Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-03T18:45:13.047Z Has data issue: false hasContentIssue false

Section 3 - Specific Newborn and Infant Procedures

Published online by Cambridge University Press:  09 February 2018

Mary Ellen McCann
Affiliation:
Harvard Medical School, Boston, MA, USA
Christine Greco
Affiliation:
Harvard Medical School, Boston, MA, USA
Kai Matthes
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

1.Arieff, AI, Ayus, JC, Fraser, CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.CrossRefGoogle ScholarPubMed
2.Bruce, DA, Berman, WA, Schut, L. Cerebrospinal fluid pressure monitoring in children: physiology, pathology and clinical usefulness. Adv Pediatr. 1977;24:233–90.CrossRefGoogle ScholarPubMed
3.Marshall, LF, Smith, RW, Shapiro, HM. The influence of diurnal rhythms in patients with intracranial hypertension: implications for management. Neurosurgery. 1978;2:100–2.Google ScholarPubMed
4.Chaves-Carballo, E, Gomez, MR, Sharbrough, FW. Encephalopathy and fatty infiltration of the viscera (Reye-Johnson syndrome): a 17-year experience. Mayo Clin Proc. 1975;50:209–15.Google ScholarPubMed
5.Minns, RA, Brown, JK, Engleman, HM. CSF production rate: “real time” estimation. Z Kinderchir. 1987;42(Suppl 1):3640.Google ScholarPubMed
6.Blomquist, HK, Sundin, S, Ekstedt, J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49:536–48.10.1136/jnnp.49.5.536CrossRefGoogle ScholarPubMed
7.Di Rocco, C, McLone, DG, Shimoji, T, Raimondi, AJ. Continuous intraventricular cerebrospinal fluid pressure recording in hydrocephalic children during wakefulness and sleep. J Neurosurg. 1975;42:683–9.CrossRefGoogle ScholarPubMed
8.Lassen, NA, Christensen, MS. Physiology of cerebral blood flow. Br J Anaesth. 1976;48:719–34.10.1093/bja/48.8.719CrossRefGoogle ScholarPubMed
9.Lassen, NA, Hoedt-Rasmussen, K. Human cerebral blood flow measured by two inert gas techniques: comparison of the Kety–Schmidt method and the intra-arterial injection method. Circ Res. 1966;19:681–94.CrossRefGoogle ScholarPubMed
10.Kety, SS, Schmidt, CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83.CrossRefGoogle ScholarPubMed
11.Kennedy, C, Sokoloff, L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.10.1172/JCI103509CrossRefGoogle Scholar
12.Mehta, S, Kalsi, HK, Nain, CK, Menkes, JH. Energy metabolism of brain in human protein-calorie malnutrition. Pediatr Res. 1977;11:290–3.10.1203/00006450-197704000-00006CrossRefGoogle ScholarPubMed
13.Milligan, DW. Cerebral blood flow and sleep state in the normal newborn infant. Early Hum Dev. 1979;3:321–8.CrossRefGoogle Scholar
14.Settergren, G, Lindblad, BS, Persson, B. Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand. 1976;65:343–53.CrossRefGoogle ScholarPubMed
15.Lou, HC, Lassen, NA, Friis-Hansen, B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 1979;94:118–21.CrossRefGoogle ScholarPubMed
16.Rahilly, PM. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate. Pediatrics. 1980;66:685–9.10.1542/peds.66.5.685CrossRefGoogle ScholarPubMed
17.Rogers, MC, Nugent, SK, Traystman, RJ. Control of cerebral circulation in the neonate and infant. Crit Care Med. 1980;8:570–4.CrossRefGoogle ScholarPubMed
18.Kety, SS, Schmidt, CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–92.CrossRefGoogle ScholarPubMed
19.Coles, JP, Fryer, TD, Coleman, MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.10.1097/01.CCM.0000254066.37187.88CrossRefGoogle ScholarPubMed
20.Lassen, NA. Control of cerebral circulation in health and disease. Circ Res. 1974;34:749–60.10.1161/01.RES.34.6.749CrossRefGoogle ScholarPubMed
21.Goobie, SM, Zurakowski, D, Proctor, MR, et al. Predictors of clinically significant postoperative events after open craniosynostosis surgery. Anesthesiology. 2015;122:1021–32.CrossRefGoogle ScholarPubMed
22.Goobie, SM, Meier, PM, Pereira, LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114:862–71.CrossRefGoogle ScholarPubMed
23.Scheingraber, S, Rehm, M, Sehmisch, C, Finsterer, U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.CrossRefGoogle ScholarPubMed
24.Mekitarian Filho, E, Carvalho, WB, Cavalheiro, S, et al. Hyperglycemia and postoperative outcomes in pediatric neurosurgery. Clinics. 2011;66(9):1637–40.Google ScholarPubMed
25.Loddenkemper, T, Holland, KD, Stanford, LD, et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007;119:930–5.CrossRefGoogle ScholarPubMed

References

1.Chesnutt, MSPT, Tavan, ET. Pulmonary disorders. In: Papadakis, MAMS, Rabow, MW, editors. Current Medical Diagnosis & Treatment. New York: McGraw-Hill; 2014.Google Scholar
2.Albanese, CTSK Pediatric surgery. In: GM D, editor. Current Diagnosis & Treatment: Surgery, 13th edn. New York: McGraw-Hill; 2010.Google Scholar
3.Yoon, PJKP, Friedman, NR Ear, nose, & throat. In: Hay, WWJ, Levin, MJ, Deterding, RR, Abzug, MJ, Sondheimer, JM, editors. Current Diagnosis & Treatment: Pediatrics, 21st edn. New York: McGraw-Hill; 2012.Google Scholar
4.Abdullah, B, Hassan, S, Salim, R. Transnasal endoscopic repair for bilateral choanal atresia. Malays J Med Sci. 2006;13(2):61–3.Google ScholarPubMed
5.Asma, A, Roslenda, AR, Suraya, A, Saraiza, AB, Aini, AA. Management of congenital choanal atresia (CCA) after multiple failures: a case report. Med J Malaysia. 2013;68(1):76–8.Google ScholarPubMed
6.Schoem, SR. Transnasal endoscopic repair of choanal atresia: why stent? Otolaryngol Head Neck Surg. 2004;131(4):362–6.CrossRefGoogle ScholarPubMed
7.Friedman, NR, Mitchell, RB, Bailey, CM, Albert, DM, Leighton, SE. Management and outcome of choanal atresia correction. Int J Pediatr Otorhinolaryngol. 2000;52(1):4551.CrossRefGoogle ScholarPubMed
