Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T16:22:29.368Z Has data issue: false hasContentIssue false

Section 3 - Specific Newborn and Infant Procedures

Published online by Cambridge University Press:  09 February 2018

Mary Ellen McCann
Affiliation:
Harvard Medical School, Boston, MA, USA
Christine Greco
Affiliation:
Harvard Medical School, Boston, MA, USA
Kai Matthes
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Arieff, AI, Ayus, JC, Fraser, CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.Google Scholar
2.Bruce, DA, Berman, WA, Schut, L. Cerebrospinal fluid pressure monitoring in children: physiology, pathology and clinical usefulness. Adv Pediatr. 1977;24:233–90.Google Scholar
3.Marshall, LF, Smith, RW, Shapiro, HM. The influence of diurnal rhythms in patients with intracranial hypertension: implications for management. Neurosurgery. 1978;2:100–2.Google ScholarPubMed
4.Chaves-Carballo, E, Gomez, MR, Sharbrough, FW. Encephalopathy and fatty infiltration of the viscera (Reye-Johnson syndrome): a 17-year experience. Mayo Clin Proc. 1975;50:209–15.Google Scholar
5.Minns, RA, Brown, JK, Engleman, HM. CSF production rate: “real time” estimation. Z Kinderchir. 1987;42(Suppl 1):3640.Google Scholar
6.Blomquist, HK, Sundin, S, Ekstedt, J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49:536–48.Google Scholar
7.Di Rocco, C, McLone, DG, Shimoji, T, Raimondi, AJ. Continuous intraventricular cerebrospinal fluid pressure recording in hydrocephalic children during wakefulness and sleep. J Neurosurg. 1975;42:683–9.CrossRefGoogle ScholarPubMed
8.Lassen, NA, Christensen, MS. Physiology of cerebral blood flow. Br J Anaesth. 1976;48:719–34.Google Scholar
9.Lassen, NA, Hoedt-Rasmussen, K. Human cerebral blood flow measured by two inert gas techniques: comparison of the Kety–Schmidt method and the intra-arterial injection method. Circ Res. 1966;19:681–94.CrossRefGoogle ScholarPubMed
10.Kety, SS, Schmidt, CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83.CrossRefGoogle ScholarPubMed
11.Kennedy, C, Sokoloff, L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.Google Scholar
12.Mehta, S, Kalsi, HK, Nain, CK, Menkes, JH. Energy metabolism of brain in human protein-calorie malnutrition. Pediatr Res. 1977;11:290–3.Google Scholar
13.Milligan, DW. Cerebral blood flow and sleep state in the normal newborn infant. Early Hum Dev. 1979;3:321–8.CrossRefGoogle Scholar
14.Settergren, G, Lindblad, BS, Persson, B. Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand. 1976;65:343–53.Google Scholar
15.Lou, HC, Lassen, NA, Friis-Hansen, B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 1979;94:118–21.Google Scholar
16.Rahilly, PM. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate. Pediatrics. 1980;66:685–9.Google Scholar
17.Rogers, MC, Nugent, SK, Traystman, RJ. Control of cerebral circulation in the neonate and infant. Crit Care Med. 1980;8:570–4.Google Scholar
18.Kety, SS, Schmidt, CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–92.Google Scholar
19.Coles, JP, Fryer, TD, Coleman, MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.Google Scholar
20.Lassen, NA. Control of cerebral circulation in health and disease. Circ Res. 1974;34:749–60.Google Scholar
21.Goobie, SM, Zurakowski, D, Proctor, MR, et al. Predictors of clinically significant postoperative events after open craniosynostosis surgery. Anesthesiology. 2015;122:1021–32.CrossRefGoogle ScholarPubMed
22.Goobie, SM, Meier, PM, Pereira, LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114:862–71.CrossRefGoogle ScholarPubMed
23.Scheingraber, S, Rehm, M, Sehmisch, C, Finsterer, U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.CrossRefGoogle ScholarPubMed
24.Mekitarian Filho, E, Carvalho, WB, Cavalheiro, S, et al. Hyperglycemia and postoperative outcomes in pediatric neurosurgery. Clinics. 2011;66(9):1637–40.Google ScholarPubMed
25.Loddenkemper, T, Holland, KD, Stanford, LD, et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007;119:930–5.CrossRefGoogle ScholarPubMed

References

1.Chesnutt, MSPT, Tavan, ET. Pulmonary disorders. In: Papadakis, MAMS, Rabow, MW, editors. Current Medical Diagnosis & Treatment. New York: McGraw-Hill; 2014.Google Scholar
2.Albanese, CTSK Pediatric surgery. In: GM D, editor. Current Diagnosis & Treatment: Surgery, 13th edn. New York: McGraw-Hill; 2010.Google Scholar
3.Yoon, PJKP, Friedman, NR Ear, nose, & throat. In: Hay, WWJ, Levin, MJ, Deterding, RR, Abzug, MJ, Sondheimer, JM, editors. Current Diagnosis & Treatment: Pediatrics, 21st edn. New York: McGraw-Hill; 2012.Google Scholar
4.Abdullah, B, Hassan, S, Salim, R. Transnasal endoscopic repair for bilateral choanal atresia. Malays J Med Sci. 2006;13(2):61–3.Google Scholar
5.Asma, A, Roslenda, AR, Suraya, A, Saraiza, AB, Aini, AA. Management of congenital choanal atresia (CCA) after multiple failures: a case report. Med J Malaysia. 2013;68(1):76–8.Google ScholarPubMed
6.Schoem, SR. Transnasal endoscopic repair of choanal atresia: why stent? Otolaryngol Head Neck Surg. 2004;131(4):362–6.Google Scholar
7.Friedman, NR, Mitchell, RB, Bailey, CM, Albert, DM, Leighton, SE. Management and outcome of choanal atresia correction. Int J Pediatr Otorhinolaryngol. 2000;52(1):4551.Google Scholar
8.Austin, J, Ali, T. Tracheomalacia and bronchomalacia in children: pathophysiology, assessment, treatment and anaesthesia management. Paediatr Anaesth. 2003;13(1):311.CrossRefGoogle ScholarPubMed
9.Thomas, VDSN, Lee, KK, Swanson, NA Benign epithelial tumors, hamartomas, and hyperplasias. In: Goldsmith, LAKS, Gilchrest, BA, Paller, AS, Leffell, DJ, Wolff, K, editors. Fitzpatrick’s Dermatology in General Medicine, 8th edn. New York: McGraw-Hill; 2012.Google Scholar
10.Shah, RNCT, Shores, CG Infections and disorders of the neck and upper airway. In: Tintinalli, JESJ, Ma, O, Cline, DM, Cydulka, RK, Meckler, GD, editors. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 7th edn. New York: McGraw-Hill; 2011.Google Scholar
11.Hackam, DJGT, Wang, KS, Newman, KD, Ford, HR Pediatric surgery. In: Brunicardi, FAD, Billiar, TR, Dunn, DL, et al., editors. Schwartz’s Principles of Surgery, 9th edn. New York: McGraw-Hill; 2012.Google Scholar
12.Usatine, RPSM, Chumley, HS, Mayeaux, EJ Jr. Childhood hemangiomas and vascular malformations. In: The Color Atlas of Family Medicine, 2nd edn. New York: McGraw-Hill; 2013.Google Scholar
13.Losee, JEGM, Rubin, J, Wallace, CG, Wei, F Plastic and reconstructive surgery. In: Brunicardi, FAD, Billiar, TR, Dunn, DL, et al., editors. Schwartz’s Principles of Surgery, 9th edn. New York: McGraw-Hill; 2010.Google Scholar
14.McDonald, S, Langton Hewer, CD, Nunez, DA Grommets (ventilation tubes) for recurrent acute otitis media in children. Cochrane Database Syst Rev. 2008;4: CD004741.Google Scholar
15.Chinn, K, Brown, OE, Manning, SC, Crandell, CC. Middle ear pressure variation: effect of nitrous oxide. Laryngoscope. 1997;107(3):357–63.Google Scholar
16.Eidi, M, Kolahdouzan, K, Hosseinzadeh, H, Tabaqi, R. A comparison of preoperative ondansetron and dexamethasone in the prevention of post-tympanoplasty nausea and vomiting. Iran J Med Sci. 2012;37(3):166–72.Google Scholar
17.Jöhr, M, Ho, A, Wagner, CS, Linder, T. Ear surgery in infants under one year of age: its risks and implications for cochlear implant surgery. Otology & Neurotology. 2008. 29(3):310–13.Google Scholar
18.Baidya, KD, Dehran, M. Anaesthesia for cochlear implant surgery. Trends Anaesth Crit Care. 2011;1:90–4.Google Scholar
19.Suter, VG, Bornstein, MM. Ankyloglossia: facts and myths in diagnosis and treatment. J Periodontol. 2009;80(8):1204–19.Google ScholarPubMed
20.Kupietzky, A, Botzer, E. Ankyloglossia in the infant and young child: clinical suggestions for diagnosis and management. Pediatr Dent. 2005;27(1):40–6.Google Scholar
21.Hamada, M, Iida, M, Nota, J, et al. Safety and efficacy of adenotonsillectomy for obstructive sleep apnea in infants, toddlers and preschool children. Auris Nasus Larynx. 2015;42(3):208–12.CrossRefGoogle ScholarPubMed
22.Brigance, JS, Miyamoto, RC, Schilt, P. Surgical management of obstructive sleep apnea in infants and young toddlers. Otolaryngol Head Neck Surg. 2009;140(6):912–16.Google Scholar
23.Mitchell, RB, Kelly, J. Outcome of adenotonsillectomy for obstructive sleep apnea in children under 3 years. Otolaryngol Head Neck Surg. 2005;132(5):681–4.CrossRefGoogle ScholarPubMed
24.Moss, JR, Watcha, MF, Bendel, LP, et al. A multicenter, randomized, double-blind placebo-controlled, single dose trial of the safety and efficacy of intravenous ibuprofen for treatment of pain in pediatric patients undergoing tonsillectomy. Pediatr Anesth. 2014;24:483–9.Google Scholar
25.Lewis, SR, Nicholson, A, Cardwell, ME, Siviter, G, Smith, AF Nonsteroidal anti-inflammatory drugs and perioperative bleeding in paediatric tonsillectomy. Cochrane Database Syst Rev. 2013;7:CD00359.Google Scholar
26.Voronov, P, Tobin, MJ, Billings, K, et al. Postoperative pain relief in infants undergoing myringotomy and tube placement: comparison of a novel regional anesthetic block to intranasal fentanyl – a pilot analysis. Pediatr Anesth. 2008;18(12):1196–201.Google Scholar
27.Steward, D, Grisel, J, Meinzen-Derr, J Steroids for improving recovery following tonsillectomy in children. Cochrane Database Syst Rev. 2011;8:CD003997.Google Scholar
28.Dhar, P, Malik, A. Review: anesthesia for laser surgery in ENT and the various ventilatory techniques. Trends Anaesth Crit Care. 2011;1(2):60–6.Google Scholar

