013.Google Scholar
7.Tassabehji, M. Williams–Beuren syndrome: a challenge for genotype–phenotype correlations. Hum Mol Genet. 2003;2:R229–37.Google Scholar
8.Schubert, C. The genomic basis of the Williams–Beuren syndrome. Cell Mol Life Sci. 2009;66(7):1178–97.Google Scholar
9.Strømme, P, Bjørnstad, PG, Ramstad, K. Prevalence estimation of Williams syndrome. J Child Neurol. 2002;17(4):269–71.Google Scholar
10.Morris, C. Williams Syndrome. GeneReviews®, 1999, updated 2013.Google Scholar
11.Wessel, A, Gravenhorst, V, Buchhorn, R, et al. Risk of sudden death in the Williams–Beuren syndrome. Am J Med Genet A. 2004;127A(3):234–7.Google Scholar
12.Gupta, P, Tobias, JD, Goyal, S, et al. Sudden cardiac death under anesthesia in pediatric patient with Williams syndrome: a case report and review of literature. Ann Card Anaesth. 2010;13(1):44–8.Google Scholar
13.Bird, LM, Billman, GF, Lacro, RV, et al. Sudden death in Williams syndrome: report of ten cases. J Pediatr. 1996;129(6):926–31.Google Scholar
14.Allanson, J, Roberts, A. Noonan syndrome. GeneReviews®, 2001, updated 2011.Google Scholar
15.Derbent, M, Öncel, Y, Tokel, K, et al. Clinical and hematologic findings in Noonan syndrome patients with PTPN11 gene mutations. Am J Med Genet A. 2010;152A(11):2768–74.Google Scholar
16.Shuman, C, Beckwith, J, Smith, A, et al. Beckwith–Wiedemann syndrome. GeneReviews®, 2001, updated 2010.Google Scholar
17.Tomatsu, S, Fujii, T, Fukushi, M, et al. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab. 2013;110(1–2):4253.Google Scholar
18.Wraith, JE. Mucopolysaccharidoses and mucolipidoses. Handb Clin Neurol. 2013;113:1723–9.Google Scholar
19.Clarke, L, Heppner, J. Mucopolysaccharidosis type I. GeneReviews®, 2002, updated 2011.Google Scholar
20.Valayannopoulos, V, Wijburg, FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl. 5):v49–59.Google Scholar
21.Jungbluth, H. Central core disease. Orphanet J Rare Dis. 2007;2:25.Google Scholar
22.Bamshad, M, Van Heest, AE, Pleasure, D. Arthrogryposis: a review and update. J Bone Joint Surg Am. 2009;91(Suppl 4):40–6.Google Scholar
23.Benca, J, Hogan, K. Malignant hyperthermia, coexisting disorders, and enzymopathies: risks and management options. Anesth Analg. 2009;109(4):1049–53.Google Scholar
24.Willschke, H, Bosenberg, A, Marhofer, P, et al. Epidural catheter placement in neonates: sonoanatomy and feasibility of ultrasonographic guidance in term and preterm neonates. Reg Anesth Pain Med. 2007;32(1):3440.Google Scholar
25.Derderian, C, Seaward, J. Syndromic craniosynostosis. Semin Plast Surg. 2012;26(2):6475.Google Scholar
26.Robin, N, Falk, M, Haldeman-Englert, C. FGFR-related craniosynostosis syndromes. GeneReviews®, 1998, updated 2011.Google Scholar
27.Goobie, SM, Meier, PM, Pereira, LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71.Google Scholar
28.Goobie, S. The case for the use of tranexamic acid. Paediatr Anaesth. 2013;23(3):281–4.Google Scholar
29.Jakobsen, LP, Knudsen, MA, Lespinasse, J, et al. The genetic basis of the Pierre Robin sequence. Cleft Palate Craniofac J. 2006;43(2):155–9.Google Scholar
30.Fiadjoe, JE, Stricker, PA. The air-Q intubating laryngeal airway in neonates with difficult airways. Paediatr Anaesth. 2011;21(6):702–3.Google Scholar
31.Marston, AP, Lander, TA, Tibesar, RJ, Sidman, JD. Airway management for intubation in newborns with Pierre Robin sequence. Laryngoscope. 2012;122(6):1401–4.Google Scholar
32.Katsanis, S, Jabs, E. Treacher Collins syndrome. GeneReviews®, 2004, updated 2012.Google Scholar

References

1.Amburgey, K, McNamara, N, Bennett, LR, et al. Prevalence of congenital myopathies in a representative pediatric United States population. Ann Neurol. 2011;70(4):662–5.Google Scholar
2.Kinder Ross, A. Muscular dystrophy versus mitochondrial myopathy: the dilemma of the undiagnosed hypotonic child. Paediatr Anaesth. 2007;17:16.Google Scholar
3.Bonnemann, CG, Wang, CH, Quijano-Roy, S, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24(4):289311.Google Scholar
4.Bharucha-Goebel, DX, Santi, M, Medne, L, et al. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology. 2013;80(17):1584–9.Google Scholar
5.Shieh, PB. Muscular dystrophies and other genetic myopathies. Neurol Clin. 2013;31(4):1009–29.Google Scholar
6.Laing, NG. Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci. 2012;49(2):3348.Google Scholar