8.Austin, J, Ali, T. Tracheomalacia and bronchomalacia in children: pathophysiology, assessment, treatment and anaesthesia management. Paediatr Anaesth. 2003;13(1):311.CrossRefGoogle ScholarPubMed
9.Thomas, VDSN, Lee, KK, Swanson, NA Benign epithelial tumors, hamartomas, and hyperplasias. In: Goldsmith, LAKS, Gilchrest, BA, Paller, AS, Leffell, DJ, Wolff, K, editors. Fitzpatrick’s Dermatology in General Medicine, 8th edn. New York: McGraw-Hill; 2012.Google Scholar
10.Shah, RNCT, Shores, CG Infections and disorders of the neck and upper airway. In: Tintinalli, JESJ, Ma, O, Cline, DM, Cydulka, RK, Meckler, GD, editors. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 7th edn. New York: McGraw-Hill; 2011.Google Scholar
11.Hackam, DJGT, Wang, KS, Newman, KD, Ford, HR Pediatric surgery. In: Brunicardi, FAD, Billiar, TR, Dunn, DL, et al., editors. Schwartz’s Principles of Surgery, 9th edn. New York: McGraw-Hill; 2012.Google Scholar
12.Usatine, RPSM, Chumley, HS, Mayeaux, EJ Jr. Childhood hemangiomas and vascular malformations. In: The Color Atlas of Family Medicine, 2nd edn. New York: McGraw-Hill; 2013.Google Scholar
13.Losee, JEGM, Rubin, J, Wallace, CG, Wei, F Plastic and reconstructive surgery. In: Brunicardi, FAD, Billiar, TR, Dunn, DL, et al., editors. Schwartz’s Principles of Surgery, 9th edn. New York: McGraw-Hill; 2010.Google Scholar
14.McDonald, S, Langton Hewer, CD, Nunez, DA Grommets (ventilation tubes) for recurrent acute otitis media in children. Cochrane Database Syst Rev. 2008;4: CD004741.Google Scholar
15.Chinn, K, Brown, OE, Manning, SC, Crandell, CC. Middle ear pressure variation: effect of nitrous oxide. Laryngoscope. 1997;107(3):357–63.CrossRefGoogle ScholarPubMed
16.Eidi, M, Kolahdouzan, K, Hosseinzadeh, H, Tabaqi, R. A comparison of preoperative ondansetron and dexamethasone in the prevention of post-tympanoplasty nausea and vomiting. Iran J Med Sci. 2012;37(3):166–72.Google ScholarPubMed
17.Jöhr, M, Ho, A, Wagner, CS, Linder, T. Ear surgery in infants under one year of age: its risks and implications for cochlear implant surgery. Otology & Neurotology. 2008. 29(3):310–13.10.1097/MAO.0b013e3181661866CrossRefGoogle ScholarPubMed
18.Baidya, KD, Dehran, M. Anaesthesia for cochlear implant surgery. Trends Anaesth Crit Care. 2011;1:90–4.Google Scholar
19.Suter, VG, Bornstein, MM. Ankyloglossia: facts and myths in diagnosis and treatment. J Periodontol. 2009;80(8):1204–19.Google ScholarPubMed
20.Kupietzky, A, Botzer, E. Ankyloglossia in the infant and young child: clinical suggestions for diagnosis and management. Pediatr Dent. 2005;27(1):40–6.Google Scholar
21.Hamada, M, Iida, M, Nota, J, et al. Safety and efficacy of adenotonsillectomy for obstructive sleep apnea in infants, toddlers and preschool children. Auris Nasus Larynx. 2015;42(3):208–12.CrossRefGoogle ScholarPubMed
22.Brigance, JS, Miyamoto, RC, Schilt, P. Surgical management of obstructive sleep apnea in infants and young toddlers. Otolaryngol Head Neck Surg. 2009;140(6):912–16.10.1016/j.otohns.2009.01.034CrossRefGoogle ScholarPubMed
23.Mitchell, RB, Kelly, J. Outcome of adenotonsillectomy for obstructive sleep apnea in children under 3 years. Otolaryngol Head Neck Surg. 2005;132(5):681–4.CrossRefGoogle ScholarPubMed
24.Moss, JR, Watcha, MF, Bendel, LP, et al. A multicenter, randomized, double-blind placebo-controlled, single dose trial of the safety and efficacy of intravenous ibuprofen for treatment of pain in pediatric patients undergoing tonsillectomy. Pediatr Anesth. 2014;24:483–9.10.1111/pan.12381CrossRefGoogle ScholarPubMed
25.Lewis, SR, Nicholson, A, Cardwell, ME, Siviter, G, Smith, AF Nonsteroidal anti-inflammatory drugs and perioperative bleeding in paediatric tonsillectomy. Cochrane Database Syst Rev. 2013;7:CD00359.Google Scholar
26.Voronov, P, Tobin, MJ, Billings, K, et al. Postoperative pain relief in infants undergoing myringotomy and tube placement: comparison of a novel regional anesthetic block to intranasal fentanyl – a pilot analysis. Pediatr Anesth. 2008;18(12):1196–201.10.1111/j.1460-9592.2008.02789.xCrossRefGoogle ScholarPubMed
27.Steward, D, Grisel, J, Meinzen-Derr, J Steroids for improving recovery following tonsillectomy in children. Cochrane Database Syst Rev. 2011;8:CD003997.Google Scholar
28.Dhar, P, Malik, A. Review: anesthesia for laser surgery in ENT and the various ventilatory techniques. Trends Anaesth Crit Care. 2011;1(2):60–6.Google Scholar

References

1.Mulliken, JB, MacDonald, DM. Cleft lip/palate and Robin sequence. In Hansen, A, Puder, M, editors. Manual of Neonatal Surgical Intensive Care, 2nd edition. Shelton, CT: People’s Medical Publishing House; 2009.Google Scholar
2.Milerad, J, Larson, O, Ph, DD, Hagberg, C, Ideberg, M. Associated malformations in infants with cleft lip and palate: a prospective, population-based study. Pediatrics. 1997;100(2 Pt 1):180–6.10.1542/peds.100.2.180CrossRefGoogle ScholarPubMed
3.Evans, AK, Rahbar, R, Rogers, GF, Mulliken, JB, Volk, MS. Robin sequence: a retrospective review of 115 patients. Int J Pediatr Otorhinolaryngol. 2006;70(6):973–80.10.1016/j.ijporl.2005.10.016CrossRefGoogle ScholarPubMed
4.Butow, KW, Hoogendijk, CF, Zwahlen, RA. Pierre Robin sequence: appearances and 25 years of experience with an innovative treatment protocol. J Pediatr Surg. 2009;44(11):2112–18.CrossRefGoogle ScholarPubMed
5.Cladis, F, Kumar, A, Grunwaldt, L, et al. Pierre robin sequence: a perioperative review. Anesth Analg. 2014;119(2):400–12.10.1213/ANE.0000000000000301CrossRefGoogle ScholarPubMed
6.Takemura, H, Yasumoto, K, Toi, T, Hosoyamada, A. Correlation of cleft type with incidence of perioperative respiratory complications in infants with cleft lip and palate. Paediatr Anaesth. 2002;12(7):585–8.10.1046/j.1460-9592.2002.00906.xCrossRefGoogle ScholarPubMed