References

1.Mulliken, JB, MacDonald, DM. Cleft lip/palate and Robin sequence. In Hansen, A, Puder, M, editors. Manual of Neonatal Surgical Intensive Care, 2nd edition. Shelton, CT: People’s Medical Publishing House; 2009.Google Scholar
2.Milerad, J, Larson, O, Ph, DD, Hagberg, C, Ideberg, M. Associated malformations in infants with cleft lip and palate: a prospective, population-based study. Pediatrics. 1997;100(2 Pt 1):180–6.Google Scholar
3.Evans, AK, Rahbar, R, Rogers, GF, Mulliken, JB, Volk, MS. Robin sequence: a retrospective review of 115 patients. Int J Pediatr Otorhinolaryngol. 2006;70(6):973–80.Google Scholar
4.Butow, KW, Hoogendijk, CF, Zwahlen, RA. Pierre Robin sequence: appearances and 25 years of experience with an innovative treatment protocol. J Pediatr Surg. 2009;44(11):2112–18.CrossRefGoogle ScholarPubMed
5.Cladis, F, Kumar, A, Grunwaldt, L, et al. Pierre robin sequence: a perioperative review. Anesth Analg. 2014;119(2):400–12.Google Scholar
6.Takemura, H, Yasumoto, K, Toi, T, Hosoyamada, A. Correlation of cleft type with incidence of perioperative respiratory complications in infants with cleft lip and palate. Paediatr Anaesth. 2002;12(7):585–8.Google Scholar
7.Jackson, O, Basta, M, Sonnad, S, et al. Perioperative risk factors for adverse airway events in patients undergoing cleft palate repair. Cleft Palate Craniofac J. 2013;50(3):330–6.Google Scholar
8.Xue, FS, Zhang, GH, Li, P, et al. The clinical observation of difficult laryngoscopy and difficult intubation in infants with cleft lip and palate. Paediatr Anaesth. 2006;16(3):283–9.Google Scholar
9.Gunawardana, RH. Difficult laryngoscopy in cleft lip and palate surgery. Br J Anaesth. 1996;76(6):757–9.CrossRefGoogle ScholarPubMed
10.Uezono, S, Holzman, RS, Goto, T, et al. Prediction of difficult airway in school-aged patients with microtia. Paediatr Anaesth. 2001;11(4):409–13.Google Scholar
11.Nargozian, C. The airway in patients with craniofacial abnormalities. Paediatr Anaesth. 2004;14(1):53–9.Google Scholar
12.Ahuja, S, Datta, A, Krishna, A, Bhattacharya, A. Infra-orbital nerve block for relief of postoperative pain following cleft lip surgery in infants. Anaesthesia. 1994;49(5):441–4.Google Scholar
13.Rajamani, A, Kamat, V, Rajavel, VP, Murthy, J, Hussain, SA. A comparison of bilateral infraorbital nerve block with intravenous fentanyl for analgesia following cleft lip repair in children. Paediatr Anaesth. 2007;17(2):133–9.Google Scholar
14.Takmaz, SA, Uysal, HY, Uysal, A, et al. Bilateral extraoral, infraorbital nerve block for postoperative pain relief after cleft lip repair in pediatric patients: a randomized, double-blind controlled study. Ann Plast Surg. 2009;63(1):5962.Google Scholar
15.Simion, C, Corcoran, J, Iyer, A, Suresh, S. Postoperative pain control for primary cleft lip repair in infants: is there an advantage in performing peripheral nerve blocks? Paediatr Anaesth. 2008;18(11):1060–5.Google Scholar
16.Bosenberg, AT, Kimble, FW. Infraorbital nerve block in neonates for cleft lip repair: anatomical study and clinical application. Br J Anaesth. 1995;74(5):506–8.Google Scholar
17.Bell, C, Oh, TH, Loeffler, JR. Massive macroglossia and airway obstruction after cleft palate repair. Anesth Analg. 1988;67(1):71–4.Google Scholar
18.Lee, JT, Kingston, HG. Airway obstruction due to massive lingual oedema following cleft palate surgery. Can Anaesth Soc J. 1985;32(3 Pt 1):265–7.Google Scholar
19.Cohen, MM, Jr., MacLean, RE. Craniosynostosis: Diagnosis, Evaluation, and Management, 2nd edn. New York: Oxford University Press; 2000.Google Scholar
20.Tamburrini, G, Caldarelli, M, Massimi, L, Santini, P, Di Rocco, C. Intracranial pressure monitoring in children with single suture and complex craniosynostosis: a review. Childs Nerv Syst. 2005;21(10):913–21.Google Scholar
21.McCarthy, JG, Warren, SM, Bernstein, JM, et al. Parameters of care for craniosynostosis. Cleft Palate Craniofac J. 2011;49:1S–24S.Google Scholar
22.Church, MW, Parent-Jenkins, L, Rozzelle, AA, Eldis, FE, Kazzi, SN. Auditory brainstem response abnormalities and hearing loss in children with craniosynostosis. Pediatrics. 2007;119(6):e1351–60.Google Scholar
23.Hertle, RW, Quinn, GE, Minguini, N, Katowitz, JA. Visual loss in patients with craniofacial synostosis. J Pediatr Ophthalmol Strabismus. 1991;28(6):344–9.Google Scholar
24.Renier, D, Sainte-Rose, C, Marchac, D, Hirsch, JF. Intracranial pressure in craniostenosis. J Neurosurg. 1982;57(3):370–7.Google Scholar
25.Connolly, JP, Gruss, J, Seto, ML, et al. Progressive postnatal craniosynostosis and increased intracranial pressure. Plast Reconstr Surg. 2004;113(5):1313–23.CrossRefGoogle ScholarPubMed
26.Mulliken, JB, Vander Woude, DL, Hansen, M, LaBrie, RA, Scott, RM. Analysis of posterior plagiocephaly: deformational versus synostotic. Plast Reconstr Surg. 1999;103(2):371–80.Google Scholar
27.Laughlin, J, Luerssen, TG, Dias, MS. Prevention and management of positional skull deformities in infants. Pediatrics. 2011;128.Google Scholar
28.Hoeve, LJ, Pijpers, M, Joosten, KF. OSAS in craniofacial syndromes: an unsolved problem. Int J Pediatr Otorhinolaryngol. 2003;67(Suppl. 1):S111–13.Google Scholar
29.Pijpers, M, Poels, PJ, Vaandrager, JM, et al. Undiagnosed obstructive sleep apnea syndrome in children with syndromal craniofacial synostosis. J Craniofac Surg. 2004;15(4):670–4.Google Scholar
30.De Jong, T, Bannink, N, Bredero-Boelhouwer, HH, et al. Long-term functional outcome in 167 patients with syndromic craniosynostosis; defining a syndrome-specific risk profile. J Plast Reconstr Aesthet Surg. 2010;63(10):1635–41.Google Scholar
31.Scheid, SC, Spector, AR, Luft, JD. Tracheal cartilaginous sleeve in Crouzon syndrome. Int J Pediatr Otorhinolaryngol. 2002;65(2):147–52.Google Scholar
32.Nargozian, C. Apert syndrome: anesthetic management. Clin Plast Surg. 1991;18(2):227–30.Google Scholar
33.Sculerati, N, Gottlieb, MD, Zimbler, MS, Chibbaro, PD, McCarthy, JG. Airway management in children with major craniofacial anomalies. Laryngoscope. 1998;108(12):1806–12.Google Scholar
34.Hayward, R, Gonsalez, S. How low can you go? Intracranial pressure, cerebral perfusion pressure, and respiratory obstruction in children with complex craniosynostosis. J Neurosurg. 2005;102(Suppl. 1):1622.Google Scholar
35.Bristol, RE, Lekovic, GP, Rekate, HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11(4):262–7.Google Scholar
36.Thompson, DN, Malcolm, GP, Jones, BM, Harkness, WJ, Hayward, RD. Intracranial pressure in single-suture craniosynostosis. Pediatr Neurosurg. 1995;22(5):235–40.Google Scholar
37.David, LR, Wilson, JA, Watson, NE, Argenta, LC. Cerebral perfusion defects secondary to simple craniosynostosis. J Craniofac Surg. 1996;7(3):177–85.Google Scholar
38.Czerwinski, M, Kolar, JC, Fearon, JA. Complex craniosynostosis. Plast Reconstr Surg. 2011;128(4):955–61.Google Scholar
39.Robson, CD, Mulliken, JB, Robertson, RL, et al. Prominent basal emissary foramina in syndromic craniosynostosis: correlation with phenotypic and molecular diagnoses. AJNR Am J Neuroradiol. 2000;21(9):1707–17.Google Scholar
40.Rich, PM, Cox, TC, Hayward, RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol. 2003;24(1):4551.Google Scholar
41.Tuite, GF, Chong, WK, Evanson, J, et al. The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery. 1996;38(2):272–8.Google Scholar
42.Jimenez, DF, Barone, CM, Cartwright, CC, Baker, L. Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics. 2002;110(1 Pt 1):97104.Google Scholar
43.Berry-Candelario, J, Ridgway, EB, Grondin, RT, Rogers, GF, Proctor, MR. Endoscope-assisted strip craniectomy and postoperative helmet therapy for treatment of craniosynostosis. Neurosurg Focus. 2011;31(2):E5.Google Scholar
44.Meier, PM, Goobie, SM, DiNardo, JA, et al. Endoscopic strip craniectomy in early infancy: the initial five years of anesthesia experience. Anesth Analg. 2011;112(2):407–14.Google Scholar
45.Tobias, JD, Johnson, JO, Jimenez, DF, Barone, CM, McBride, DS, Jr. Venous air embolism during endoscopic strip craniectomy for repair of craniosynostosis in infants. Anesthesiology. 2001;95(2):340–2.Google Scholar
46.Abbott, MM, Rogers, GF, Proctor, MR, Busa, K, Meara, JG. Cost of treating sagittal synostosis in the first year of life. J Craniofac Surg. 2012;23(1):8893.Google Scholar
47.Lauritzen, CG, Davis, C, Ivarsson, A, Sanger, C, Hewitt, TD. The evolving role of springs in craniofacial surgery: the first 100 clinical cases. Plast Reconstr Surg. 2008;121(2):545–54.Google Scholar
48.Mackenzie, KA, Davis, C, Yang, A, MacFarlane, MR. Evolution of surgery for sagittal synostosis: the role of new technologies. J Craniofac Surg. 2009;20(1):129–33.Google Scholar
49.Ririe, DG, Smith, TE, Wood, BC, et al. Time-dependent perioperative anesthetic management and outcomes of the first 100 consecutive cases of spring-assisted surgery for sagittal craniosynostosis. Paediatr Anaesth. 2011;21:1015–19.Google Scholar
50.Windh, P, Davis, C, Sanger, C, Sahlin, P, Lauritzen, C. Spring-assisted cranioplasty vs pi-plasty for sagittal synostosis: a long term follow-up study. J Craniofac Surg. 2008;19(1):5964.Google Scholar
51.Faberowski, LW, Black, S, Mickle, JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11(3):167–72.Google Scholar
52.Meyer, P, Renier, D, Arnaud, E, et al. Blood loss during repair of craniosynostosis. Br J Anaesth. 1993;71(6):854–7.Google Scholar
53.Stricker, PA, Shaw, TL, Desouza, DG, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20(2):150–9.Google Scholar
54.Mirski, MA, Lele, AV, Fitzsimmons, L, Toung, TJ. Diagnosis and treatment of vascular air embolism. Anesthesiology. 2007;106(1):164–77.Google Scholar
55.Harris, MM, Yemen, TA, Davidson, A, et al. Venous embolism during craniectomy in supine infants. Anesthesiology. 1987;67(5):816–19.Google Scholar
56.Faberowski, LW, Black, S, Mickle, JP. Incidence of venous air embolism during craniectomy for craniosynostosis repair. Anesthesiology. 2000;92(1):20–3.CrossRefGoogle ScholarPubMed
57.Meyer, PG, Renier, D, Orliaguet, G, Blanot, S, Carli, P. Venous air embolism in craniosynostosis surgery: what do we want to detect? Anesthesiology. 2000;93(4):1157–8.Google Scholar
58.Cucchiara, RF, Bowers, B. Air embolism in children undergoing suboccipital craniotomy. Anesthesiology. 1982;57(4):338–9.Google Scholar
59.Soriano, SG, McManus, ML, Sullivan, LJ, Scott, RM, Rockoff, MA. Doppler sensor placement during neurosurgical procedures for children in the prone position. J Neurosurg Anesthesiol. 1994;6(3):153–5.Google Scholar
60.Clune, JE, Greene, AK, Guo, CY, et al. Perioperative corticosteroid reduces hospital stay after fronto-orbital advancement. J Craniofac Surg. 2010;21(2):344–8.Google Scholar
61.Zunini, GS, Rando, KA, Cox, RG. Fluid replacement in craniofacial pediatric surgery: normal saline or Ringer’s lactate? J Craniofac Surg. 2011;22(4):1370–4.Google Scholar
62.Czerwinski, M, Hopper, RA, Gruss, J, Fearon, JA. Major morbidity and mortality rates in craniofacial surgery: an analysis of 8101 major procedures. Plast Reconstr Surg. 2010;126(1):181–6.Google Scholar
63.Bhananker, SM, Ramamoorthy, C, Geiduschek, JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–50.Google Scholar
64.Cote, CJ, Liu, LM, Szyfelbein, SK, Goudsouzian, NG, Daniels, AL. Changes in serial platelet counts following massive blood transfusion in pediatric patients. Anesthesiology. 1985;62(2):197201.Google Scholar
65.Cote, CJ, Drop, LJ, Hoaglin, DC, Daniels, AL, Young, ET. Ionized hypocalcemia after fresh frozen plasma administration to thermally injured children: effects of infusion rate, duration, and treatment with calcium chloride. Anesth Analg. 1988;67(2):152–60.Google ScholarPubMed
66.Brown, KA, Bissonnette, B, McIntyre, B. Hyperkalaemia during rapid blood transfusion and hypovolaemic cardiac arrest in children. Can J Anaesth. 1990;37(7):747–54.Google Scholar
67.Brown, KA, Bissonnette, B, MacDonald, M, Poon, AO. Hyperkalaemia during massive blood transfusion in paediatric craniofacial surgery. Can J Anaesth. 1990;37(4 Pt 1):401–8.Google Scholar
68.Flick, RP, Sprung, J, Harrison, TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37.Google Scholar
69.Mattu, A, Brady, WJ, Robinson, DA. Electrocardiographic manifestations of hyperkalemia. Am J Emerg Med. 2000;18(6):721–9.Google Scholar
70.Weiskopf, RB, Schnapp, S, Rouine-Rapp, K, Bostrom, A, Toy, P. Extracellular potassium concentrations in red blood cell suspensions after irradiation and washing. Transfusion. 2005;45(8):1295–301.Google Scholar
71.Swindell, CG, Barker, TA, McGuirk, SP, et al. Washing of irradiated red blood cells prevents hyperkalaemia during cardiopulmonary bypass in neonates and infants undergoing surgery for complex congenital heart disease. Eur J Cardiothorac Surg. 2007;31(4):659–64.Google Scholar
72.Fearon, JA, Weinthal, J. The use of recombinant erythropoietin in the reduction of blood transfusion rates in craniosynostosis repair in infants and children. Plast Reconstr Surg. 2002;109(7):2190–6.Google Scholar
73.Krajewski, K, Ashley, RK, Pung, N, et al. Successful blood conservation during craniosynostotic correction with dual therapy using procrit and cell saver. J Craniofac Surg. 2008;19(1):101–5.Google Scholar
74.Helfaer, MA, Carson, BS, James, CS, et al. Increased hematocrit and decreased transfusion requirements in children given erythropoietin before undergoing craniofacial surgery. J Neurosurg. 1998;88(4):704–8.Google Scholar
75.Dadure, C, Sauter, M, Bringuier, S, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114(4):856–61.Google Scholar
76.Goobie, SM, Meier, PM, Pereira, LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71.Google Scholar
77.Di Rocco, C, Tamburrini, G, Pietrini, D. Blood sparing in craniosynostosis surgery. Semin Pediatr Neurol. 2004;11(4):278–87.Google Scholar
78.Phillips, RJ, Mulliken, JB. Venous air embolism during a craniofacial procedure. Plast Reconstr Surg. 1988;82(1):155–9.Google Scholar
79.Chang, JL, Albin, MS, Bunegin, L, Hung, TK. Analysis and comparison of venous air embolism detection methods. Neurosurgery. 1980;7(2):135–41.Google Scholar
80.Kvernmo, HD, Haugstvedt, JR. Treatment of congenital syndactyly of the fingers. Tidsskr Nor Laegeforen. 2013;133(15):1591–5.Google Scholar
81.Joseph-Reynolds, AM, Auden, SM, Sobczyzk, WL. Perioperative considerations in a newly described subtype of congenital long QT syndrome. Paediatr Anaesth. 1997;7(3):237–41.Google Scholar
82.Napolitano, C, Splawski, I, Timothy, KW, et al. GeneReviews® (Internet). Seattle, WA: University of Washington, Seattle; 1993–2017.Google Scholar
83.Khalid, S, Faizan, M, Alam, MM, et al. Congenital longitudinal radial deficiency in infants: spectrum of isolated cases to VACTERL syndrome. J Clin Neonatol. 2013;2(4):193–5.Google Scholar
84.Ashbaugh, H, Gellman, H. Congenital thumb deformities and associated syndromes. J Craniofac Surg. 2009;20(4):1039–44.Google Scholar
85.Gibstein, LA, Abramson, DL, Bartlett, RA, et al. Tissue expansion in children: a retrospective study of complications. Ann Plast Surg. 1997;38(4):358–64.Google Scholar
86.Bauer, BS, Few, JW, Chavez, CD, Galiano, RD. The role of tissue expansion in the management of large congenital pigmented nevi of the forehead in the pediatric patient. Plast Reconstr Surg. 2001;107(3):668–75.Google Scholar
87.Gosain, AK, Santoro, TD, Larson, DL, Gingrass, RP. Giant congenital nevi: a 20-year experience and an algorithm for their management. Plast Reconstr Surg. 2001;108(3):622–36.Google Scholar
88.Vaienti, L, Masetto, L, Davanzo, D, Marchesi, A, Ravasio, G. Giant congenital nevi of the scalp and forehead treated by skin expansion. Pediatr Med Chir. 2011;33(2):98101.Google Scholar
89.Rasmussen, BS, Henriksen, TF, Kolle, SF, Schmidt, G. Giant congenital melanocytic nevus: report from 30 years of experience in a single department. Ann Plast Surg. 2013;74(2):223–9.Google Scholar
90.Clifton, MS, Heiss, KF, Keating, JJ, Mackay, G, Ricketts, RR. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.Google Scholar
91.Mhamane, R, Dave, N, Garasia, M. Delayed primary repair of giant omphalocele: anesthesia challenges. Paediatr Anaesth. 2012;22(9):935–6.Google Scholar
92.Edwards, PD, Rahbar, R, Ferraro, NF, Burrows, PE, Mulliken, JB. Lymphatic malformation of the lingual base and oral floor. Plast Reconstr Surg. 2005;115(7):1906–15.Google Scholar
93.Tanaka, M, Sato, S, Naito, H, Nakayama, H. Anaesthetic management of a neonate with prenatally diagnosed cervical tumour and upper airway obstruction. Can J Anesth. 1994;41(3):236–40.Google Scholar
94.Bouchard, S, Johnson, MP, Flake, AW, et al. The EXIT procedure: experience and outcome in 31 cases. J Pediatr Surg. 2002;37(3):418–26.CrossRefGoogle ScholarPubMed
95.Choleva, AJ. Anesthetic management of a patient undergoing an ex utero intrapartum treatment (EXIT) procedure: a case report. AANA J. 2011;79(6):497503.Google Scholar
96.Lazar, DA, Olutoye, OO, Moise, KJ, Jr., et al. Ex-utero intrapartum treatment procedure for giant neck masses: fetal and maternal outcomes. J Pediatr Surg. 2011;46(5):817–22.Google Scholar
97.Farrell, PT. Prenatal diagnosis and intrapartum management of neck masses causing airway obstruction. Paediatr Anaesth. 2004;14(1):4852.Google Scholar
98.Bryan, Y, Chwals, W, Ovassapian, A. Sedation and fiberoptic intubation of a neonate with a cystic hygroma. Acta Anaesthesiol Scand. 2005;49(1):122–3.Google Scholar
99.Burezq, H, Williams, B, Chitte, SA. Management of cystic hygromas: 30 year experience. J Craniofac Surg. 2006;17(4):815–18.Google Scholar
100.Boardman, SJ, Cochrane, LA, Roebuck, D, Elliott, MJ, Hartley, BE. Multimodality treatment of pediatric lymphatic malformations of the head and neck using surgery and sclerotherapy. Arch Otolaryngol Head Neck Surg. 2010;136(3):270–6.CrossRefGoogle ScholarPubMed
101.Kim, SW, Kavanagh, K, Orbach, DB, et al. Long-term outcome of radiofrequency ablation for intraoral microcystic lymphatic malformation. Arch Otolaryngol Head Neck Surg. 2011;137(12):1247–50.Google Scholar
102.Balakrishnan, K, Menezes, MD, Chen, BS, Magit, AE, Perkins, JA. Primary surgery vs primary sclerotherapy for head and neck lymphatic malformations. JAMA Otolaryngol Head Neck Surg. 2014;140(1):41–5.Google Scholar