7.Scrivener, TA, Ross, SM, Street, NE, Webster, RI, De Lima, JC. A case series of general anesthesia in children with laminin alpha2 (merosin)-deficient congenital muscular dystrophy. Paediatr Anaesth. 2014;24(4):464–5.Google Scholar
8.Online Mendelian Inheritance in Man. Muscular dystrophy, congenital merosin-deficient, 1A, 2003 Available at: www.omim.org/entry/607855.Google Scholar
9.Online Mendelian Inheritance in Man. Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), Type A, 1, 1986 Available at: www.omim.org/entry/236670.Google Scholar
10.Online Mendelian Inheritance in Man. Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), Type A, 4, 1986. Available at: www.omim.org/entry/253800.Google Scholar
11.Schara, U, Schoser, BG. Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol. 2006;13(2):71–9.Google Scholar
12.Mulley, JC, Staples, A, Donnelly, A, et al. Explanation for exclusive maternal origin for congenital form of myotonic dystrophy. Lancet. 1993;341(8839):236–7.Google Scholar
13.Quijano-Roy, S, Mbieleu, B, Bonnemann, CG, et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol. 2008;64(2):177–86.Google Scholar
14.Mercuri, E, Poppe, M, Quinlivan, R, et al. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery–Dreifuss variant. Arch Neurol. 2004;61(5):690–4.Google Scholar
15.North, KN, Laing, NG, Wallgren-Pettersson, C. Nemaline myopathy: current concepts. The ENMC International Consortium and Nemaline Myopathy. J Med Genet. 1997;34(9):705–13.Google Scholar
16.Jungbluth, H, Sewry, CA, Muntoni, F. Core myopathies. Semin Pediatr Neurol. 2011;18(4):239–49.Google Scholar
17.Klingler, W, Rueffert, H, Lehmann-Horn, F, Girard, T, Hopkins, PM. Core myopathies and risk of malignant hyperthermia. Anesth Analg. 2009;109(4):1167–73.Google Scholar
18.Jungbluth, H, Muller, CR, Halliger-Keller, B, et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology. 2002;59(2):284–7.Google Scholar
19.Brislin, RP, Theroux, MC. Core myopathies and malignant hyperthermia susceptibility: a review. Paediatr Anaesth. 2013;23(9):834–41.Google Scholar
20.Jungbluth, H, Wallgren-Pettersson, C, Laporte, J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis. 2008;3:26.Google Scholar
21.MacLeod, MJ, Taylor, JE, Lunt, PW, Mathew, CG, Robb, SA. Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol. 1999;3(2):6572.Google Scholar
22.D’Amico, A, Mercuri, E, Tiziano, FD, Bertini, E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6:71.Google Scholar
23.Islander, G. Anesthesia and spinal muscle atrophy. Paediatr Anaesth. 2013;23(9):804–16.Google Scholar
24.Papazian, O. Transient neonatal myasthenia gravis. J Child Neurol. 1992;7(2):135–41.Google Scholar
25.Dimauro, S, Garone, C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med. 2011;16(4):181–9.Google Scholar
26.Niezgoda, J, Morgan, PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth. 2013;23(9):785–93.Google Scholar
27.von Kleist-Retzow, JC, Cormier-Daire, V, Viot, G, et al. Antenatal manifestations of mitochondrial respiratory chain deficiency. J Pediatr. 2003;143(2):208–12.Google Scholar
28.Gibson, K, Halliday, JL, Kirby, DM, et al. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics. 2008;122(5):1003–8.Google Scholar
29.Uziel, G, Ghezzi, D, Zeviani, M. Infantile mitochondrial encephalopathy. Semin Fetal Neonatal Med. 2011;16(4):205–15.Google Scholar
30.Fassone, E, Rahman, S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2014;49:578–90.Google Scholar
31.Distelmaier, F, Koopman, WJ, van den Heuvel, LP, et al. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain. 2009;132(Pt 4):833–42.Google Scholar
32.Jakobs, BS, van den Heuvel, LP, Smeets, RJ, et al. A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci. 2013;326(1–2):24–8.Google Scholar
33.Falk, MJ, Polyak, E, Zhang, Z, et al. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med. 2011;3(7):410–27.Google Scholar
34.Fricker, RM, Raffelsberger, T, Rauch-Shorny, S, et al. Positive malignant hyperthermia susceptibility in vitro test in a patient with mitochondrial myopathy and myoadenylate deaminase deficiency. Anesthesiol. 2002;97(6):1635–7.Google Scholar
35.Keyes, MA, Van de Wiele, BV, Stead, SW. Mitochondrial myopathies: an unusual cause of hypotonia in infants and children. Paediatr Anaesth. 1996;6(4):329–35.Google Scholar
36.Brandom, BW, Veyckemans, F. Neuromuscular diseases in children: a practical approach. Paediatr Anaesth. 2013;23(9):765–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×