7.Jackson, O, Basta, M, Sonnad, S, et al. Perioperative risk factors for adverse airway events in patients undergoing cleft palate repair. Cleft Palate Craniofac J. 2013;50(3):330–6.10.1597/12-134CrossRefGoogle ScholarPubMed
8.Xue, FS, Zhang, GH, Li, P, et al. The clinical observation of difficult laryngoscopy and difficult intubation in infants with cleft lip and palate. Paediatr Anaesth. 2006;16(3):283–9.10.1111/j.1460-9592.2005.01762.xCrossRefGoogle ScholarPubMed
9.Gunawardana, RH. Difficult laryngoscopy in cleft lip and palate surgery. Br J Anaesth. 1996;76(6):757–9.CrossRefGoogle ScholarPubMed
10.Uezono, S, Holzman, RS, Goto, T, et al. Prediction of difficult airway in school-aged patients with microtia. Paediatr Anaesth. 2001;11(4):409–13.CrossRefGoogle ScholarPubMed
11.Nargozian, C. The airway in patients with craniofacial abnormalities. Paediatr Anaesth. 2004;14(1):53–9.10.1046/j.1460-9592.2003.01200.xCrossRefGoogle ScholarPubMed
12.Ahuja, S, Datta, A, Krishna, A, Bhattacharya, A. Infra-orbital nerve block for relief of postoperative pain following cleft lip surgery in infants. Anaesthesia. 1994;49(5):441–4.10.1111/j.1365-2044.1994.tb03484.xCrossRefGoogle ScholarPubMed
13.Rajamani, A, Kamat, V, Rajavel, VP, Murthy, J, Hussain, SA. A comparison of bilateral infraorbital nerve block with intravenous fentanyl for analgesia following cleft lip repair in children. Paediatr Anaesth. 2007;17(2):133–9.10.1111/j.1460-9592.2006.02032.xCrossRefGoogle ScholarPubMed
14.Takmaz, SA, Uysal, HY, Uysal, A, et al. Bilateral extraoral, infraorbital nerve block for postoperative pain relief after cleft lip repair in pediatric patients: a randomized, double-blind controlled study. Ann Plast Surg. 2009;63(1):5962.CrossRefGoogle ScholarPubMed
15.Simion, C, Corcoran, J, Iyer, A, Suresh, S. Postoperative pain control for primary cleft lip repair in infants: is there an advantage in performing peripheral nerve blocks? Paediatr Anaesth. 2008;18(11):1060–5.10.1111/j.1460-9592.2008.02721.xCrossRefGoogle ScholarPubMed
16.Bosenberg, AT, Kimble, FW. Infraorbital nerve block in neonates for cleft lip repair: anatomical study and clinical application. Br J Anaesth. 1995;74(5):506–8.10.1093/bja/74.5.506CrossRefGoogle ScholarPubMed
17.Bell, C, Oh, TH, Loeffler, JR. Massive macroglossia and airway obstruction after cleft palate repair. Anesth Analg. 1988;67(1):71–4.CrossRefGoogle ScholarPubMed
18.Lee, JT, Kingston, HG. Airway obstruction due to massive lingual oedema following cleft palate surgery. Can Anaesth Soc J. 1985;32(3 Pt 1):265–7.10.1007/BF03015140CrossRefGoogle ScholarPubMed
19.Cohen, MM, Jr., MacLean, RE. Craniosynostosis: Diagnosis, Evaluation, and Management, 2nd edn. New York: Oxford University Press; 2000.Google Scholar
20.Tamburrini, G, Caldarelli, M, Massimi, L, Santini, P, Di Rocco, C. Intracranial pressure monitoring in children with single suture and complex craniosynostosis: a review. Childs Nerv Syst. 2005;21(10):913–21.10.1007/s00381-004-1117-xCrossRefGoogle ScholarPubMed
21.McCarthy, JG, Warren, SM, Bernstein, JM, et al. Parameters of care for craniosynostosis. Cleft Palate Craniofac J. 2011;49:1S–24S.Google ScholarPubMed
22.Church, MW, Parent-Jenkins, L, Rozzelle, AA, Eldis, FE, Kazzi, SN. Auditory brainstem response abnormalities and hearing loss in children with craniosynostosis. Pediatrics. 2007;119(6):e1351–60.10.1542/peds.2006-3009CrossRefGoogle ScholarPubMed
23.Hertle, RW, Quinn, GE, Minguini, N, Katowitz, JA. Visual loss in patients with craniofacial synostosis. J Pediatr Ophthalmol Strabismus. 1991;28(6):344–9.10.3928/0191-3913-19911101-14CrossRefGoogle ScholarPubMed
24.Renier, D, Sainte-Rose, C, Marchac, D, Hirsch, JF. Intracranial pressure in craniostenosis. J Neurosurg. 1982;57(3):370–7.10.3171/jns.1982.57.3.0370CrossRefGoogle ScholarPubMed
25.Connolly, JP, Gruss, J, Seto, ML, et al. Progressive postnatal craniosynostosis and increased intracranial pressure. Plast Reconstr Surg. 2004;113(5):1313–23.CrossRefGoogle ScholarPubMed
26.Mulliken, JB, Vander Woude, DL, Hansen, M, LaBrie, RA, Scott, RM. Analysis of posterior plagiocephaly: deformational versus synostotic. Plast Reconstr Surg. 1999;103(2):371–80.10.1097/00006534-199902000-00003CrossRefGoogle ScholarPubMed
27.Laughlin, J, Luerssen, TG, Dias, MS. Prevention and management of positional skull deformities in infants. Pediatrics. 2011;128.10.1542/peds.2011-2220CrossRefGoogle ScholarPubMed
28.Hoeve, LJ, Pijpers, M, Joosten, KF. OSAS in craniofacial syndromes: an unsolved problem. Int J Pediatr Otorhinolaryngol. 2003;67(Suppl. 1):S111–13.10.1016/j.ijporl.2003.08.007CrossRefGoogle ScholarPubMed
29.Pijpers, M, Poels, PJ, Vaandrager, JM, et al. Undiagnosed obstructive sleep apnea syndrome in children with syndromal craniofacial synostosis. J Craniofac Surg. 2004;15(4):670–4.10.1097/00001665-200407000-00026CrossRefGoogle ScholarPubMed
30.De Jong, T, Bannink, N, Bredero-Boelhouwer, HH, et al. Long-term functional outcome in 167 patients with syndromic craniosynostosis; defining a syndrome-specific risk profile. J Plast Reconstr Aesthet Surg. 2010;63(10):1635–41.10.1016/j.bjps.2009.10.029CrossRefGoogle ScholarPubMed
31.Scheid, SC, Spector, AR, Luft, JD. Tracheal cartilaginous sleeve in Crouzon syndrome. Int J Pediatr Otorhinolaryngol. 2002;65(2):147–52.10.1016/S0165-5876(02)00132-5CrossRefGoogle ScholarPubMed
32.Nargozian, C. Apert syndrome: anesthetic management. Clin Plast Surg. 1991;18(2):227–30.CrossRefGoogle ScholarPubMed
33.Sculerati, N, Gottlieb, MD, Zimbler, MS, Chibbaro, PD, McCarthy, JG. Airway management in children with major craniofacial anomalies. Laryngoscope. 1998;108(12):1806–12.10.1097/00005537-199812000-00008CrossRefGoogle ScholarPubMed