References

1.Christison-Lagay, ER, Kelleher, CM, Langer, JC. Neonatal abdominal wall defects. Semin Fetal Neonatal Med. 2011;16(3):164–72.Google Scholar
2.Brusseau, R, McCann, ME. Anaesthesia for urgent and emergency surgery. Early Hum Dev. 2010;86(11):703–14.Google Scholar
3.Banieghbal, B, Gouws, M, Davies, M. Respiratory pressure monitoring as an indirect method of intra-abdominal pressure measurement in gastroschisis closure. Eur J Pediatr Surg. 2006;16(2):7983.CrossRefGoogle ScholarPubMed
4.Mutoh, T, Lamm, WJ, Embree, LJ, Hildebrandt, J, Albert, RK. Abdominal distension alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol. 1991;70(6):2611–18.Google Scholar
5.Ledbetter, DJ. Congenital abdominal wall defects and reconstruction in pediatric surgery: gastroschisis and omphalocele. Surg Clin North Am. 2012;92(3):713–27.CrossRefGoogle ScholarPubMed
6.Hoyme, HE, Higginbottom, MC, Jones, KL. The vascular pathogenesis of gastroschisis: intrauterine interruption of the omphalomesenteric artery. J Pediatr. 1981;98(2):228–31.Google Scholar
7.deVries, PA. The pathogenesis of gastroschisis and omphalocele. J Pediatr Surg. 1980;15(3):245–51.Google Scholar
8.Arnold, MA, Chang, DC, Nabaweesi, R, et al. Risk stratification of 4344 patients with gastroschisis into simple and complex categories. J Pediatr Surg. 2007;42(9):1520–5.Google Scholar
9.Kilby, MD. The incidence of gastroschisis. BMJ. 2006;332(7536):250–1.Google Scholar
10.Loane, M, Dolk, H, Bradbury, I. EUROCAT Working Group. Increasing prevalence of gastroschisis in Europe 1980–2002: a phenomenon restricted to younger mothers? Paediatr Perinat Epidemiol. 2007;21(4):363–9.Google Scholar
11.Frolov, P, Alali, J, Klein, MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int. 2010;26(12):1135–48.Google Scholar
12.Fratelli, N, Papageorghiou, AT, Bhide, A, et al. Outcome of antenatally diagnosed abdominal wall defects. Ultrasound Obstet Gynecol. 2007;30(3):266–70.Google Scholar
13.Juhasz-Böss, I, Goelz, R, Solomayer, E-F, Fuchs, J, Meyberg-Solomayer, G. Fetal and neonatal outcome in patients with anterior abdominal wall defects (gastroschisis and omphalocele). J Perinat Med. 2012;40(1):8590.Google Scholar
14.Aljahdali, A, Mohajerani, N, Skarsgard, ED. Effect of timing of enteral feeding on outcome in gastroschisis. J Pediatr Surg. 2013;48(5):971–6.Google Scholar
15.Minutillo, C, Rao, SC, Pirie, S, McMichael, J, Dickinson, JE. Growth and developmental outcomes of infants with gastroschisis at one year of age: a retrospective study. J Pediatr Surg. 2013;48(8):1688–96.Google Scholar
16.Van Manen, M, Hendson, L, Wiley, M, et al. Early childhood outcomes of infants born with gastroschisis. J Pediatr Surg. 2013;48(8):1682–7.CrossRefGoogle ScholarPubMed
17.David, AL, Tan, A, Curry, J. Gastroschisis: sonographic diagnosis, associations, management and outcome. Prenat Diagn. 2008;28(7):633–44.Google Scholar
18.Tucker, JM, Brumfield, CG, Davis, RO, et al. Prenatal differentiation of ventral abdominal wall defects: are amniotic fluid markers useful adjuncts? J Reprod Med. 1992;37(5):445–8.Google Scholar
19.Murat, I, Humblot, A, Girault, L, Piana, F. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24(3):365–74.Google Scholar
20.Mortellaro, VE, Peter, SDS, Fike, FB, Islam, S. Review of the evidence on the closure of abdominal wall defects. Pediatr Surg Int. 2011;27(4):391–7.Google Scholar
21.Marven, S, Owen, A. Contemporary postnatal surgical management strategies for congenital abdominal wall defects. Semin Pediatr Surg. 2008;17(4):222–35.Google Scholar
22.Daily, WJR, Klaus, M, Belton, H, Meyer, P. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics. 1969;43(4):510–18.Google Scholar
23.Mellor, DJ, Lerman, J. Anesthesia for neonatal surgical emergencies. Semin Perinatol. 1998;22(5):363–79.Google Scholar
24.Goeller, JK, Bhalla, T, Tobias, JD. Combined use of neuraxial and general anesthesia during major abdominal procedures in neonates and infants. Paediatr Anaesth. 2014; doi: 10.1111/pan.12384.Google Scholar
25.Tobias, JD, Rasmussen, GE, Holcomb, GW, Brock, JW, Morgan, WM. Continuous caudal anaesthesia with chloroprocaine as an adjunct to general anaesthesia in neonates. Can J Anaesth. 1996;43(1):6972.Google Scholar
26.Yaster, M, Scherer, TLR, Stone, MM, et al. Prediction of successful primary closure of congenital abdominal wall defects using intraoperative measurements. J Pediatr Surg. 1989;24(12):1217–20.Google Scholar
27.Yaster, M, Buck, JR, Dudgeon, DL, et al. Hemodynamic effects of primary closure of omphalocele/gastroschisis in human newborns. Anesthesiology. 1988;69(1):84–8.Google Scholar
28.Pelosi, P, Vargas, M. Mechanical ventilation and intra-abdominal hypertension: “Beyond Good and Evil.”Crit Care. 2012;16(6):187.Google Scholar
29.Sadler, TW. The embryologic origin of ventral body wall defects. Semin Pediatr Surg. 2010;19(3):209–14.CrossRefGoogle ScholarPubMed
30.Calzolari, E, Bianchi, F, Dolk, H, Milan, M. Omphalocele and gastroschisis in Europe: a survey of 3 million births 1980–1990. Am J Med Genet. 1995;58(2):187–94.Google Scholar
31.Tan, KH, Kilby, MD, Whittle, MJ, et al. Congenital anterior abdominal wall defects in England and Wales 1987–93: retrospective analysis of OPCS data. BMJ. 1996;313(7062):903–6.Google Scholar
32.Vermeij-Keers, C, Hartwig, NG, van der Werff, JF. Embryonic development of the ventral body wall and its congenital malformations. Semin Pediatr Surg. 1996;5(2):82–9.Google Scholar
33.Islam, S. Clinical care outcomes in abdominal wall defects. Curr Opin Pediatr. 2008;20(3):305–10.Google Scholar
34.Mitanchez, D, Walter-Nicolet, E, Humblot, A, et al. Neonatal care in patients with giant ompholocele: arduous management but favorable outcomes. J Pediatr Surg. 2010;45(8):1727–33.Google Scholar
35.Mann, S, Blinman, TA, Douglas Wilson, R. Prenatal and postnatal management of omphalocele. Prenat Diagn. 2008;28(7):626–32.Google Scholar
36.Liu, LMP, Mei Pang, L. Neonatal surgical emergencies. Anesthesiol Clin N Am. 2001;19(2):265–86.Google Scholar
37.Clifton, MS, Heiss, KF, Keating, JJ, Mackay, G, Ricketts, RR. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.Google Scholar
38.Moore, TC. Omphalomesenteric duct malformations. Semin Pediatr Surg. 1996;5(2):116–23.Google Scholar
39.Meier, DE, OlaOlorun, DA, Omodele, RA, Nkor, SK, Tarpley, JL. Incidence of umbilical hernia in African children: redefinition of “normal” and reevaluation of indications for repair. World J Surg. 2001;25(5):645–8.Google Scholar
40.Kelly, KB, Ponsky, TA. Pediatric abdominal wall defects. Surg Clin North Am. 2013;93(5):1255–67.Google Scholar
41.Zendejas, B, Zarroug, AE, Erben, YM, Holley, CT, Farley, DR. Impact of childhood inguinal hernia repair in adulthood: 50 years of follow-up. J Am Coll Surg. 2010;211(6):762–8.Google Scholar
42.Snyder, CL. Current management of umbilical abnormalities and related anomalies. Semin Pediatr Surg. 2007;16(1):41–9.Google Scholar
43.Willschke, H, Bösenberg, A, Marhofer, P, et al. Ultrasonography-guided rectus sheath block in paediatric anaesthesia: a new approach to an old technique. Br J Anaesth. 2006;97(2):244–9.Google Scholar
44.Coté, CJ, Zaslavsky, A, Downes, JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy: a combined analysis. Anesthesiology. 1995;82(4):809–22.Google Scholar
45.Dingeman, R, Barus, LM, Chung, H, et al. Ultrasonography-guided bilateral rectus sheath block vs local anesthetic infiltration after pediatric umbilical hernia repair: a prospective randomized clinical trial. JAMA Surg. 2013;148(8):707–13.Google Scholar
46.Gurnaney, HG, Maxwell, LG, Kraemer, FW, et al. Prospective randomized observer-blinded study comparing the analgesic efficacy of ultrasound-guided rectus sheath block and local anaesthetic infiltration for umbilical hernia repair. Br J Anaesth. 2011;107(5):790–5.Google Scholar
47.Lao, OB, Fitzgibbons, RJ Jr., Cusick, RA. Pediatric inguinal hernias, hydroceles, and undescended testicles. Surg Clin North Am. 2012;92(3):487504.Google Scholar
48.Ein, SH, Njere, I, Ein, A. Six thousand three hundred sixty-one pediatric inguinal hernias: a 35-year review. J Pediatr Surg. 2006;41(5):980–6.Google Scholar
49.Sadler, TW Urogenital system. In Langman’s Medical Embryology, 12th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2011.Google Scholar
50.Lau, ST, Lee, Y-H, Caty, MG. Current management of hernias and hydroceles. Semin Pediatr Surg. 2007;16(1):50–7.Google Scholar
51.Wang, KS, Committee on Fetus and Newborn, American Academy of Pediatrics, Section on Surgery, American Academy of Pediatrics. Assessment and management of inguinal hernia in infants. Pediatrics. 2012;130(4):768–73.Google Scholar
52.Olsen, EA, Brambrink, AM. Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol. 2013;26(5):535–42.Google Scholar
53.Welborn, LG, Greenspun, JC. Anesthesia and apnea: perioperative considerations in the former preterm infant. Pediatr Clin North Am. 1994;41(1):181–98.Google Scholar
54.Murphy, JJ, Swanson, T, Ansermino, M, Milner, R. The frequency of apneas in premature infants after inguinal hernia repair: do they need overnight monitoring in the intensive care unit? J Pediatr Surg. 2008;43(5):865–8.Google Scholar
55.Lee, SL, Gleason, JM, Sydorak, RM. A critical review of premature infants with inguinal hernias: optimal timing of repair, incarceration risk, and postoperative apnea. J Pediatr Surg. 2011;46(1):217–20.Google Scholar
56.Yang, C, Zhang, H, Pu, J, et al. Laparoscopic vs open herniorrhaphy in the management of pediatric inguinal hernia: a systemic review and meta-analysis. J Pediatr Surg. 2011;46(9):1824–34.Google Scholar
57.Lazar, DA, Lee, TC, Almulhim, SI, et al. Transinguinal laparoscopic exploration for identification of contralateral inguinal hernias in pediatric patients. J Pediatr Surg. 2011;46(12):2349–52.Google Scholar
58.Matthews, RD, Neumayer, L. Inguinal hernia in the 21st century: an evidence-based review. Curr Probl Surg. 2008;45(4):261312.Google Scholar
59.Henderson-Smart, DJ, Steer, PA. Prophylactic caffeine to prevent postoperative apnoea following general anaesthesia in preterm infants. Cochrane Database Syst Rev. 2001;4:CD000048.Google Scholar
60.Disma, N, Tuo, P, Pellegrino, S, Astuto, M. Three concentrations of levobupivacaine for ilioinguinal/iliohypogastric nerve block in ambulatory pediatric surgery. J Clin Anesth. 2009;21(6):389–93.Google Scholar
61.Mai, CL, Young, MJ, Quraishi, SA. Clinical implications of the transversus abdominis plane block in pediatric anesthesia. Pediatr Anesth. 2012;22(9):831–40.Google Scholar
62.Jagannathan, N, Sohn, L, Sawardekar, A, et al. Unilateral groin surgery in children: will the addition of an ultrasound-guided ilioinguinal nerve block enhance the duration of analgesia of a single-shot caudal block? Pediatr Anesth. 2009;19(9):892–8.Google Scholar
63.Frawley, G, Ingelmo, P. Spinal anaesthesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24(3):337–51.Google Scholar
64.Harrison, D, Beggs, S, Stevens, B. Sucrose for procedural pain management in infants. Pediatrics. 2012;130(5):918–25.Google Scholar
65.Hoelzle, M, Weiss, M, Dillier, C, Gerber, A. Comparison of awake spinal with awake caudal anesthesia in preterm and ex-preterm infants for herniotomy. Pediatr Anesth. 2010;20(7):620–4.Google Scholar
66.Palmer, LS. Hernias and hydroceles. Pediatr Rev Am Acad Pediatr. 2013;34(10):457464; quiz 464.Google Scholar
67.Cozzi, DA, Mele, E, Ceccanti, S, et al. Infantile abdominoscrotal hydrocele: a not so benign condition. J Urol. 2008;180(6):2611–15.Google Scholar
68.Koski, ME, Makari, JH, Adams, MC, et al. Infant communicating hydroceles: do they need immediate repair or might some clinically resolve? J Pediatr Surg. 2010;45(3):590–3.Google Scholar
68.Wilson, JM, Aaronson, DS, Schrader, R, Baskin, LS. Hydrocele in the pediatric patient: inguinal or scrotal approach? J Urol. 2008;180(Suppl. 4):1724–8.Google Scholar
70.Banchs, RJ, Lerman, J. Preoperative anxiety management, emergence delirium, and postoperative behavior. Anesthesiol Clin. 2014;32(1):123.Google Scholar
71.Bhalla, T, Sawardekar, A, Dewhirst, E, Jagannathan, N, Tobias, JD. Ultrasound-guided trunk and core blocks in infants and children. J Anesth. 2013;27(1):109–23.Google Scholar