34.Hayward, R, Gonsalez, S. How low can you go? Intracranial pressure, cerebral perfusion pressure, and respiratory obstruction in children with complex craniosynostosis. J Neurosurg. 2005;102(Suppl. 1):1622.Google Scholar
35.Bristol, RE, Lekovic, GP, Rekate, HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11(4):262–7.10.1016/j.spen.2004.11.001CrossRefGoogle ScholarPubMed
36.Thompson, DN, Malcolm, GP, Jones, BM, Harkness, WJ, Hayward, RD. Intracranial pressure in single-suture craniosynostosis. Pediatr Neurosurg. 1995;22(5):235–40.10.1159/000120907CrossRefGoogle ScholarPubMed
37.David, LR, Wilson, JA, Watson, NE, Argenta, LC. Cerebral perfusion defects secondary to simple craniosynostosis. J Craniofac Surg. 1996;7(3):177–85.10.1097/00001665-199605000-00003CrossRefGoogle ScholarPubMed
38.Czerwinski, M, Kolar, JC, Fearon, JA. Complex craniosynostosis. Plast Reconstr Surg. 2011;128(4):955–61.10.1097/PRS.0b013e3182268ca6CrossRefGoogle ScholarPubMed
39.Robson, CD, Mulliken, JB, Robertson, RL, et al. Prominent basal emissary foramina in syndromic craniosynostosis: correlation with phenotypic and molecular diagnoses. AJNR Am J Neuroradiol. 2000;21(9):1707–17.Google ScholarPubMed
40.Rich, PM, Cox, TC, Hayward, RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol. 2003;24(1):4551.Google ScholarPubMed
41.Tuite, GF, Chong, WK, Evanson, J, et al. The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery. 1996;38(2):272–8.10.1097/00006123-199602000-00009CrossRefGoogle Scholar
42.Jimenez, DF, Barone, CM, Cartwright, CC, Baker, L. Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics. 2002;110(1 Pt 1):97104.10.1542/peds.110.1.97CrossRefGoogle ScholarPubMed
43.Berry-Candelario, J, Ridgway, EB, Grondin, RT, Rogers, GF, Proctor, MR. Endoscope-assisted strip craniectomy and postoperative helmet therapy for treatment of craniosynostosis. Neurosurg Focus. 2011;31(2):E5.10.3171/2011.6.FOCUS1198CrossRefGoogle ScholarPubMed
44.Meier, PM, Goobie, SM, DiNardo, JA, et al. Endoscopic strip craniectomy in early infancy: the initial five years of anesthesia experience. Anesth Analg. 2011;112(2):407–14.10.1213/ANE.0b013e31820471e4CrossRefGoogle ScholarPubMed
45.Tobias, JD, Johnson, JO, Jimenez, DF, Barone, CM, McBride, DS, Jr. Venous air embolism during endoscopic strip craniectomy for repair of craniosynostosis in infants. Anesthesiology. 2001;95(2):340–2.10.1097/00000542-200108000-00013CrossRefGoogle ScholarPubMed
46.Abbott, MM, Rogers, GF, Proctor, MR, Busa, K, Meara, JG. Cost of treating sagittal synostosis in the first year of life. J Craniofac Surg. 2012;23(1):8893.10.1097/SCS.0b013e318240f965CrossRefGoogle ScholarPubMed
47.Lauritzen, CG, Davis, C, Ivarsson, A, Sanger, C, Hewitt, TD. The evolving role of springs in craniofacial surgery: the first 100 clinical cases. Plast Reconstr Surg. 2008;121(2):545–54.10.1097/01.prs.0000297638.76602.deCrossRefGoogle ScholarPubMed
48.Mackenzie, KA, Davis, C, Yang, A, MacFarlane, MR. Evolution of surgery for sagittal synostosis: the role of new technologies. J Craniofac Surg. 2009;20(1):129–33.10.1097/SCS.0b013e318190e1cfCrossRefGoogle ScholarPubMed
49.Ririe, DG, Smith, TE, Wood, BC, et al. Time-dependent perioperative anesthetic management and outcomes of the first 100 consecutive cases of spring-assisted surgery for sagittal craniosynostosis. Paediatr Anaesth. 2011;21:1015–19.10.1111/j.1460-9592.2011.03608.xCrossRefGoogle ScholarPubMed
50.Windh, P, Davis, C, Sanger, C, Sahlin, P, Lauritzen, C. Spring-assisted cranioplasty vs pi-plasty for sagittal synostosis: a long term follow-up study. J Craniofac Surg. 2008;19(1):5964.10.1097/scs.0b013e31815c94c8CrossRefGoogle ScholarPubMed
51.Faberowski, LW, Black, S, Mickle, JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11(3):167–72.Google ScholarPubMed
52.Meyer, P, Renier, D, Arnaud, E, et al. Blood loss during repair of craniosynostosis. Br J Anaesth. 1993;71(6):854–7.10.1093/bja/71.6.854CrossRefGoogle ScholarPubMed
53.Stricker, PA, Shaw, TL, Desouza, DG, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20(2):150–9.CrossRefGoogle ScholarPubMed
54.Mirski, MA, Lele, AV, Fitzsimmons, L, Toung, TJ. Diagnosis and treatment of vascular air embolism. Anesthesiology. 2007;106(1):164–77.10.1097/00000542-200701000-00026CrossRefGoogle ScholarPubMed
55.Harris, MM, Yemen, TA, Davidson, A, et al. Venous embolism during craniectomy in supine infants. Anesthesiology. 1987;67(5):816–19.10.1097/00000542-198711000-00036CrossRefGoogle ScholarPubMed
56.Faberowski, LW, Black, S, Mickle, JP. Incidence of venous air embolism during craniectomy for craniosynostosis repair. Anesthesiology. 2000;92(1):20–3.CrossRefGoogle ScholarPubMed
57.Meyer, PG, Renier, D, Orliaguet, G, Blanot, S, Carli, P. Venous air embolism in craniosynostosis surgery: what do we want to detect? Anesthesiology. 2000;93(4):1157–8.CrossRefGoogle ScholarPubMed
58.Cucchiara, RF, Bowers, B. Air embolism in children undergoing suboccipital craniotomy. Anesthesiology. 1982;57(4):338–9.10.1097/00000542-198210000-00023CrossRefGoogle ScholarPubMed
59.Soriano, SG, McManus, ML, Sullivan, LJ, Scott, RM, Rockoff, MA. Doppler sensor placement during neurosurgical procedures for children in the prone position. J Neurosurg Anesthesiol. 1994;6(3):153–5.10.1097/00008506-199407000-00001CrossRefGoogle ScholarPubMed
60.Clune, JE, Greene, AK, Guo, CY, et al. Perioperative corticosteroid reduces hospital stay after fronto-orbital advancement. J Craniofac Surg. 2010;21(2):344–8.10.1097/SCS.0b013e3181cf6103CrossRefGoogle ScholarPubMed
61.Zunini, GS, Rando, KA, Cox, RG. Fluid replacement in craniofacial pediatric surgery: normal saline or Ringer’s lactate? J Craniofac Surg. 2011;22(4):1370–4.10.1097/SCS.0b013e31821c94dbCrossRefGoogle ScholarPubMed
62.Czerwinski, M, Hopper, RA, Gruss, J, Fearon, JA. Major morbidity and mortality rates in craniofacial surgery: an analysis of 8101 major procedures. Plast Reconstr Surg. 2010;126(1):181–6.10.1097/PRS.0b013e3181da87dfCrossRefGoogle ScholarPubMed
63.Bhananker, SM, Ramamoorthy, C, Geiduschek, JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–50.10.1213/01.ane.0000268712.00756.ddCrossRefGoogle ScholarPubMed
64.Cote, CJ, Liu, LM, Szyfelbein, SK, Goudsouzian, NG, Daniels, AL. Changes in serial platelet counts following massive blood transfusion in pediatric patients. Anesthesiology. 1985;62(2):197201.10.1097/00000542-198502000-00024CrossRefGoogle ScholarPubMed
65.Cote, CJ, Drop, LJ, Hoaglin, DC, Daniels, AL, Young, ET. Ionized hypocalcemia after fresh frozen plasma administration to thermally injured children: effects of infusion rate, duration, and treatment with calcium chloride. Anesth Analg. 1988;67(2):152–60.Google ScholarPubMed
66.Brown, KA, Bissonnette, B, McIntyre, B. Hyperkalaemia during rapid blood transfusion and hypovolaemic cardiac arrest in children. Can J Anaesth. 1990;37(7):747–54.10.1007/BF03006533CrossRefGoogle ScholarPubMed
67.Brown, KA, Bissonnette, B, MacDonald, M, Poon, AO. Hyperkalaemia during massive blood transfusion in paediatric craniofacial surgery. Can J Anaesth. 1990;37(4 Pt 1):401–8.10.1007/BF03005615CrossRefGoogle ScholarPubMed
68.Flick, RP, Sprung, J, Harrison, TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37.10.1097/00000542-200702000-00009CrossRefGoogle Scholar
69.Mattu, A, Brady, WJ, Robinson, DA. Electrocardiographic manifestations of hyperkalemia. Am J Emerg Med. 2000;18(6):721–9.10.1053/ajem.2000.7344CrossRefGoogle ScholarPubMed
70.Weiskopf, RB, Schnapp, S, Rouine-Rapp, K, Bostrom, A, Toy, P. Extracellular potassium concentrations in red blood cell suspensions after irradiation and washing. Transfusion. 2005;45(8):1295–301.10.1111/j.1537-2995.2005.00220.xCrossRefGoogle ScholarPubMed
71.Swindell, CG, Barker, TA, McGuirk, SP, et al. Washing of irradiated red blood cells prevents hyperkalaemia during cardiopulmonary bypass in neonates and infants undergoing surgery for complex congenital heart disease. Eur J Cardiothorac Surg. 2007;31(4):659–64.10.1016/j.ejcts.2007.01.014CrossRefGoogle ScholarPubMed
72.Fearon, JA, Weinthal, J. The use of recombinant erythropoietin in the reduction of blood transfusion rates in craniosynostosis repair in infants and children. Plast Reconstr Surg. 2002;109(7):2190–6.10.1097/00006534-200206000-00002CrossRefGoogle ScholarPubMed
73.Krajewski, K, Ashley, RK, Pung, N, et al. Successful blood conservation during craniosynostotic correction with dual therapy using procrit and cell saver. J Craniofac Surg. 2008;19(1):101–5.10.1097/scs.0b013e3180f6112fCrossRefGoogle ScholarPubMed
74.Helfaer, MA, Carson, BS, James, CS, et al. Increased hematocrit and decreased transfusion requirements in children given erythropoietin before undergoing craniofacial surgery. J Neurosurg. 1998;88(4):704–8.10.3171/jns.1998.88.4.0704CrossRefGoogle ScholarPubMed
75.Dadure, C, Sauter, M, Bringuier, S, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114(4):856–61.10.1097/ALN.0b013e318210f9e3CrossRefGoogle ScholarPubMed
76.Goobie, SM, Meier, PM, Pereira, LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71.10.1097/ALN.0b013e318210fd8fCrossRefGoogle ScholarPubMed
77.Di Rocco, C, Tamburrini, G, Pietrini, D. Blood sparing in craniosynostosis surgery. Semin Pediatr Neurol. 2004;11(4):278–87.10.1016/j.spen.2004.11.002CrossRefGoogle ScholarPubMed
78.Phillips, RJ, Mulliken, JB. Venous air embolism during a craniofacial procedure. Plast Reconstr Surg. 1988;82(1):155–9.10.1097/00006534-198882010-00029CrossRefGoogle ScholarPubMed
79.Chang, JL, Albin, MS, Bunegin, L, Hung, TK. Analysis and comparison of venous air embolism detection methods. Neurosurgery. 1980;7(2):135–41.Google ScholarPubMed
80.Kvernmo, HD, Haugstvedt, JR. Treatment of congenital syndactyly of the fingers. Tidsskr Nor Laegeforen. 2013;133(15):1591–5.Google ScholarPubMed
81.Joseph-Reynolds, AM, Auden, SM, Sobczyzk, WL. Perioperative considerations in a newly described subtype of congenital long QT syndrome. Paediatr Anaesth. 1997;7(3):237–41.10.1046/j.1460-9592.1997.d01-73.xCrossRefGoogle Scholar
82.Napolitano, C, Splawski, I, Timothy, KW, et al. GeneReviews® (Internet). Seattle, WA: University of Washington, Seattle; 1993–2017.Google Scholar
83.Khalid, S, Faizan, M, Alam, MM, et al. Congenital longitudinal radial deficiency in infants: spectrum of isolated cases to VACTERL syndrome. J Clin Neonatol. 2013;2(4):193–5.10.4103/2249-4847.123104CrossRefGoogle ScholarPubMed
84.Ashbaugh, H, Gellman, H. Congenital thumb deformities and associated syndromes. J Craniofac Surg. 2009;20(4):1039–44.10.1097/SCS.0b013e3181abb1d8CrossRefGoogle ScholarPubMed
85.Gibstein, LA, Abramson, DL, Bartlett, RA, et al. Tissue expansion in children: a retrospective study of complications. Ann Plast Surg. 1997;38(4):358–64.10.1097/00000637-199704000-00009CrossRefGoogle ScholarPubMed
86.Bauer, BS, Few, JW, Chavez, CD, Galiano, RD. The role of tissue expansion in the management of large congenital pigmented nevi of the forehead in the pediatric patient. Plast Reconstr Surg. 2001;107(3):668–75.10.1097/00006534-200103000-00004CrossRefGoogle ScholarPubMed
87.Gosain, AK, Santoro, TD, Larson, DL, Gingrass, RP. Giant congenital nevi: a 20-year experience and an algorithm for their management. Plast Reconstr Surg. 2001;108(3):622–36.10.1097/00006534-200109010-00005CrossRefGoogle Scholar