References

1.Adamson, K Jr., Gandy, GM, James, LS. The influence of thermal factors upon oxygen consumption of the newborn human infant. J Pediatr. 1965;66:495508.Google Scholar
2.Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE. Respiratory system. In Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE, editors. Nelson Textbook of Pediatrics. Philadelphia, PA: Elsevier; 2011; 2680.Google Scholar
3.Walker, RWM, Ravi, R, Haylett, K Effect of cricoid force on airway calibre in children: a bronchoscopic assessment. Br J Anaesth. 2009; 104(1):71–4.Google Scholar
4.Bouvet, L, Albert, ML, Augris, C. Real-time detection of gastric insufflation related to facemask pressure–controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients. Anesthesiology. 2014;120(2):326–34.Google Scholar
5.Moynihan, RJ, Brock-Utne, JG, Archer, JH, Feld, LH, Kreitzman, TR. The effect of cricoid pressure on preventing gastric insufflation in infants and children. Anesthesiology. 1993;78(4):652–6.Google Scholar
6.Biebuyck, JF, Benumof, JL. Management of the difficult adult airway with special emphasis on awake tracheal intubation. Anesthesiology. 1991;75(6):1087.Google Scholar
7.Salem, MR, Wong, AY, Mani, M, Sellick, BA. Efficacy of cricoid pressure in preventing gastric inflation during bag-mask ventilation in pediatric patients. Anesthesiology. 1974;40(1):96–8.Google Scholar
8.Bannister, CF, Brosius, KK, Wulkan, M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Pediatr Anesth. 2003;13(9):785–9.Google Scholar
9.Gueugniaud, P-Y, Abisseror, M, Moussa, M, et al. The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg. 1998;86(2):290–3.Google Scholar
10.Sakka, SG, Huettemann, E, Petrat, G, et al. Transoesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth. 2000;84(3):330–4.Google Scholar
11.Yacoub, OF, Cardona, IJ, Coveler, LA, Dodson, MG. Carbon dioxide embolism during laparoscopy. Anesthesiology. 1982;57(6):533.Google Scholar
12.Irgau, I, Koyfman, Y, Tikellis, JI. Elective intraoperative intracranial pressure monitoring during laparoscopic cholecystectomy. Arch Surg Am Med Assoc. 1995;130(9):1011–13.Google Scholar
13.Schöb, OM, Allen, DC, Benzel, E, et al. A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am J Surg. 1996;172(3):248–53.Google Scholar
14.Puligandla, PS, Nguyen, LT, St-Vil, D, Flageole, H Gastrointestinal duplications. J Pediatr Surg. 2003;38(5):740–4.Google Scholar
15.Gross, RE, Holcomb, GW Jr., Farber, S. Duplications of the alimentary tract. Pediatrics. 1952;9(4):449–68.Google Scholar
16.Faris, JC, Crowe, JE. The split notochord syndrome. J Pediatr Surg. 1975;10(4):467–72.Google Scholar
17.Laje, P, Flake, AW, Adzick, NS. Prenatal diagnosis and postnatal resection of intraabdominal enteric duplications. J Pediatr Surg. 2010;45(7):1554–8.Google Scholar
18.Stringer, MD, Spitz, L, Abel, R, et al. Management of alimentary tract duplication in children. Br J Surg. 1995;82(1):74–8.Google Scholar
19.Iyer, CP, Mahour, GH. Duplications of the alimentary tract in infants and children. J Pediatr Surg. 1995;30(9):1267–70.Google Scholar
20.MacMahon, B. The continuing enigma of pyloric stenosis of infancy. Epidemiology. 2006;17(2):195201.Google Scholar
21.Bissonnette, B, Sullivan, PJ. Pyloric stenosis. Can J Anesth. 1991;38(5):668–76.Google Scholar
22.Schechter, R, Torfs, CP, Bateson, TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol. 1997;11(4):407–27.Google Scholar
23.Breaux, CW, Hood, JS, Georgeson, KE. The significance of alkalosis and hypochloremia in hypertrophic pyloric stenosis. J Pediatr Surg. 1989;24(12):1250–2.Google Scholar
24.Pandya, S, Heiss, K. Pyloric stenosis in pediatric surgery. Surg Clin North Am. 2012;92(3):527–39.Google Scholar
25.Ein, SH, Masiakos, PT, Ein, A The ins and outs of pyloromyotomy: what we have learned in 35 years. Pediatr Surg Int. 2014;30(5):467–80.Google Scholar
26.Goh, DW, Hall, SK, Gornall, P, et al. Plasma chloride and alkalaemia in pyloric stenosis. Br J Surg. 1990;77(8):922–3.Google Scholar
27.Shanbhogue, LKR, Sikdar, T, Jackson, M, Lloyd, DA. Serum electrolytes and capillary blood gases in the management of hypertrophic pyloric stenosis. Br J Surg. 1992;79(3):251–3.Google Scholar
28.Davis, PJ, Galinkin, J, McGowan, FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy: I. Emergence and recovery profiles. Anesth Analg. 2001;93(6):1380–6.Google Scholar
29.Carlo, W Respiratory Tract Disorders. In Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE, editors. Nelson Textbook of Pediatrics. Philadelphia, PA: Elsevier; 2011.Google Scholar
30.Berman, L, Moss, RL. Necrotizing enterocolitis: an update. Semin Fetal Neonat Med. 2011;16(3):145–50.Google Scholar
31.Lambert, DK, Christensen, RD, Henry, E, et al. Necrotizing enterocolitis in term neonates: data from a multihospital health-care system. J Perinatol. 2007;27(7):437–43.Google Scholar
32.Rees, CM, Pierro, A, Eaton, S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child FetalNeonatal Ed. 2007;92(3):F193–8.Google Scholar
33.Guthrie, SO, Gordon, PV, Thomas, V, et al. Necrotizing enterocolitis among neonates in the United States. J Perinatol. 2003;23(4):278–85.Google Scholar
34.Dicken, BJ, Ziegler, MM. Surgical management of pulmonary and gastrointestinal complications in children with cystic fibrosis. Curr Op Pediatr. 2006;18(3):321–9.Google Scholar
35.Fakhoury, K, Durie, PR, Levison, H, Canny, GJ. Meconium ileus in the absence of cystic fibrosis. Arch Dis Child. 1992;67(10):1204–6.Google Scholar
36.Carlyle, BE, Borowitz, DS, Glick, PL A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J Pediatr Surg. 2012;47(4):772–81.Google Scholar
37.Leonidas, JC, Burry, VF, Fellows, RA, Beatty, EC. Possible adverse effect of methylglucamine diatrizoate compounds on the bowel of newborn infants with meconium ileus. Radiology. 1976;121(3 Pt. 1):693–6.Google Scholar
38.Burke, MS, Ragi, JM, Karamanoukian, HL, et al. New strategies in nonoperative management of meconium ileus. J Pediatr Surg. 2002;37(5):760–4.Google Scholar
39.Gourlay, DM. Colorectal considerations in pediatric patients. Surg Clin North Am. 2013; 93(1):251–72.Google Scholar
40.Shew, SB. Surgical concerns in malrotation and midgut volvulus. Pediatr Radiol. 2009; 39(Suppl 2):S167–71.Google Scholar
41.Powell, DM, Othersen, HB, Smith, CD. Malrotation of the intestines in children: the effect of age on presentation and therapy. J Pediatr Surg. 1989;24(8):777–80.Google Scholar
42.Ford, EG, Senac, MO, Srikanth, MS, Weitzman, JJ. Malrotation of the intestine in children. Annals of Surgery. 1992;215(2):172–8.Google Scholar
43.Dilley, AV, Pereira, J, Shi, ECP, et al. The radiologist says malrotation: does the surgeon operate? Pediatr Surg Int. 2000;16(1–2):45–9.Google Scholar
44.Vecchia, LKD, Grosfeld, JL, West, KW, et al. Intestinal atresia and stenosis: a 25-year experience with 277 cases. Arch Surg Am Med Assoc. 1998;133(5):490–7.Google Scholar
45.Best, KE, Tennant, PWG, Addor, M-C, et al. Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2012;97(5):F353–8.Google Scholar
46.N-Fek, C. Total colonic aganglionosis (with or without ileal involvement): a review of 27 cases. J Pediatr Surg. 1986;21(3):251–4.Google Scholar
47.Suita, S, Taguchi, T, Kamimura, T, Yanai, K. Total colonic aganglionosis with or without small bowel involvement: a changing profile. J Pediatr Surg. 1997;32(11):1537–41.Google Scholar
48.Badner, JA, Sieber, WK, Garver, KL, Chakravarti, A. A genetic study of Hirschsprung disease. Am J Hum Genet.1990;46(3):568–80.Google Scholar
49.Amiel, J, Sproat-Emison, E, Garcia-Barcelo, M Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):114.Google Scholar
50.Shah, S. An update on common gastrointestinal emergencies. Emerg Med Clin North Am. 2013;31(3):775–93.Google Scholar
51.Cuschieri, A. Descriptive epidemiology of isolated anal anomalies: a survey of 4.6 million births in Europe. Am J Med Genet. 2001;103(3):207–15.Google Scholar
52.Levitt, MA, Peña, A. Outcomes from the correction of anorectal malformations. Curr Op Pediatr. 2005;17(3):394401.Google Scholar
53.Levitt, MA, Peña, A. Anorectal malformations. Pediatr Surg. 2012: 121. doi: 10.1186/1750-1172-2-33.Google Scholar
54.Stoll, C, Alembik, Y, Dott, B, Roth, MP. Associated malformations in patients with anorectal anomalies. Eur J Med Genet. 2007;50(4):281–90.Google Scholar
55.Mandeville, K, Chien, M, Willyerd, FA, et al. Intussusception: clinical presentations and imaging characteristics. Pediatr Emerg Care. 2012;28(9):842–4.Google Scholar
56.Kuppermann, N, O’Dea, T, Pinckney, L, Hoecker, C. Predictors of intussusception in young children. Arch Pediatr Adolesc Med Am Med Assoc. 2000;154(3):250–5.Google Scholar
57.Daneman, A, Navarro, O. Intussusception. Pediatr Radiol. 2004;34(2):97108.Google Scholar
58.Whitehouse, JS, Gourlay, DM, Winthrop, AL Is it safe to discharge intussusception patients after successful hydrostatic reduction? J Pediatr Surg. 2010;45(6):1182–6.Google Scholar

References

1.Yaster, M. Multimodal analgesia in children. Eur J Anaesthesiol. 2010;27(10):851–7.Google Scholar
2.Monitto, CL, Kost-Byerly, S, Yaster, M Pain management. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. Philadelphia, PA: Elsevier; 2006.Google Scholar
3.Elder, JS, Shapiro, E. Posterior urethral valves. In Holcomb, GW, Murphy, JP, Ostlie, DJ, editors. Ashcraft’s Pediatric Surgery, 6th edn. Philadelphia, PA: Elsevier; 2014; 762–72.Google Scholar
4.Krishnan, A, de Souza, A, Konijeti, R, Baskin, L. The anatomy and embryology of posterior urethral valves. J Urol. 2006;175(4):1214–20.Google Scholar
5.Nasir, AA, Ameh, EA, Abdur-Rahman, LO, Adeniran, JO, Abraham, MK. Posterior urethral valve. World J Pediatr. 2011;7(3):205–16.Google Scholar
6.Tekgul, S, Riedmiller, H, Dogan, HS, et al. Guidelines on Paediatric Urology. n.p.: European Society for Paediatric Urology; 2013.Google Scholar
7.Yamaçake, KGR, Nguyen, HT. Current management of antenatal hydronephrosis. Pediatr Nephrol. 2013;28(2):237–43.Google Scholar
8.Figenshau, RS, Clayman, RV. Endourologic options for management of ureteropelvic junction obstruction in the pediatric patient. Urol Clin North Am. 1998;25:199209.Google Scholar
9.Lee, RS, Borer, JG. Perinatal urology. In Wein, AJ, Kavoussi, LR, Novick, AC, Partin, AW, Peters, CA, editors. Campbell-Walsh Urology, 10th edn. Philadelphia, PA: Elsevier Saunders; 2014.Google Scholar
10.Brandström, P, Nevéus, T, Sixt, R, et al. The Swedish reflux trial in children: IV. Renal damage. J Urol. 2010;184(1):292–7.Google Scholar
11.Esbjörner, E, Hansson, S, Jakobsson, B. Management of children with dilating vesico-ureteric reflux in Sweden. Acta Paediatr. 2004;93:3742.Google Scholar
12.Gundeti, M. Wilms tumor. In Gearhart, JP, Rink, RC, Mouriquand, PDE, editors. Pediatric Urology. 2nd edn. Philadelphia, PA: Elsevier; 2014.Google Scholar
13.Mei, H, Pu, J, Yang, C, et al. Laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children: a systematic review and meta-analysis. J Endourol. 2011;25:727–36.Google Scholar
14.Turner, RM, Fox, JA, Tomaszewski, JJ, et al. Laparoscopic pyeloplasty for ureteropelvic junction obstruction in infants. J Urol. 2013;189:1503–6.Google Scholar
15.Cunningham, AJ. Anesthetic implications of laparoscopic surgery. Yale J Biol Med. 1998;71:551–78.Google Scholar
16.Goel, S. Anesthesia for pediatric laparoscopy. Pediatric OnCall. 2005. Available at: www.pediatriconcall.com/Journal/Article/FullText.aspx?artid=748&type=J&tid=&imgid=&reportid=392&tbltype=.Google Scholar
17.Davidoff, AM. Wilms tumor. Adv Pediatr. 2012;59(1):247–67.Google Scholar
18.Ross, JH. Genitourinary tumors. In Palmer, JS, editor. Pediatric Urology. Totowa, NJ: Humana Press; 2011.Google Scholar
19.Dénes, FT, Duarte, RJ, Cristófani, LM, Lopes, RI. Pediatric genitourinary oncology. Front Pediatr. 2013;1:48.Google Scholar
20.Sausville, JE, Hernandez, DJ, Argani, P, Gearhart, JP. Pediatric renal cell carcinoma. J Pediatr Urol. 2009;5(4):308–14.Google Scholar
21.Massanyi, EZ, Gearhart, JP, Kost-Byerly, S. Perioperative management of classic bladder exstrophy. Res Reports Urol. 2013;5:6775.Google Scholar
22.Kost-Byerly, S, Jackson, E. Perioperative anesthetic and analgesic management of newborn bladder exstrophy repair. J Pediatr. 2008;4(4):280–5.Google Scholar
23.Yaster, M, Kost-Byerly, S, Berde, C, Billet, C. The management of opioid and benzodiazepine dependence in infants, children, and adolescents. Pediatrics. 1996;98(1):135–40.Google Scholar
24.Tobias, JD, Schleien, CL, Haun, SE. Methadone as treatment for iatrogenic narcotic dependency in pediatric intensive care unit patients. Crit Care Med. 1990;18(11):1292–3.Google Scholar
25.Tobias, JD, Deshpande, JK, Gregory, DF. Outpatient therapy of iatrogenic drug dependency following prolonged sedation in the pediatric intensive care unit. Intensive Care Med. 1994;20(7):504–7.Google Scholar
26.Jost, A. Becoming a male. Adv Biosci. 1973;10:313.Google Scholar
27.Woodhouse, CJ. Ambiguous genitalia in male adolescents. In Gearhart, JP, Rink, RC, Mouriquand, PDE, editors, Pediatric Urology. 2nd edn. Philadelphia, PA: Elsevier; 2014.Google Scholar
28.Vidal, I, Gorduza, DB, Haraux, E, et al. Surgical options in disorders of sex development (DSD) with ambiguous genitalia. Best Pract Res Clin Endocrinol Metab. 2010;24(2):311–24.Google Scholar
29.Rangecroft, L. Surgical management of ambiguous genitalia. Arch Dis Child. 2003;88:799801.Google Scholar
30.Kipnis, K, Diamond, M. Pediatric ethics and the surgical assignment of sex. J Clin Ethics. 1998;9:398410.Google Scholar
31.Hayashi, Y, Kojima, Y, Mizuno, K, Kohri, K. Prepuce: phimosis, paraphimosis, and circumcision. Scientific World J. 2011;11:289301.Google Scholar
32.Drake, T, Rustom, J. Phimosis in childhood. BMJ. 2013;3678:14.Google Scholar
33.Monsour, MA, Rabinovitch, HH, Dean, GE. Medical management of phimosis in children: our experience with topical steroids. J Urol. 1999.162:1162–4.Google Scholar
34.Palmer, LS, Palmer, JS. The efficacy of topical betamethasone for treating phimosis: a comparison of two treatment regimens. Urology. 2008;72:6871.Google Scholar
35.Golubovic, Z, Milanovic, D, Vukadinovic, V, Rakic, I, Perovic, S. The conservative treatment of phimosis in boys. Br J Urol. 1996;78:786–8.Google Scholar
36.De Castella, H. Prepuceplasty: an alternative to circumcision. Ann R Coll Surg Engl. 1994;76:257–8.Google Scholar
37.Steadman, B, Ellsworth, P. To circ or not to circ: indications, risks, and alternatives to circumcision in the pediatric population with phimosis. Urol Nurs Off J Am Urol Assoc Allied. 2006;26:181–94.Google Scholar
38.Stevens, B. Pain: Clinical Manual, 2nd edn. St. Louis, MO: Mosby; 1999.Google Scholar
39.Pasero, C. Circumcision requires anesthesia and analgesia. Am J Nurs. 2001;101(9):22–3.Google Scholar
40.Taddio, A, Pollock, N, Gilbert-MacLeod, C, Ohlsson, K, Koren, G. Combined analgesia and local anesthesia to minimize pain during circumcision. Arch Pediatr Adolesc Med. 2000;154(6):620–3.Google Scholar
41.Haliloglu, AH, Gokce, MI, Tangal, S, et al. Comparison of postoperative analgesic efficacy of penile block, caudal block and intravenous paracetamol for circumcision: a prospective randomized study. Int Braz J Urol. 2013;39:551–7.Google Scholar
42.Kaya, Z, Süren, M, Arici, S, et al. Prospective, randomized, double-blinded comparison of the effects of caudally administered levobupivacaine 0.25% and bupivacaine 0.25% on pain and motor block in children undergoing circumcision surgery. Eur Rev Med Pharmacol Sci. 2012;16:2014–20.Google Scholar
43.Carmichael, SL, Shaw, GM, Lammer, EJ. Environmental and genetic contributors to hypospadias: a review of the epidemiologic evidence. Birth Defects Res A Clin Mol Teratol. 2012;94:499510.Google Scholar
44.Hayashi, Y, Kojima, Y. Current concepts in hypospadias surgery. Int J Urol. 2008;15:651–64.Google Scholar
45.Kalfa, N, Philibert, P, Baskin, LS, Sultan, C. Hypospadias: interactions between environment and genetics. Molec Cell Endocrinol. 2011;335:8995.Google Scholar
46.Roberts, J. Hypospadias surgery past, present and future. Curr Opin Urol. 2010;20:483–9.Google Scholar
47.Shukla, AR, Patel, RP, Canning, DA. Hypospadias. Urol Clin North Am. 2004;31:445–60.Google Scholar
48.American Academy of Pediatrics. Timing of elective surgery on the genitalia of male children with particular reference to the risks, benefits, and psychological effects of surgery and anesthesia. Pediatrics. 1996;97(4):590–4.Google Scholar
49.Macedo, A, Rondon, A, Ortiz, V. Hypospadias. Curr Op Urol. 2012;22:447–52.Google Scholar
50.Naja, ZM, Ziade, FM, Kamel, R, et al. The effectiveness of pudendal nerve block versus caudal block anesthesia for hypospadias in children. Anesth Analg. 2013;117:1401–7.Google Scholar
51.Gunduz, M, Ozalevli, M, Ozbek, H, Ozcengiz, D. Comparison of caudal ketamine with lidocaine or tramadol administration for postoperative analgesia of hypospadias surgery in children. Paediatr Anaesth. 2006;16:158–63.Google Scholar
52.Abdulatif, M, El-Sanabary, M. Caudal neostigmine, bupivacaine, and their combination for postoperative pain management after hypospadias surgery in children. Anesth Analg. 2002;95:1215–18.Google Scholar
53.Turan, A, Memiş, D, Başaran, UN, Karamanlioğlu, B, Süt, N. Caudal ropivacaine and neostigmine in pediatric surgery. Anesthesiology. 2003;98:719–22.Google Scholar
54.Apiliogullari, S, Duman, A, Gok, F, Akillioglu, I, Ciftci, I. Efficacy of a low-dose spinal morphine with bupivacaine for postoperative analgesia in children undergoing hypospadias repair. Paediatr Anaesth. 2009;19:1078–83.Google Scholar

References

1.Guidry, C, McGahren, ED. Pediatric chest I: developmental and physiologic conditions for the surgeon. Surg Clin North Am. 2012;92(3):615–43. doi: 10.1016/j.suc.2012.03.013.Google Scholar
2.Griese, M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13(6):1455–76.Google Scholar
3.Brownfoot, FC, Gagliardi, DI, Bain, E, Middleton, P, Crowther, CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;29(8): CD006764.Google Scholar
4.Ramachandrappa, A, Jain, L. Elective cesarean section: its impact on neonatal respiratory outcome. Clin Perinatol. 2008;35(2):373–93. doi: 10.1016/j.clp.2008.03.006.Google Scholar
5.Blanco, CE. Maturation of fetal breathing activity. Biol Neonate. 1994;65(3–4):182–8.Google Scholar
6.Polla, B, D’Antona, G, Bottinelli, R, Reggiani, C. Respiratory muscle fibres: specialization and plasticity. Thorax. 2004;59:808–17. doi:10.1136/thx.2003.009894Google Scholar
7.West, J. Respiratory Physiology: The Essentials, 8th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.Google Scholar
8.Aaronson, PI, Robertson, TP, Knock, GA, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570(Pt 1):53–8.Google Scholar
9.Hinton, M, Mellow, L, Halayko, AJ, Gutsol, A, Dakshinamurti, S. Hypoxia induces hypersensitivity and hyperreactivity to thromboxane receptor agonist in neonatal pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L375–84.Google Scholar
10.Fell, SC. Special article: a brief history of pneumonectomy. Chest Surg Clin North Am. 2002;12(3):541–63.Google Scholar
11.Graham, EA. The first pneumonectomy. Cancer Bull. 1949;2:2.Google Scholar
12.Fry, WA. Thoracic incisions. Chest Surg Clin North Am. 1995;5(2):177–88.Google Scholar
13.Elshiekh, MA, Lo, TT, Shipolini, AR, McCormack, DJ. Does muscle-sparing thoracotomy as opposed to posterolateral thoractomy result in better recovery? Interact Cardiovasc Thorac Surg. 2013;16(1):60–7.Google Scholar
14.Wildgaard, K, Ravn, J, Kehlet, H. Chronic post-thoracotomy pain: a critical review of pathogenic mechanisms and strategies for prevention. Eur J Cardiothorac Surg. 2009;36(1):170–80.Google Scholar
15.Rodriguez-Panadero, F, Janssen, JP, Astoul, P. Thoracoscopy: general overview and place in the diagnosis and management of pleural effusion. ERJ. 2006;28(2):409–22.Google Scholar
16.Bishay, MI, Giacomello, L, Retrosi, G, M et al. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: results of a pilot randomized controlled trial. Ann Surg. 2013; 258(6):895900. doi: 10.1097/SLA.0b013e31828fab55.Google Scholar
17.Kunisaki, SM, Powelson, IA, Haydar, B, et al. Thoracoscopic vs open lobectomy in infants and young children with congenital lung malformations. J Am Coll Surg. 2014;218(2):261–70. doi: 10.1016/j.jamcollsurg.2013.10.010Google Scholar
18.Seong, YW, Kang, CH, Kim, JT, et al. Video-assisted thoracoscopic lobectomy in children: safety, efficacy, and risk factors for conversion to thoracotomy. Ann Thorac Surg. 2013;95(4):1236–42. doi: 10.1016/j.athoracsur.2013.01.013.Google Scholar
19.Vale, R. Selective bronchial blocking in a small child. Br J Anaesth. 1969;41:453–4.Google Scholar
20.Hammer, GB, Harrison, TK, Vricella, LA et al. Single-lung ventilation in children using a new paediatric bronchial blocker. Paediatr Anaesth. 2002;12:6972.Google Scholar
21.Wolf, AR. Effects of regional analgesia on stress responses to pediatric surgery. Paediatr Anaesth. 2012;22(1):1924.Google Scholar
22.Heaney, A, Buggy, DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109 (S1): i17i28.Google Scholar
23.Jevtovic-Todorovic, V, Absalom, AR, Blomgren, K, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth. 2013;111(2):143–51. doi: 10.1093/bja/aet177.Google Scholar
24.Di Pede, A, Morini, F, Lombardi, MH, et al. Comparison of regional vs. systemic analgesia for post-thoracotomy care in infants. Paediatr Anaesth. 2014;24(6):569–73.Google Scholar
25.Ch’in, KY, Tang, MY. Congenital adenomatoid malformation of one lobe of a lung with general anasarca. Arch Pathol Lab Med. 1949;48:221–9.Google Scholar
26.Stocker, JT. Congenital pulmonary airway malformation: a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology. 2002;41(Suppl. 2): 424–31.Google Scholar
27.Hammer, GB. Pediatric thoracic anesthesia. Anesthesiol Clin North Am. 2002;20:153–80.Google Scholar
28.Petroze, R, McGahren, ED. Pediatric chest II: benign tumors and cysts. Surg Clin North Am. 2012;92(3):645–58. doi: 10.1016/j.suc.2012.03.014.Google Scholar
29.Nelson, RL. Congenital cystic disease of the lung. J Pediatr. 1932;1:233.Google Scholar
30.Krivchenya, DU, Rudenko, EO, Dubrovin, AG. Congenital emphysema in children: segmental lung resection as an alternative to lobectomy. J Pediatr Surg. 2013;48:309–14.Google Scholar
31.Irish, MS, Holm, BA, Glick, PL. Congenital diaphragmatic hernia: a historical review. Clin Perinatol. 1996;23(4):625–53.Google Scholar
32.Mah, VK, Zamakhshary, M, Mah, DY, et al. Absolute vs relative improvements in congenital diaphragmatic hernia survival: what happened to “hidden mortality”. J Pediatr Surg. 2009; 44(5):877–82. doi: 10.1016/j.jpedsurg.2009.01.046.Google Scholar
33.Jani, P, Bidarkar, SS, Walker, K, et al. Right-sided congenital diaphragmatic hernia: a tertiary centre’s experience over 25 years. J Neonatal Perinatal Med. 2014;7(1):3945.Google Scholar
34.Ruttenstock, EM, Doi, T, Dingemann, J, Puri, P. Prenatal retinoic acid upregulates connexin 43 (Cx43) gene expression in pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia rat model. J Pediatr Surg. 2012;47(2):336–40.Google Scholar
35.Snowise, S, Johnson, A. Tracheal occlusion for fetal diaphragmatic hernia. Am J Perinatol. 2014;31(7):605–16. doi: 10.1055/s-0034-1373842.Google Scholar
36.Kitano, Y. Prenatal intervention for congenital diaphragmatic hernia. Semin Pediatr Surg. 2007;16(2):101–8.Google Scholar
37.Ruano, R, Yoshisaki, CT, da Silva, MM, etal. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39:20–7.Google Scholar
38.Hidaka, N, Ishii, K, Mabuchi, A. Associated anomalies in congenital diaphragmatic hernia: perinatal characteristics and impact on postnatal survival. J Perinat Med. 2014;43(2):245–52 doi: 10.1515/jpm-2014-0110.Google Scholar
39.Ladd, WE, Gross, RE. Congenital diaphragmatic hernia. N Engl J Med. 1940;223:917–25.Google Scholar
40.Kkunisaki, SM, Foker, JE. Surgical advances in the fetus and neonate: esophageal atresia. Clin Perinatol. 2012;39(2):349–61. doi: 10.1016/j.clp.2012.04.007.Google Scholar
41.Shamberger, RC. Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg. 1999;8(2):61–8.Google Scholar

References

1.Clugston, RD, Greer, JJ. Diaphragm development and congenital diaphragmatic hernia. Semin Pediatr Surg. 2007;16(2):94100.Google Scholar
2.Veenma, DC, de Klein, A, Tibboel, D. Development and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol. 2012;47:534–45.Google Scholar
3.Langham, MR, Kays, DW, Ledbetter, DJ, et al. Congenital diaphragmatic hernia: epidemiology and outcome. Clin Perinatol. 1996;23:671–88.Google Scholar
4.Pober, BR. Genetic aspects of human congenital diaphragmatic hernia. Clin Genet. 2008;74:115.Google Scholar
5.McAteer, JP, Hecht, A, De Roos, AJ, Goldin, AB. Maternal medical and behavioral risk factors for congenital diaphragmatic hernia. J Pediatr Surg. 2014;49:34–8.Google Scholar
6.Colvin, J, Bower, C,Dickinson, JE, Sokol, J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics. 2005;117:356–63.Google Scholar
7.Skari, H, Bjornland, K, Haugen, G, et al. Congenital diaphragmatic hernia: a meta-analysis of mortality factors. J Pediatr Surg. 2000;35:1187–97.Google Scholar
8.Green, JJ, Babiuk, RP, Thebaud, B, et al. Etiology of congenital diaphragmatic hernia: the retinoid hypothesis. Pediatr Res. 2003;53 726–30.Google Scholar
9.Zamora, IJ, Olutoye, OO. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH). J Pediatr Surg. 2014;49(5):688–93.Google Scholar
10.Lally, KP, Lally, PA, Langham, MR, et al. Surfactant does not improve survival rate in preterm infants with congenital diaphragmatic hernia. J Pediatr Surg. 2004;39(6):829–33.Google Scholar
11.Kim, ES, Stolar, CJ. ECMO in the newborn. Am J Perinatol. 2000;17(7):345–56.Google Scholar
12.Clark, RH, Hardin, WD Jr., Hirschl, RB, et al. Current surgical management of congenital diaphragmatic hernia: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 1998;33:1004–9.Google Scholar
13.Tsao, K, Lally, PA, Lally, KP, Congenital Diaphragmatic Hernia Study Group. Minimally invasive repair of congenital diaphragmatic hernia. J Pediatr Surg. 2011;46(6):1158–64.Google Scholar
14.Moss, RL, Chen, CM, Harrison, MR. Prosthetic patch durability in congenital diaphragmatic hernia: a long-term follow-up study. J Pediatr Surg. 2001;36(1):152–4.Google Scholar
15.Yang, EY, Allmendinger, N, Johnson, SM, et al. Neonatal thoracoscopic repair of congenital diaphragmatic hernia: selection criteria for successful outcome. J Pediatr Surg. 2005;40(9):1369–75.Google Scholar
16.Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.Google Scholar
17.Vrecenak, JD, Flake, AW. Fetal surgical intervention: progress and perspectives. Pediatri Surg Int. 2013;29 407–17.Google Scholar
18.Wildschut, ED, Ahsman, MJ. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16.Google Scholar
19.Wynn, J, Krishnan, U, Aspelund, G, et al. Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr. 2013;163(1):114–19.Google Scholar