88.Vaienti, L, Masetto, L, Davanzo, D, Marchesi, A, Ravasio, G. Giant congenital nevi of the scalp and forehead treated by skin expansion. Pediatr Med Chir. 2011;33(2):98101.Google ScholarPubMed
89.Rasmussen, BS, Henriksen, TF, Kolle, SF, Schmidt, G. Giant congenital melanocytic nevus: report from 30 years of experience in a single department. Ann Plast Surg. 2013;74(2):223–9.Google Scholar
90.Clifton, MS, Heiss, KF, Keating, JJ, Mackay, G, Ricketts, RR. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.10.1016/j.jpedsurg.2010.11.020CrossRefGoogle ScholarPubMed
91.Mhamane, R, Dave, N, Garasia, M. Delayed primary repair of giant omphalocele: anesthesia challenges. Paediatr Anaesth. 2012;22(9):935–6.10.1111/j.1460-9592.2012.03907.xCrossRefGoogle ScholarPubMed
92.Edwards, PD, Rahbar, R, Ferraro, NF, Burrows, PE, Mulliken, JB. Lymphatic malformation of the lingual base and oral floor. Plast Reconstr Surg. 2005;115(7):1906–15.10.1097/01.PRS.0000165071.48422.A4CrossRefGoogle ScholarPubMed
93.Tanaka, M, Sato, S, Naito, H, Nakayama, H. Anaesthetic management of a neonate with prenatally diagnosed cervical tumour and upper airway obstruction. Can J Anesth. 1994;41(3):236–40.10.1007/BF03009837CrossRefGoogle ScholarPubMed
94.Bouchard, S, Johnson, MP, Flake, AW, et al. The EXIT procedure: experience and outcome in 31 cases. J Pediatr Surg. 2002;37(3):418–26.CrossRefGoogle ScholarPubMed
95.Choleva, AJ. Anesthetic management of a patient undergoing an ex utero intrapartum treatment (EXIT) procedure: a case report. AANA J. 2011;79(6):497503.Google Scholar
96.Lazar, DA, Olutoye, OO, Moise, KJ, Jr., et al. Ex-utero intrapartum treatment procedure for giant neck masses: fetal and maternal outcomes. J Pediatr Surg. 2011;46(5):817–22.10.1016/j.jpedsurg.2011.02.006CrossRefGoogle ScholarPubMed
97.Farrell, PT. Prenatal diagnosis and intrapartum management of neck masses causing airway obstruction. Paediatr Anaesth. 2004;14(1):4852.10.1046/j.1460-9592.2003.01201.xCrossRefGoogle ScholarPubMed
98.Bryan, Y, Chwals, W, Ovassapian, A. Sedation and fiberoptic intubation of a neonate with a cystic hygroma. Acta Anaesthesiol Scand. 2005;49(1):122–3.CrossRefGoogle ScholarPubMed
99.Burezq, H, Williams, B, Chitte, SA. Management of cystic hygromas: 30 year experience. J Craniofac Surg. 2006;17(4):815–18.CrossRefGoogle ScholarPubMed
100.Boardman, SJ, Cochrane, LA, Roebuck, D, Elliott, MJ, Hartley, BE. Multimodality treatment of pediatric lymphatic malformations of the head and neck using surgery and sclerotherapy. Arch Otolaryngol Head Neck Surg. 2010;136(3):270–6.CrossRefGoogle ScholarPubMed
101.Kim, SW, Kavanagh, K, Orbach, DB, et al. Long-term outcome of radiofrequency ablation for intraoral microcystic lymphatic malformation. Arch Otolaryngol Head Neck Surg. 2011;137(12):1247–50.10.1001/archoto.2011.199CrossRefGoogle ScholarPubMed
102.Balakrishnan, K, Menezes, MD, Chen, BS, Magit, AE, Perkins, JA. Primary surgery vs primary sclerotherapy for head and neck lymphatic malformations. JAMA Otolaryngol Head Neck Surg. 2014;140(1):41–5.10.1001/jamaoto.2013.5849CrossRefGoogle ScholarPubMed

References

1.Christison-Lagay, ER, Kelleher, CM, Langer, JC. Neonatal abdominal wall defects. Semin Fetal Neonatal Med. 2011;16(3):164–72.10.1016/j.siny.2011.02.003CrossRefGoogle ScholarPubMed
2.Brusseau, R, McCann, ME. Anaesthesia for urgent and emergency surgery. Early Hum Dev. 2010;86(11):703–14.10.1016/j.earlhumdev.2010.08.008CrossRefGoogle ScholarPubMed
3.Banieghbal, B, Gouws, M, Davies, M. Respiratory pressure monitoring as an indirect method of intra-abdominal pressure measurement in gastroschisis closure. Eur J Pediatr Surg. 2006;16(2):7983.CrossRefGoogle ScholarPubMed
4.Mutoh, T, Lamm, WJ, Embree, LJ, Hildebrandt, J, Albert, RK. Abdominal distension alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol. 1991;70(6):2611–18.10.1152/jappl.1991.70.6.2611CrossRefGoogle ScholarPubMed
5.Ledbetter, DJ. Congenital abdominal wall defects and reconstruction in pediatric surgery: gastroschisis and omphalocele. Surg Clin North Am. 2012;92(3):713–27.CrossRefGoogle ScholarPubMed
6.Hoyme, HE, Higginbottom, MC, Jones, KL. The vascular pathogenesis of gastroschisis: intrauterine interruption of the omphalomesenteric artery. J Pediatr. 1981;98(2):228–31.10.1016/S0022-3476(81)80640-3CrossRefGoogle ScholarPubMed
7.deVries, PA. The pathogenesis of gastroschisis and omphalocele. J Pediatr Surg. 1980;15(3):245–51.10.1016/S0022-3468(80)80130-8CrossRefGoogle ScholarPubMed
8.Arnold, MA, Chang, DC, Nabaweesi, R, et al. Risk stratification of 4344 patients with gastroschisis into simple and complex categories. J Pediatr Surg. 2007;42(9):1520–5.10.1016/j.jpedsurg.2007.04.032CrossRefGoogle ScholarPubMed
9.Kilby, MD. The incidence of gastroschisis. BMJ. 2006;332(7536):250–1.10.1136/bmj.332.7536.250CrossRefGoogle ScholarPubMed
10.Loane, M, Dolk, H, Bradbury, I. EUROCAT Working Group. Increasing prevalence of gastroschisis in Europe 1980–2002: a phenomenon restricted to younger mothers? Paediatr Perinat Epidemiol. 2007;21(4):363–9.10.1111/j.1365-3016.2007.00820.xCrossRefGoogle Scholar
11.Frolov, P, Alali, J, Klein, MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int. 2010;26(12):1135–48.10.1007/s00383-010-2701-7CrossRefGoogle ScholarPubMed
12.Fratelli, N, Papageorghiou, AT, Bhide, A, et al. Outcome of antenatally diagnosed abdominal wall defects. Ultrasound Obstet Gynecol. 2007;30(3):266–70.10.1002/uog.4086CrossRefGoogle ScholarPubMed
13.Juhasz-Böss, I, Goelz, R, Solomayer, E-F, Fuchs, J, Meyberg-Solomayer, G. Fetal and neonatal outcome in patients with anterior abdominal wall defects (gastroschisis and omphalocele). J Perinat Med. 2012;40(1):8590.10.1515/JPM.2011.107CrossRefGoogle Scholar