References

1.Mahle, WT, Newburger, JW, Matherne, GP, et al. Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics. Circulation. 2009;120:447–58.Google Scholar
2.Fetal Echocardiography Task Force, American Institute of Ultrasound in Medicine Clinical Standards Committee, American College of Obstetricians and Gynecologists, Society for Maternal-Fetal Medicine. AIUM practice guideline for the performance of fetal echocardiography. J Ultrasound Med. 2011;30:127–36.Google Scholar
3.Thangaratinam, S, Brown, K, Zamora, J, et al. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systemic review and meta-analysis. Lancet. 2012;379:2459–64.Google Scholar
4.Edelman, NH, Lahiri, S, Braudo, L, et al. The blunted ventilatory response to hypoxia in cyanotic congenital heart disease. N England J Med. 1970:282;405–11.Google Scholar
5.Williams, GD, Feng, A. Heterotaxy syndrome: implications for anesthesia management. J Cardiothorac Vasc Anesth. 2010;24:834–44.Google Scholar
6.Prouard, P, Bojan, M. Neonatal cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;15:5961.Google Scholar
7.Tabutt, S, Gaynor, JW, Newburger, JW. Neurodevelopmental outcomes after congenital heart surgery and strategies for improvement. Curr Opin Cardiol. 2012:27:8291.Google Scholar
8.Olsen, EA, Brambrink, AM. Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol. 2013;26:677–84.Google Scholar
9.Bartakian, S, Fagan, TE, Schaffer, MS, et al. Device closure of secundum atrial septal defects in children <15 kg: complication rates and indications for referral. JACC Cardiovasc Interv. 2012;5:1178–84.Google Scholar
10.Laussen, PC, Hansen, DD, Perry, SB, et al. Transcatheter closure of ventricular septal defects: hemodynamic instability and anesthetic management. Anesth Analg. 1995;80:1076–82.Google Scholar
11.Anderson, BR, Stevens, KN, Nicolson, SC, et al. Contemporary outcomes of surgical ventricular septal defect closure. J Thorac Cardiovasc Surg. 2013:145:641–7.Google Scholar
12.Karl, TR, Provenzano, SC, Nunn, GR, et al. The current surgical perspective to repair of atrioventricular septal defect with common atrioventricular junction. Cardiol Young. 2010;20:120–7.Google Scholar
13.Mitchell, V, Howard, R, Facer, E. Down’s syndrome and anaesthesia. Paediatr Anaesth. 1995;5:379–84.Google Scholar
14.Noonan, PM, Desai, T, Degiovanni, JV. Closure of an aortopulmonary window using the Amplatzer Duct Occluder II. Pediatr Cardiol. 2013;34:712–14.Google Scholar
15.Barnes, ME, Mitchell, ME, Tweddell, JS. Aortopulmonary window. Semin Thorac Cardiovasc Surg: Pediatr Card Surg Annu. 2011:14:6774.Google Scholar
16.Noori, S. Patent ductus arteriosus in the preterm infant: to treat or not to treat? J Perinatol. 2010;30:S31–7.Google Scholar
17.Ramagnoli, C, Bersani, I, Rubortone, SA, et al. Current evidence on the safety profile of NSAIDs for the treatment of PDA. J Matern Fetal Neonatal Med. 2011;24:1013.Google Scholar
18.Chen, H, Weng, G, Chen, Z, et al. Comparison of posterolateral thoracotomy and video-assisted thocoscopic clipping for the treatment of patent ductus arteriosus in neonates and infants. Pediatr Cardiol. 2011;32:386–90.Google Scholar
19.Nagata, H, Ihara, K, Yamamura, K, et al. Left ventricular efficiency after ligation of patent ductus arteriosus for premature infants. J Thorac Cardiovasc Surg. 2013;146:1353–8.Google Scholar
20.Clement, WA, El-Hakim, H, Phillipos, EZ, et al. Unilateral vocal cord paralysis following patent ductus arteriosus ligation in extremely low-birth-weight infants. Arch Otolaryngol. 2008;134:2833.Google Scholar
21.El-Said, HG, Bratincsak, A, Foerster, SR, et al. Safety of percutaneous patent ductus arteriosus closure: an unselected multicenter population experience. J Am Heart Assoc. 2013;27:e000424.Google Scholar
22.Dodge-Khatami, A, Mavroudis, C, Backer, CL. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann of Thorac Surg. 2002;74:946–55.Google Scholar
23.Walhout, RJ, Lekkerkerker, JC, Oron, GH, et al. Comparison of polytetrafluroethylene patch aortoplasty and end-to-end anastomosis for coarctation of the aorta. J Thorac Cardiovasc Surg. 2003;126:521–8.Google Scholar
24.Rao, PS, Galal, O, Smith, PA, et al. Five-to nine-year follow-up results of balloon angioplasty of native aortic coarctation in infants and children. J Am Coll Cardiol. 1996;27:462–70.Google Scholar
25.McElhinney, DB, Lock, JE, Keane, JG, et al. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005;111:451–8.Google Scholar
26.Moulaert, AJ, Bruins, CC, Oppenheimer-Dekker, A. Anomalies of the aortic arch and ventricular septal defects. Circulation. 1976;53:1011–15.Google Scholar
27.Quinonez, LG, Breitbart, R, Tworetsky, W, et al. Stented bovine jugular vein graft (melody valve) for surgical mitral valve replacement in infants and children. J Thorac Cardiovasc Surg. 2013;148(4):1443–9.Google Scholar
28.Alwi, M, Geetha, K, Bilkis, AA, et al. Pulmonary atresia with intact ventricular septum percutaneous radiofrequency-assisted valvotomy and balloon dilation versus surgical valvotomy and Blalock Taussing shunt. J Am Coll Cardiol. 2000;35:468–76.Google Scholar
29.Reddy, VM, Liddicoat, JR, Hanley, FL. Midline one stage completes unifocalization and repair of pulmonary atresia with ventricular septal defect and major aorto pulmonary collaterals. J Thorac Cardiovasc Surg. 1995;109:832–45.Google Scholar
30.Vacanti, C, Segal, S, Sikka, P, Urman, R, editors. Essential Clinical Anesthesia. Cambridge: Cambridge University Press; 2011.Google Scholar
31.Stumper, O, Ramchandani, B, Noonan, P, et al. Stenting of the right ventricular outflow tract. Heart. 2013;99:1603–8.Google Scholar
32.Pigula, FA, Khalil, PN, Mayer, JE, et al. Repair of tetralogy of Fallot in neonates and young infants. Circulation. 1999;100:II157–61.Google Scholar
33.Delhaas, T, Sarvaas, GJ, Rijlaarsdam, ME, et al. A multicenter, long-term study on arrhythmias in children with Ebstein anomaly. Pediatr Cardiol. 2010;31:229–33.Google Scholar
34.Knott-Craig, CJ, Overhold, ED, Ward, KE, et al. Neonatal repair of Ebstein’s anomaly: indications, surgical technique, and medium-term follow-up. Ann Thorac Surg. 2000;69:1505–10.Google Scholar
35.Starnes, VA, Pitlick, PT, Bernstein, D, et al. Ebstein’s anomaly appearing in the neonate: a new surgical approach. J Thorac Cardiovasc Surg. 1991:101;1082–7.Google Scholar
36.daSilva, JP, Baumgratz, JF, da Fonseca, L, et al. The cone reconstruction of the tricuspid valve in Ebstein’s anomaly: the operation. Early and midterm results. J Thorac Cardiovasc Surg. 2007;133:215–23.Google Scholar
37.Fricke, TA, d’Udekem, Y, Richardson, M, et al. Outcomes of the arterial switch operation for transposition of the great arteries: 25 years of experience. Ann Thorac Surg. 2012;94:139–45.Google Scholar
38.D’Udekem, Y, Xu, MY, Galati, JC, et al. Predictors of survival after single-ventricle palliation: the impact of right ventricular dominance. J Am Coll Cardiol. 2012;13:1178–85.Google Scholar
39.Kobayashi, D, Forbes, TJ, Aggarwal, S. Palliative stent placement in vertical vein in a 1.4 kg infant with obstructed supracardiac total anomalous pulmonary venous connection. Catheter Cardiovasc Interv. 2013;82:574–80.Google Scholar
40.Yoshimura, N, Fukahara, K, Yamashita, A, et al. Management of pulmonary venous obstruction. Gen Thorac Cardiovasc Surg. 2012;60:785–91.Google Scholar
41.Rabinovitch, M, Grady, S, David, I, et al. Compression of intrapulmonary bronchi by abnormally branching pulmonary arteries associated with absent pulmonary valves. Am J Cardiol. 1982;50:804–13.Google Scholar
42.Kussman, BD, Geva, T, McGowan, FX. Cardiovascular causes of airway compression. Paediatr Anaesth. 2004;14:6074.Google Scholar

References

1.Baum, VC, Barton, DM, Gutgesell, HP. Influence of congenital heart disease on mortality after noncardiac surgery in hospitalized children. Pediatrics. 2000;105(2):332–5.Google Scholar
2.Flick, RP, Sprung, J, Harrison, TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37.Google Scholar
3.Ramamoorthy, C, Haberkern, CM, Bhananker, SM, et al. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg. 2010;110(5):1376–82.Google Scholar
4.van der Griend, BF, Lister, NA, McKenzie, IM, et al. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112(6):1440–7.Google Scholar
5.Chan, DMSA. Congenital heart disease. In: Vacanti, CASP, Urman, RD, Derswitz, M, Segal, BS, editors. Essential Clinical Anesthesia. Cambridge: Cambridge University Press; 2011.Google Scholar
6.Wilson, W, Taubert, KA, Gewitz, M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736–54.Google Scholar
7.Wulkan, ML, Vasudevan, SA. Is end-tidal CO2 an accurate measure of arterial CO2 during laparoscopic procedures in children and neonates with cyanotic congenital heart disease? J Pediatr Surg. 2001;36(8):1234–6.Google Scholar
8.Sumpelmann, R, Osthaus, WA. The pediatric cardiac patient presenting for noncardiac surgery. Curr Op Anaesth. 2007;20(3):216–20.Google Scholar
9.White, MC. Approach to managing children with heart disease for noncardiac surgery. Paediatr Anaesth. 2011;21(5):522–9.Google Scholar
10.Torres, A, Jr., DiLiberti, J, Pearl, RH, et al. Noncardiac surgery in children with hypoplastic left heart syndrome. J Pediatr Surg. 2002;37(10):1399–403.Google Scholar
11.Wright, GE, Crowley, DC, Charpie, JR, et al. High systemic vascular resistance and sudden cardiovascular collapse in recovering Norwood patients. Ann Thorac Surg. 2004;77(1):4852.Google Scholar
12.Walker, SG, Stuth, EA. Single-ventricle physiology: perioperative implications. Semin Pediatr Surg. 2004;13(3):188202.Google Scholar
13.Carmosino, MJ, Friesen, RH, Doran, A, Ivy, DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–7.Google Scholar
14.Friesen, RH, Williams, GD. Anesthetic management of children with pulmonary arterial hypertension. Paediatr Anaesth. 2008;18(3):208–16.Google Scholar
15.Burch, TM, McGowan, FX, Jr., Kussman, BD, Powell, AJ, DiNardo, JA. Congenital supravalvular aortic stenosis and sudden death associated with anesthesia: what’s the mystery? Anesth Analg. 2008;107(6):1848–54.Google Scholar
16.Kipps, AK, Ramamoorthy, C, Rosenthal, DN, Williams, GD. Children with cardiomyopathy: complications after noncardiac procedures with general anesthesia. Paediatr Anaesth. 2007;17(8):775–81.Google Scholar
17.Lynch, J, Pehora, C, Holtby, H, Schwarz, SM, Taylor, K. Cardiac arrest upon induction of anesthesia in children with cardiomyopathy: an analysis of incidence and risk factors. Paediatr Anaesth. 2011;21(9):951–7.Google Scholar
18.Schure, AY, Kussman, BD. Pediatric heart transplantation: demographics, outcomes, and anesthetic implications. Paediatr Anaesth. 2011;21(5):594603.Google Scholar
19.Watkins, SC, McNew, BS, Donahue, BS. Risks of noncardiac operations and other procedures in children with complex congenital heart disease. Ann Thorac Surg. 2013;95(1):204–11.Google Scholar
20.Watkins, S, Morrow, SE, McNew, BS, Donahue, BS. Perioperative management of infants undergoing fundoplication and gastrostomy after stage I palliation of hypoplastic left heart syndrome. Pediatr Cardiol. 2012;33(5):697704.Google Scholar
21.Bannister, CF, Brosius, KK, Wulkan, M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Paediatr Anaesth. 2003;13(9):785–9.Google Scholar
22.Huettemann, E, Sakka, SG, Petrat, G, Schier, F, Reinhart, K. Left ventricular regional wall motion abnormalities during pneumoperitoneum in children. Br J Anaesth. 2003;90(6):733–6.Google Scholar
23.Gomez Dammeier, BH, Karanik, E, Gluer, S, et al. Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg. 2005;40(9):1454–8.Google Scholar
24.McHoney, M, Corizia, L, Eaton, S, et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg. 2003;38(1):105–10.Google Scholar
25.Kalfa, N, Allal, H, Raux, O, et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics. 2005;116(6):e785–91.Google Scholar
26.Mariano, ER, Boltz, MG, Albanese, CT, Abrajano, CT, Ramamoorthy, C. Anesthetic management of infants with palliated hypoplastic left heart syndrome undergoing laparoscopic nissen fundoplication. Anesth Analg. 2005;100(6):1631–3.Google Scholar
27.Slater, B, Rangel, S, Ramamoorthy, C, Abrajano, C, Albanese, CT. Outcomes after laparoscopic surgery in neonates with hypoplastic heart left heart syndrome. J Pediatr Surg. 2007;42(6):1118–21.Google Scholar
28.Walker, A, Stokes, M, Moriarty, A. Anesthesia for major general surgery in neonates with complex cardiac defects. Paediatr Anaesth. 2009;19(2):119–25.Google Scholar

References

1.SEER. Age-adjusted and age-specific seer cancer incidence rates, 2007–2011 (Table 29.1). 2011. Available at: http://seer.cancer.gov/csr/1975_2011/results_merged/sect_29_childhood_cancer_iccc.pdf.Google Scholar
2.Steliarova-Foucer, E, Stiller, C, Lacour, B, Kaatsch, P. International classification of childhood cancer, third edition. Cancer. 2005;103:1457–67.Google Scholar
3.Orbach, D, Sarnacki, S, Brisse, HJ, et al. Neonatal cancer. Lancet Oncol. 2013;14: e609–20.Google Scholar
4.Kamil, D, Tepelmann, J, Berg, C, et al. Spectrum and outcome of prenatally diagnosed fetal tumors: ultrasound. Obstet Gynecol. 2008;31:296302.Google Scholar
5.Merks, JHM, Caron, HN, Hennekam, RCM. High incidence of malformation syndromes in a series of 1073 children with cancer. Am J Med Genet. 2005;134A: 132–43.Google Scholar
6.Tubergen, DG, Bleyer, A, Ritchey, AK. The leukemias. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors. Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
7.Kuttesch, JF, Jr., Rush, SZ, Ater, JL. Brain tumors in childhood. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors. Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
8.Lang, S-S, Beslow, LA, Gabel, B, et al. Surgical treatment of brain tumors in infants younger than six months of age and review of the literature. World Neurosurg. 2012;78:137–44.Google Scholar
9.National Cancer Institute. Childhood craniopharyngioma treatment (PDQ®). 2017. Available at: www.cancer.gov/cancertopics/pdq/treatment/child-cranio/healthprofessional.Google Scholar
10.Zage, PE, Ater, JL. Neuroblastoma. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
11.Fisher, JPH, Tweddle, DA. Neonatal neuroblastoma. Semi Fetal Neonatal Med. 2012;17:207–15.Google Scholar
12.Hammer, G, Hall, S, Davis, PJ. Anesthesia for general abdominal, thoracic, urologic, and bariatric surgery. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
13.Gombos, DS. Retinoblastomoa in the perinatal and neonatal child. Semin Fetal Neonatal Med. 2012;17:239–42.Google Scholar
14.Zage, PE, Herzog, CE. Retinoblastoma. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
15.Thompson, PA, Chintagumpala, M. Renal and hepatic tumors in the neonatal period. Semin Fetal Neonatal Med. 2012;17:216–21.Google Scholar
16.Anderson, PM, Dhamne, CA, Huff, V. Neoplasmas of the kidney: other pediatric renal tumors. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
17.Anderson, PM, Dhamne, CA, Huff, V. Neoplasmas of the kidney: Wilms tumor. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
18.Herzog, C. Neoplasmas of liver. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
19.Sultan, I, Casanova, M, Al-Jumail, U, et al. Soft tissue sarcomas in the first year of life. Eur J Cancer. 2010;46:2449–56.Google Scholar
20.Ferrari, A, Orbach, D, Sulton, I, et al. Neonatal soft tissue sarcomas. Semin Fetal Neonatal Med. 2012;17:231–8.Google Scholar
21.Arndt, CAS. Soft tissue sarcomas. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
22.Frazier, AL, Wheldon, C, Amatruda, J. Fetal and neonatal germ cell tumors. Semin Fetal Neonatal Med. 2012;17:222–30.Google Scholar
23.Herzog, CE, Huh, WW. Gonadal and germ cell neoplasms. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
24.Miniati, DN, Chintagumpala, M, Langston, C, et al. Prenatal presentation and outcome of children with pleuropulmonary blastoma. J Ped Surg. 2006;41:6671.Google Scholar
25.Bleyer, A, Ritchey, AK. Principles of treatment. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar

References

1.Bennett, J, Bromley, P. Perioperative issues in pediatric liver transplantation. Int Anesthesiol Clin. 2006;44(3):125–47.Google Scholar
2.United Network for Organ Sharing. www.unos.org/data/.Google Scholar
3.Guo, CB, Li, YC, Zhang, MM, et al. Early postoperative care of liver transplantation for infants with biliary atresia during pediatric intensive care unit stay. Transplant Proc. 2010;42(5):1750–4.Google Scholar
4.Soler, X, Myo Bui, CC, Aronson, LA, Saied, AS. Current issues in pediatric liver transplantation. Int Anesthesiol Clin. 2012;50(4):5465.Google Scholar
5.Uejima, T. Anesthetic management of the pediatric patient undergoing solid organ transplantation. Anesthesiol Clin N Am. 2004;22(4):809–26.Google Scholar
6.Yudkowitz, FS, Chietero, M. Anesthetic issues in pediatric liver transplantation. Pediatr Transplant. 2005;9(5):666–72.Google Scholar
7.Condino, AA, Ivy, DD, O’Connor, JA, et al. Portopulmonary hypertension in pediatric patients. J Pediatr. 2005;147(1):20–6.Google Scholar
8.Iwatsuki, S, Popovtzer, MM, Corman, JL, et al. Recovery from “hepatorenal syndrome” after orthotopic liver transplantation. New Eng J Med. 1973;289(22):1155–9.Google Scholar
9.Matsumoto, N, Rorie, DK, Van Dyke, RA. Hepatic oxygen supply and consumption in rats exposed to thiopental, halothane, enflurane, and isoflurane in the presence of hypoxia. Anesthesiology. 1987;66(3):337–43.Google Scholar
10.Merin, RG, Bernard, JM, Doursout, MF, Cohen, M, Chelly, JE. Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology. 1991;74(3):568–74.Google Scholar
11.Bernard, JM, Doursout, MF, Wouters, P, et al. Effects of sevoflurane and isoflurane on hepatic circulation in the chronically instrumented dog. Anesthesiology. 1992;77(3):541–5.Google Scholar
12.Bernard, JM, Doursout, MF, Wouters, P, et al. Effects of enflurane and isoflurane on hepatic and renal circulations in chronically instrumented dogs. Anesthesiology. 1991;74(2):298302.Google Scholar
13.Frink, EJ, Jr., Morgan, SE, Coetzee, A, Conzen, PF, Brown, BR, Jr. The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology. 1992;76(1):8590.Google Scholar
14.Huang, HW, Lu, HF, Chiang, MH, et al. Hemodynamic changes during the anhepatic phase in pediatric patient with biliary atresia versus glycogen storage disease undergoing living donor liver transplantation. Transplant Proc. 2012;44(2):473–5.Google Scholar
15.Aggarwal, S, Kang, Y, Freeman, JA, Fortunato, FL, Pinsky, MR. Postreperfusion syndrome: cardiovascular collapse following hepatic reperfusion during liver transplantation. Transplant Proc. 1987;19(4 Suppl. 3):54–5.Google Scholar
16.Hilmi, I, Horton, CN, Planinsic, RM, et al. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transplant. 2008;14(4):504–8.Google Scholar
17.Ayala, R, Martinez-Lopez, J, Cedena, T, et al. Recipient and donor thrombophilia and the risk of portal venous thrombosis and hepatic artery thrombosis in liver recipients. BMC Gastroenterol. 2011;11:130.Google Scholar
18.Alper, I, Ulukaya, S. Anesthetic management in pediatric liver transplantation: a comparison of deceased or live donor liver transplantations. J Anesth. 2010;24(3):399406.Google Scholar
19.Xia, VW, Du, B, Tran, A, et al. Intraoperative hypokalemia in pediatric liver transplantation: incidence and risk factors. Anesth Analg. 2006;103(3):587–93.Google Scholar
20.Glanemann, M, Langrehr, JM, Muller, AR, et al. Incidence and risk factors of prolonged mechanical ventilation and causes of reintubation after liver transplantation. Transplant Proc. 1998;30(5):1874–5.Google Scholar
21.Castaneda-Martinez, PD, Alcaide-Ortega, RI, Fuentes-Garcia, VE, et al. Anesthetic risk factors associated with early mortality in pediatric liver transplantation. Transplant Proc. 2010;42(6):2383–6.Google Scholar
22.Donovan, KL, Janicki, PK, Striepe, VI, et al. Decreased patient analgesic requirements after liver transplantation and associated neuropeptide levels. Transplantation. 1997;63(10):1423–9.Google Scholar
23.Moretti, EW, Robertson, KM, Tuttle-Newhall, JE, Clavien, PA, Gan, TJ. Orthotopic liver transplant patients require less postoperative morphine than do patients undergoing hepatic resection. J Clin Anesth. 2002;14(6):416–20.Google Scholar
24.Eisenach, JC, Plevak, DJ, Van Dyke, RA, et al. Comparison of analgesic requirements after liver transplantation and cholecystectomy. Mayo Clin Proc. 1989;64(3):356–9.Google Scholar
25.Kim, TW, Harbott, M. The use of caudal morphine for pediatric liver transplantation. Anesth Analg. 2004;99(2):373–4.Google Scholar
26.Diaz, R, Gouvea, G, Auler, L, Miecznikowski, R. Thoracic epidural anesthesia in pediatric liver transplantation. Anesth Analg. 2005;101(6):1891–2.Google Scholar

References

1.Schenker, MP, Martin, R, Shyn, PB, Baum, RA. Interventional radiology and anesthesia. Anesthesiol Clin. 2009;27:8794.Google Scholar
2.Wachtel, RE, Dexter, F, Dow, AJ. Growth rates in pediatric imaging and sedation. Anesth Analg. 2009;108:1616–21.Google Scholar
3.Kaufman, T, Kallmes, D. Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? Am J Roentgenol. 2008;190:1435–7.Google Scholar
4.Frankel, A. Patient safety: anesthesia in remote locations. Anesthesiol Clin. 2009;27(1):127–39.Google Scholar
5.The Joint Commission. The Joint Commission Comprehensive Accreditation and Certification Manual. Oak Brook, IL: Joint Commission Resources; 2014.Google Scholar
6.Li, AH, Armstrong, D, terBrugge, KG. Endovascular treatment of vein of Galen aneurysmal malformation: management strategy and 21-year experience in Toronto. J Neurosurg Pediatr. 2011;7(1):310.Google Scholar
7.Lorenz, J, Thomas, JL. Complications of percutaneous fluid drainage. Semin Intervent Radiol. 2006;23(2):194204.Google Scholar
8.Govender, P, Jonas, MM, Alomari, AI, et al. Sonography-guided percutaneous liver biopsies in children. AJR Am J Roentgenol. 2013;201(3):645–50.Google Scholar
9.Cahill, AM, Nijs, ELF. Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology. Cardiovasc Intervent Radiol. 2011;34:691704.Google Scholar
10.Greene, AK, Alomari, AI. Management of venous malformations. Clin Plast Surg. 2011;38(1):8393.Google Scholar
11.Schook, CC, Mulliken, JB, Fishman, SJ, et al. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast Reconstr Surg. 2011;127(4):1571–81.Google Scholar
12.Alomari, AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):17.Google Scholar
13.Hassanein, AH, Mulliken, JB, Fishman, SJ, et al. Venous malformation: risk of progression during childhood and adolescence. Ann Plast Surg. 2012;68(2):198201.Google Scholar
14.Greene, AK, Perlyn, CA, Alomari, AI. Management of lymphatic malformations. Clin Plast Surg. 2011;38(1):7582.Google Scholar
15.Lenhard, DC, Pietsch, H, Sieber, MA, et al. The osmolality of nonionic, iodinated contrast agents as an important factor for renal safety. Invest Radiol. 2012;47(9):503–10.Google Scholar
16.Barranco-Pons, R, Burrows, PE, Landrigan-Ossar, M, Trenor, CC,III, Alomari, AI. Gross hemoglobinuria and oliguria are common transient complications of sclerotherapy for venous malformations: review of 475 procedures. AJR Am J Roentgenol. 2012;199(3):691–4.Google Scholar
17.Adams, DM. Special considerations in vascular anomalies: hematologic management. Clin Plast Surg. 2011;38(1):153–60.Google Scholar
18.Kelly, M. Kasabach–Merritt phenomenon. Pediatr Clin N Am. 2010;57:1085–9.Google Scholar
19.Duffy, DM. Sclerosants: a comparative review. Dermatol Surg. 2010;36(Suppl 2):1010–25.Google Scholar
20.Mason, K. Pediatric procedures in interventional radiology. Int Anesth Clin. 2009;47(3):3543.Google Scholar
21.Bisdorff, A, Mazighi, M, Saint-Maurice, JP, et al. Ethanol threshold doses for systemic complications during sclerotherapy of superficial venous malformations: a retrospective study. Neuroradiology. 2011;53(11):891–4.Google Scholar
22.Burrows, PE, Mitri, RK, Alomari, A, et al. Percutaneous sclerotherapy of lymphatic malformations with doxycycline. Lymphat Res Biol. 2008;6(3–4):209–16.Google Scholar
23.Nehra, D, Jacobson, L, Barnes, P, et al. Doxycycline sclerotherapy as primary treatment of head and neck lymphatic malformations in children. J Pediatr Surg. 2008;43(3):451–60.Google Scholar
24.Bajpai, H, Bajpai, S. Comparative analysis of intralesional sclerotherapy with sodium tetradecyl sulfate versus bleomycin in the management of low flow craniofacial soft tissue vascular lesions. J Maxillofac Oral Surg. 2012;11(1):1320.Google Scholar
25.Muir, T, Kirsten, M, Fourie, P, Dippenaar, N, Ionescu, GO. Intralesional bleomycin injection (IBI) treatment for haemangiomas and congenital vascular malformations. Pediatr Surg Int. 2004;19(12):766–73.Google Scholar
26.Rajebi, MR, Chaudry, G, Padua, HM, et al. Intranodal lymphangiography: feasibility and preliminary experience in children. J Vasc Interv Radiol. 2011;22(9):1300–5.Google Scholar
27.Wolfe, TJ, Hussain, SI, Lynch, JR, Fitzsimmons, B, Zaidat, OO. Pediatric cerebral angiography: analysis of utilization and findings. Pediatr Neurol. 2009;40:98101.Google Scholar
28.Burger, I, Murphy, K, Jordan, L, Tamargo, R, Gailloud, P. Safety of digital subtraction angiography in children: complication rate analysis in 241 consecutive diagnostic angiograms. Stroke. 2006;37:2535–9.Google Scholar
29.Hoffman, CE, Santillan, A, Rotman, L, Gobin, Y, Souweidane, MM. Complications of cerebral angiography in children younger than 3 years of age. J Neurosurg Pediatr. 2014;13(4):414–19.Google Scholar
30.Logemann, T, Luetmer, P, Kaliebe, J, Olson, K, Murdock, DK. Two versus six hours of bed rest following left-sided cardiac catheterization and a meta-analysis of early ambulation trials. Am J Cardiol. 1999;84:486–8.Google Scholar
31.Landrigan-Ossar, M, McClain, CD. Anesthesia for interventional radiology. Paediatr Anaesth. 2014;24(7):698702.Google Scholar
32.Deloison, B, Chalouhi, GE, Sonigo, P, et al. Hidden mortality of prenatally diagnosed vein of Galen aneurysmal malformation: retrospective study and review of the literature. Ultrasound Obstet Gynecol. 2012;40(6):652–8.Google Scholar
33.Krings, T, Geibprasert, S, Terbrugge, K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am. 2010;21(3):463–82.Google Scholar
34.Blanc, R, Deschamps, F, Orozco-Vasquez, J, Thomas, P, Gaston, A. A 6F guide sheath for endovascular treatment of intracranial aneurysms. Neuroradiology. 2007;49:563–6.Google Scholar
35.Theix, R, Williams, A, Smith, E, Scott, R, Orbach, D. The use of Onyx for embolization of central nervous system arteriovenous lesions in pediatric patients. Am J Neuroradiol. 2010;31:112–20.Google Scholar
36.Lv, X, Li, C, Jiang, Z, Wu, Z. The incidence of trigeminocardiac reflex in endovascular treatment of dural arteriovenous fistula with Onyx. Intervent Neuroradiol. 2010;16:5963.Google Scholar
37.Lv, X, Wu, Z, Li, Y, Yang, X, Jiang, C. Hemorrhage risk after partial endovascular NBCA and ONYX embolization for brain arteriovenous malformation. Neurol Res. 2012;34:552–6.Google Scholar
38.Henkes, H, Gotwald, T, Brew, S, et al. Pressure measurements in arterial feeders of brain arteriovenous malformations before and after endovascular embolization. Neuroradiology. 2004;46:673–7.Google Scholar
39.Natarajan, S, Ghodke, B, Britz, G, Born, D, Sekhar, L. Multimodality treatment of brain arteriovenous malformations with microsurgery after embolization with Onyx: single-center experience and technical nuances. Neurosurgery. 2008;62:1213–26.Google Scholar
40.Gobin, YP, Dunkel, IJ, Marr, BP, Brodie, SE, Abramson, DH. Intra-arterial chemotherapy for the management of retinoblastoma. Arch Opthalmol. 2011;129:732–7.Google Scholar
41.Abruzzo, T, Patino, M, Leach, J, Rahme, R, Geller, J. Cerebral vasoconstriction triggered by sympathomimetic drugs during intra-arterial chemotherapy. Pediatr Neurol. 2013;48:139–42.Google Scholar