14.Aljahdali, A, Mohajerani, N, Skarsgard, ED. Effect of timing of enteral feeding on outcome in gastroschisis. J Pediatr Surg. 2013;48(5):971–6.10.1016/j.jpedsurg.2013.02.014CrossRefGoogle ScholarPubMed
15.Minutillo, C, Rao, SC, Pirie, S, McMichael, J, Dickinson, JE. Growth and developmental outcomes of infants with gastroschisis at one year of age: a retrospective study. J Pediatr Surg. 2013;48(8):1688–96.10.1016/j.jpedsurg.2012.11.046CrossRefGoogle ScholarPubMed
16.Van Manen, M, Hendson, L, Wiley, M, et al. Early childhood outcomes of infants born with gastroschisis. J Pediatr Surg. 2013;48(8):1682–7.CrossRefGoogle ScholarPubMed
17.David, AL, Tan, A, Curry, J. Gastroschisis: sonographic diagnosis, associations, management and outcome. Prenat Diagn. 2008;28(7):633–44.10.1002/pd.1999CrossRefGoogle ScholarPubMed
18.Tucker, JM, Brumfield, CG, Davis, RO, et al. Prenatal differentiation of ventral abdominal wall defects: are amniotic fluid markers useful adjuncts? J Reprod Med. 1992;37(5):445–8.Google ScholarPubMed
19.Murat, I, Humblot, A, Girault, L, Piana, F. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24(3):365–74.10.1016/j.bpa.2010.02.014CrossRefGoogle ScholarPubMed
20.Mortellaro, VE, Peter, SDS, Fike, FB, Islam, S. Review of the evidence on the closure of abdominal wall defects. Pediatr Surg Int. 2011;27(4):391–7.10.1007/s00383-010-2803-2CrossRefGoogle ScholarPubMed
21.Marven, S, Owen, A. Contemporary postnatal surgical management strategies for congenital abdominal wall defects. Semin Pediatr Surg. 2008;17(4):222–35.10.1053/j.sempedsurg.2008.07.002CrossRefGoogle ScholarPubMed
22.Daily, WJR, Klaus, M, Belton, H, Meyer, P. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics. 1969;43(4):510–18.10.1542/peds.43.4.510CrossRefGoogle Scholar
23.Mellor, DJ, Lerman, J. Anesthesia for neonatal surgical emergencies. Semin Perinatol. 1998;22(5):363–79.10.1016/S0146-0005(98)80053-0CrossRefGoogle ScholarPubMed
24.Goeller, JK, Bhalla, T, Tobias, JD. Combined use of neuraxial and general anesthesia during major abdominal procedures in neonates and infants. Paediatr Anaesth. 2014; doi: 10.1111/pan.12384.CrossRefGoogle ScholarPubMed
25.Tobias, JD, Rasmussen, GE, Holcomb, GW, Brock, JW, Morgan, WM. Continuous caudal anaesthesia with chloroprocaine as an adjunct to general anaesthesia in neonates. Can J Anaesth. 1996;43(1):6972.10.1007/BF03015961CrossRefGoogle Scholar
26.Yaster, M, Scherer, TLR, Stone, MM, et al. Prediction of successful primary closure of congenital abdominal wall defects using intraoperative measurements. J Pediatr Surg. 1989;24(12):1217–20.10.1016/S0022-3468(89)80554-8CrossRefGoogle ScholarPubMed
27.Yaster, M, Buck, JR, Dudgeon, DL, et al. Hemodynamic effects of primary closure of omphalocele/gastroschisis in human newborns. Anesthesiology. 1988;69(1):84–8.10.1097/00000542-198807000-00012CrossRefGoogle ScholarPubMed
28.Pelosi, P, Vargas, M. Mechanical ventilation and intra-abdominal hypertension: “Beyond Good and Evil.”Crit Care. 2012;16(6):187.10.1186/cc11874CrossRefGoogle Scholar
29.Sadler, TW. The embryologic origin of ventral body wall defects. Semin Pediatr Surg. 2010;19(3):209–14.CrossRefGoogle ScholarPubMed
30.Calzolari, E, Bianchi, F, Dolk, H, Milan, M. Omphalocele and gastroschisis in Europe: a survey of 3 million births 1980–1990. Am J Med Genet. 1995;58(2):187–94.10.1002/ajmg.1320580218CrossRefGoogle ScholarPubMed
31.Tan, KH, Kilby, MD, Whittle, MJ, et al. Congenital anterior abdominal wall defects in England and Wales 1987–93: retrospective analysis of OPCS data. BMJ. 1996;313(7062):903–6.10.1136/bmj.313.7062.903CrossRefGoogle ScholarPubMed
32.Vermeij-Keers, C, Hartwig, NG, van der Werff, JF. Embryonic development of the ventral body wall and its congenital malformations. Semin Pediatr Surg. 1996;5(2):82–9.Google Scholar
33.Islam, S. Clinical care outcomes in abdominal wall defects. Curr Opin Pediatr. 2008;20(3):305–10.10.1097/MOP.0b013e3282ffdc1eCrossRefGoogle ScholarPubMed
34.Mitanchez, D, Walter-Nicolet, E, Humblot, A, et al. Neonatal care in patients with giant ompholocele: arduous management but favorable outcomes. J Pediatr Surg. 2010;45(8):1727–33.10.1016/j.jpedsurg.2010.04.011CrossRefGoogle ScholarPubMed
35.Mann, S, Blinman, TA, Douglas Wilson, R. Prenatal and postnatal management of omphalocele. Prenat Diagn. 2008;28(7):626–32.10.1002/pd.2008CrossRefGoogle ScholarPubMed
36.Liu, LMP, Mei Pang, L. Neonatal surgical emergencies. Anesthesiol Clin N Am. 2001;19(2):265–86.10.1016/S0889-8537(05)70229-7CrossRefGoogle ScholarPubMed
37.Clifton, MS, Heiss, KF, Keating, JJ, Mackay, G, Ricketts, RR. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.10.1016/j.jpedsurg.2010.11.020CrossRefGoogle ScholarPubMed
38.Moore, TC. Omphalomesenteric duct malformations. Semin Pediatr Surg. 1996;5(2):116–23.Google ScholarPubMed
39.Meier, DE, OlaOlorun, DA, Omodele, RA, Nkor, SK, Tarpley, JL. Incidence of umbilical hernia in African children: redefinition of “normal” and reevaluation of indications for repair. World J Surg. 2001;25(5):645–8.10.1007/s002680020072CrossRefGoogle ScholarPubMed
40.Kelly, KB, Ponsky, TA. Pediatric abdominal wall defects. Surg Clin North Am. 2013;93(5):1255–67.CrossRefGoogle ScholarPubMed
41.Zendejas, B, Zarroug, AE, Erben, YM, Holley, CT, Farley, DR. Impact of childhood inguinal hernia repair in adulthood: 50 years of follow-up. J Am Coll Surg. 2010;211(6):762–8.10.1016/j.jamcollsurg.2010.08.011CrossRefGoogle ScholarPubMed
42.Snyder, CL. Current management of umbilical abnormalities and related anomalies. Semin Pediatr Surg. 2007;16(1):41–9.CrossRefGoogle ScholarPubMed
43.Willschke, H, Bösenberg, A, Marhofer, P, et al. Ultrasonography-guided rectus sheath block in paediatric anaesthesia: a new approach to an old technique. Br J Anaesth. 2006;97(2):244–9.10.1093/bja/ael143CrossRefGoogle Scholar