References

1.Spitz, L, Kiely, EM. Conjoined twins. JAMA. 2003;289(10):1307–10.Google Scholar
2.Spitz, L. Conjoined twins. Prenat Diagn. 2005;25(9):814–19.Google Scholar
3.Mackenzie, TC, Crombleholme, TM, Johnson, MP, et al. The natural history of prenatally diagnosed conjoined twins. J Pediatr Surg. 2002;7(3):303–9.Google Scholar
4.Thomas, J. Anesthesia for conjoined twins. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. St. Louis, MO: Mosby; 2011; 950–70.Google Scholar
5.El-Gammal, M. Conjoined twins: anesthetic considerations. In: Bissonnette, B, Anderson, BJ, Bosenberg, A, et al, editors. Pediatric Anesthesia: Basic Principles-State of the Art-Future. Shelton, CT: People’s Medical Publishing House; 2001; 1877–90.Google Scholar
6.Cowley, C. The conjoined twins and the limits of rationality in applied ethics. Bioethics. 2003;17(1):6988.Google Scholar
7.Lee, M, Gosain, AK, Becker, D. The bioethics of separating conjoined twins in plastic surgery. Plast Reconstr Surg. 2011;128(4):328e334e.Google Scholar
8.Rhodes, JL, Yacoe, M. Preoperative planning for the separation of omphalopagus conjoined twins: the role of a multicomponent medical model. J Craniofac Surg. 2013;24(1):175–7.Google Scholar
9.O’Neill, JA Jr., Holcomb, GW III, Schnaufer, L, et al. Surgical experience with thirteen conjoined twins. Ann Surg. 1988;208(3):299312.Google Scholar
10.Spitz, L, Kiely, EM. Experience in the management of conjoined twins. Br J Surg. 2002;89(9):1188–92.Google Scholar
11.Leelanukrom, R, Somboonviboon, W, Bunburaphong, P, Kiatkungwanklai, P. Anaesthetic experiences in three sets of conjoined twins in King Chulalongkorn Memorial Hospital. Paediatr Anaesth. 2004;14(2):176–83.Google Scholar
12.Brizot, ML, Liao, AW, Lopes, LM, et al. Conjoined twins pregnancies: experience with 36 cases from a single center. Prenat Diagn. 2011;31(12):1120–5.Google Scholar
13.Clifton, MS, Heiss, KF, Keating, JJ, et al. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.Google Scholar
14.Walton, JM, Gillis, DA, Giacomantonio, JM, et al. Emergency separation of conjoined twins. J Pediatr Surg. 1991;26(11):1337–40.Google Scholar
15.Szmuk, P, Rabb, MF, Curry, B, Smith, KJ, et al. Anaesthetic management of thoracopagus twins with complex cyanotic heart disease for cardiac assessment: special considerations related to ventilation and cross-circulation. Br J Anaesth. 2006;96(3):341–5.Google Scholar
16.Greenberg, M, Frankville, DD, Hilfiker, M. Separation of omphalopagus conjoined twins using combined caudal epidural-general anesthesia. Can J Anaesth. 2001;48:478–82.Google Scholar

References

1.Harrison, MR, Golbus, MS, Filly, RA, et al. Fetal surgery for congenital hydronephrosis. N Engl J Med. 1982;306(10):591–3.Google Scholar
2.Harrison, MR, Filly, RA, Golbus, MS, et al. Fetal treatment 1982. N Engl J Med. 1982;307(26):1651–2.Google Scholar
3.Zoler, ML. Myelomeningocele repair drives changes in fetal surgery. Pediatic News Digital Network. October 17, 2012.Google Scholar
4.Roybal, JL, Santore, MT, Flake, AW. Stem cell and genetic therapies for the fetus. Semin Fetal Neonatal Med. 2010;15(1):4651.Google Scholar
5.Thornburg, KL, Jacobson, S-L, Giraud, GD, Morton, MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):1114.Google Scholar
6.Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.Google Scholar
7.Hunter, S, Robson, SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(6):540–3.Google Scholar
8.DiFederico, EM, Burlingame, JM, Kilpatrick, SJ, Harrison, M, Matthay, MA. Pulmonary edema in obstetric patients is rapidly resolved except in the presence of infection or of nitroglycerin tocolysis after open fetal surgery. Am J Obstet Gynecol. 1998;179(4):925–33.Google Scholar
9.Rosen, MA. Management of anesthesia for the pregnant surgical patient. Anesthesiology. 1999;91(4):1159–63.Google Scholar
10.Motoyama, EK, Rivard, G, Acheson, F, Cook, CD. The effect of changes in maternal pH and P-CO2 on the P-O2 of fetal lambs. Anesthesiology. 1967;28(5):891903.Google Scholar
11.Chan, MT, Mainland, P, Gin, T. Minimum alveolar concentration of halothane and enflurane are decreased in early pregnancy. Anesthesiology. 1996;85(4):782–6.Google Scholar
12.Luks, FI, Johnson, BD, Papadakis, K, Traore, M, Piasecki, GJ. Predictive value of monitoring parameters in fetal surgery. J Pediatr Surg. 1998;33(8):1297–301.Google Scholar
13.Bower, SJ, Flack, NJ, Sepulveda, W, Talbert, DG, Fisk, NM. Uterine artery blood flow response to correction of amniotic fluid volume. Am J Obstet Gynecol. 1995;173(2):502–7.Google Scholar
14.Fisk, NM, Tannirandorn, Y, Nicolini, U, Talbert, DG, Rodeck, CH. Amniotic pressure in disorders of amniotic fluid volume. Obstet Gynecol. 1990;76(2):210–14.Google Scholar
15.Skillman, CA, Plessinger, MA, Woods, JR, Clark, KE. Effect of graded reductions in uteroplacental blood flow on the fetal lamb. Am J Physiol. 1985;249(6 Pt 2):H1098–105. Available at: http://proxy.library.upenn.edu:2205/content/249/6/H1098.long.Google Scholar
16.Fenton, KN, Heinemann, MK, Hickey, PR, et al. Inhibition of the fetal stress response improves cardiac output and gas exchange after fetal cardiac bypass. J Thorac Cardiovasc Surg. 1994;107(6):1416–22.Google Scholar
17.Rudolph, AM, Heymann, MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol. 1976;124(2):183–92.Google Scholar
18.Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980;238(1):H80–6.Google Scholar
19.Warren, TM, Datta, S, Ostheimer, GW, et al. Comparison of the maternal and neonatal effects of halothane, enflurane, and isoflurane for cesarean delivery. Anesth Analg. 1983;62(5):516–20.Google Scholar
20.Dwyer, R, Fee, JP, Moore, J. Uptake of halothane and isoflurane by mother and baby during caesarean section. Br J Anaesth. 1995;74(4):379–83.Google Scholar
21.Myers, LB, Cohen, D, Galinkin, J, Gaiser, R, Kurth, CD. Anaesthesia for fetal surgery. Paediatr Anaesth. 2002;12(7):569–78.Google Scholar
22.Biehl, DR, Yarnell, R, Wade, JG, Sitar, D. The uptake of isoflurane by the foetal lamb in utero: effect on regional blood flow. Can J Anaesth. 1983;30(6):581–6.Google Scholar
23.Palahniuk, RJ, Shnider, SM. Maternal and fetal cardiovascular and acid–base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology. 1974;41(5):462–72.Google Scholar
24.Lee, SJ, Ralston, HJP, Drey, EA, Partridge, JC, Rosen, MA. Fetal pain: a systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947–54.Google Scholar
25.Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol. 1985;2(2):89103.Google Scholar
26.Giannakoulopoulos, X, Glover, V, Sepulveda, W, Kourtis, P, Fisk, NM. Fetal plasma cortisol and β-endorphin response to intrauterine needling. The Lancet. 1994;344(8915):7781.Google Scholar
27.Giannakoulopoulos, X, Teixeira, JM, Fisk, NM, Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 1999;45(4):494–9.Google Scholar
28.Fisk, NM, Gitau, R, Teixeira, JM, et al. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828–35.Google Scholar
29.Meaney, MJ, Aitken, DH. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters. Brain Res. 1985;354(2):301–4.Google Scholar
30.Clarke, AS, Wittwer, DJ, Abbott, DH, Schneider, ML. Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol. 1994;27(5):257–69.Google Scholar
31.Schneider, ML, Coe, CL, Lubach, GR. Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Dev Psychobiol. 1992;25(6):427–39.Google Scholar
32.Glover, V, Fisk, N. Do fetuses feel pain? We don’t know; better to err on the safe side from mid-gestation. BMJ. 1996;313(7060):796.Google Scholar
33.McElhinney, DB, Tworetzky, W, Lock, JE. Current status of fetal cardiac intervention: circulation. Am Heart Assoc. 2010;121(10):1256–63.Google Scholar
34.van den Bosch, AE, Roos-Hesselink, JW, van Domburg, R, et al. Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol. 2004;93(9):1141–5. Available at: http://proxy.library.upenn.edu:2080/science/article/pii/S0002914904001328.Google Scholar
35.Makikallio, K. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113(11):1401–5.Google Scholar
36.McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90. Available at: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.109.192655.Google Scholar
37.Arzt, W, Wertaschnigg, D, Veit, I, et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011;37(6):689–95.Google Scholar
38.Tworetzky, W, McElhinney, DB, Marx, GR, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009;124(3):e510–18.Google Scholar
39.Vlahos, AP. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109(19):2326–30.Google Scholar
40.Marshall, AC, Levine, J, Morash, D, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):1023–8.Google Scholar
41.Hedrick, HL. Ex utero intrapartum therapy. Semin Pediatr Surg. 2003;12(3):190–5.Google Scholar
42.Laje, P, Johnson, MP, Howell, LJ, et al. Ex utero intrapartum treatment in the management of giant cervical teratomas. J Pediatr Surg. 2012;47(6):1208–16.Google Scholar
43.Laje, P, Howell, LJ, Johnson, MP, et al. Perinatal management of congenital oropharyngeal tumors: the ex utero intrapartum treatment (EXIT) approach. J Pediatr Surg. 2013;48(10):2005–10.Google Scholar
44.Hedrick, MH, Ferro, MM, Filly, RA, et al. Congenital high airway obstruction syndrome (CHAOS): a potential for perinatal intervention. J Pediatr Surg. 1994;29(2):271–4.Google Scholar
45.Roybal, JL, Liechty, KW, Hedrick, HL, et al. Predicting the severity of congenital high airway obstruction syndrome. J Pediatr Surg. 2010;45(8):1633–9.Google Scholar
46.Kohl, T, Van de Vondel, P, Stressig, R, et al. Percutaneous fetoscopic laser decompression of congenital high airway obstruction syndrome (CHAOS) from laryngeal atresia via a single trocar: current technical constraints and potential solutions for future interventions. Fetal Diagn Ther. 2009;25(1):6771.Google Scholar
47.Saadai, P, Jelin, EB, Nijagal, A, et al. Long-term outcomes after fetal therapy for congenital high airway obstructive syndrome. J Pediatr Surg. 2012;47(6):1095–100.Google Scholar
48.Adzick, NS, Thom, EA, Spong, CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):9931004.Google Scholar
49.Adzick, NS. Management of fetal lung lesions. Clin Perinatol. 2003;30(3):481–92.Google Scholar
50.Peranteau, WH, Wilson, RD, Liechty, KW, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther. 2007;22(5):365–71.Google Scholar
51.Tran, KM, Johnson, MP, Almeida-Chen, GM, Schwartz, AJ. The fetus as patient. Anesthesiology. 2010;113(2):462.Google Scholar
52.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):1038–43.Google Scholar
53.Danzer, E, Siegle, J, D’Agostino, JA, et al. Early neurodevelopmental outcome of infants with high-risk fetal lung lesions. Fetal Diagn Ther. 2012;31(4):210–15.Google Scholar
54.Harrison, MR, Mychaliska, GB, Albanese, CT, et al. Correction of congenital diaphragmatic hernia in utero IX: fetuses with poor prognosis (liver herniation and low lung-to-head ratio) can be saved by fetoscopic temporary tracheal occlusion. J Pediatr Surg. 1998;33(7):1017–22.Google Scholar
55.Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.Google Scholar
56.Deprest, J, Jani, J, Gratacos, E, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol. 2005;29(2):94103.Google Scholar
57.Doné, E, Gratacos, E, Nicolaides, KH, et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2013;42(1):7783.Google Scholar
58.Flake, AW. Fetal sacrococcygeal teratoma. Semin Pediatr Surg. 1993;2(2):113–20.Google Scholar
59.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430–8.Google Scholar
60.Mieghem, TV, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratomas: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611–19.Google Scholar
61.Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46(7):1325–32.Google Scholar
62.Tran, KM, Flake, AW, Kalawadia, NV, Maxwell, LG, Rehman, MA. Emergent excision of a prenatally diagnosed sacrococcygeal teratoma. Paediatr Anaesth. 2008;18(5):431–4.Google Scholar
63.Lewi, L, Van Schoubroeck, D, Gratacós, E, et al. Monochorionic diamniotic twins: complications and management options. Curr Opin Obstet Gynecol. 2003;15(2):177–94.Google Scholar
64.Roberts, D, Neilson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev. 2014;1(1):135.Google Scholar
65.Moise, KJ Jr., Dorman, K, Lamvu, G, et al. A randomized trial of amnioreduction versus septostomy in the treatment of twin–twin transfusion syndrome. Am J Obstet Gynecol. 2005;193(3):701–7.Google Scholar
66.Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin–twin transfusion syndrome. Am J Obstet Gynecol. 2007;197(4):396.e1–9.Google Scholar
67.Senat, M-V, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136–44.Google Scholar
68.Slaghekke, F, Lopriore, E, Lewi, L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. The Lancet. 2014;383(9935):2144–51.Google Scholar
69.Mizrahi-Arnaud, A, Tworetzky, W, Bulich, LA, et al. Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention. Pediatr Res. 2007;62(3):325–30.Google Scholar
70.Brusseau, R, Mizrahi-Arnaud, A. Fetal anesthesia and pain management for intrauterine therapy. Clin Perinatol. 2013;40(3):429–42.Google Scholar
71.Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22(1):50–5.Google Scholar
72.Rychik, J. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110(12):1549–56.Google Scholar
73.Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Pediatr Anesth. 2010;20(8):748–56.Google Scholar
74.Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.Google Scholar
75.Klaritsch, P, Albert, K, Van Mieghem, T, et al. Instrumental requirements for minimal invasive fetal surgery. BJOG. 2008;116(2):188–97.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×