44.Coté, CJ, Zaslavsky, A, Downes, JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy: a combined analysis. Anesthesiology. 1995;82(4):809–22.10.1097/00000542-199504000-00002CrossRefGoogle ScholarPubMed
45.Dingeman, R, Barus, LM, Chung, H, et al. Ultrasonography-guided bilateral rectus sheath block vs local anesthetic infiltration after pediatric umbilical hernia repair: a prospective randomized clinical trial. JAMA Surg. 2013;148(8):707–13.10.1001/jamasurg.2013.1442CrossRefGoogle ScholarPubMed
46.Gurnaney, HG, Maxwell, LG, Kraemer, FW, et al. Prospective randomized observer-blinded study comparing the analgesic efficacy of ultrasound-guided rectus sheath block and local anaesthetic infiltration for umbilical hernia repair. Br J Anaesth. 2011;107(5):790–5.CrossRefGoogle ScholarPubMed
47.Lao, OB, Fitzgibbons, RJ Jr., Cusick, RA. Pediatric inguinal hernias, hydroceles, and undescended testicles. Surg Clin North Am. 2012;92(3):487504.10.1016/j.suc.2012.03.017CrossRefGoogle ScholarPubMed
48.Ein, SH, Njere, I, Ein, A. Six thousand three hundred sixty-one pediatric inguinal hernias: a 35-year review. J Pediatr Surg. 2006;41(5):980–6.10.1016/j.jpedsurg.2006.01.020CrossRefGoogle ScholarPubMed
49.Sadler, TW Urogenital system. In Langman’s Medical Embryology, 12th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2011.Google Scholar
50.Lau, ST, Lee, Y-H, Caty, MG. Current management of hernias and hydroceles. Semin Pediatr Surg. 2007;16(1):50–7.10.1053/j.sempedsurg.2006.10.007CrossRefGoogle ScholarPubMed
51.Wang, KS, Committee on Fetus and Newborn, American Academy of Pediatrics, Section on Surgery, American Academy of Pediatrics. Assessment and management of inguinal hernia in infants. Pediatrics. 2012;130(4):768–73.10.1542/peds.2012-2008CrossRefGoogle ScholarPubMed
52.Olsen, EA, Brambrink, AM. Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol. 2013;26(5):535–42.10.1097/01.aco.0000433061.59939.b7CrossRefGoogle ScholarPubMed
53.Welborn, LG, Greenspun, JC. Anesthesia and apnea: perioperative considerations in the former preterm infant. Pediatr Clin North Am. 1994;41(1):181–98.10.1016/S0031-3955(16)38698-9CrossRefGoogle ScholarPubMed
54.Murphy, JJ, Swanson, T, Ansermino, M, Milner, R. The frequency of apneas in premature infants after inguinal hernia repair: do they need overnight monitoring in the intensive care unit? J Pediatr Surg. 2008;43(5):865–8.10.1016/j.jpedsurg.2007.12.028CrossRefGoogle ScholarPubMed
55.Lee, SL, Gleason, JM, Sydorak, RM. A critical review of premature infants with inguinal hernias: optimal timing of repair, incarceration risk, and postoperative apnea. J Pediatr Surg. 2011;46(1):217–20.10.1016/j.jpedsurg.2010.09.094CrossRefGoogle Scholar
56.Yang, C, Zhang, H, Pu, J, et al. Laparoscopic vs open herniorrhaphy in the management of pediatric inguinal hernia: a systemic review and meta-analysis. J Pediatr Surg. 2011;46(9):1824–34.10.1016/j.jpedsurg.2011.04.001CrossRefGoogle ScholarPubMed
57.Lazar, DA, Lee, TC, Almulhim, SI, et al. Transinguinal laparoscopic exploration for identification of contralateral inguinal hernias in pediatric patients. J Pediatr Surg. 2011;46(12):2349–52.CrossRefGoogle ScholarPubMed
58.Matthews, RD, Neumayer, L. Inguinal hernia in the 21st century: an evidence-based review. Curr Probl Surg. 2008;45(4):261312.CrossRefGoogle ScholarPubMed
59.Henderson-Smart, DJ, Steer, PA. Prophylactic caffeine to prevent postoperative apnoea following general anaesthesia in preterm infants. Cochrane Database Syst Rev. 2001;4:CD000048.Google Scholar
60.Disma, N, Tuo, P, Pellegrino, S, Astuto, M. Three concentrations of levobupivacaine for ilioinguinal/iliohypogastric nerve block in ambulatory pediatric surgery. J Clin Anesth. 2009;21(6):389–93.10.1016/j.jclinane.2008.10.012CrossRefGoogle ScholarPubMed
61.Mai, CL, Young, MJ, Quraishi, SA. Clinical implications of the transversus abdominis plane block in pediatric anesthesia. Pediatr Anesth. 2012;22(9):831–40.10.1111/j.1460-9592.2012.03916.xCrossRefGoogle ScholarPubMed
62.Jagannathan, N, Sohn, L, Sawardekar, A, et al. Unilateral groin surgery in children: will the addition of an ultrasound-guided ilioinguinal nerve block enhance the duration of analgesia of a single-shot caudal block? Pediatr Anesth. 2009;19(9):892–8.10.1111/j.1460-9592.2009.03092.xCrossRefGoogle ScholarPubMed
63.Frawley, G, Ingelmo, P. Spinal anaesthesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24(3):337–51.CrossRefGoogle ScholarPubMed
64.Harrison, D, Beggs, S, Stevens, B. Sucrose for procedural pain management in infants. Pediatrics. 2012;130(5):918–25.10.1542/peds.2011-3848CrossRefGoogle Scholar
65.Hoelzle, M, Weiss, M, Dillier, C, Gerber, A. Comparison of awake spinal with awake caudal anesthesia in preterm and ex-preterm infants for herniotomy. Pediatr Anesth. 2010;20(7):620–4.CrossRefGoogle ScholarPubMed
66.Palmer, LS. Hernias and hydroceles. Pediatr Rev Am Acad Pediatr. 2013;34(10):457464; quiz 464.10.1542/pir.34.10.457CrossRefGoogle ScholarPubMed
67.Cozzi, DA, Mele, E, Ceccanti, S, et al. Infantile abdominoscrotal hydrocele: a not so benign condition. J Urol. 2008;180(6):2611–15.10.1016/j.juro.2008.08.054CrossRefGoogle Scholar
68.Koski, ME, Makari, JH, Adams, MC, et al. Infant communicating hydroceles: do they need immediate repair or might some clinically resolve? J Pediatr Surg. 2010;45(3):590–3.10.1016/j.jpedsurg.2009.06.026CrossRefGoogle ScholarPubMed
68.Wilson, JM, Aaronson, DS, Schrader, R, Baskin, LS. Hydrocele in the pediatric patient: inguinal or scrotal approach? J Urol. 2008;180(Suppl. 4):1724–8.10.1016/j.juro.2008.03.111CrossRefGoogle ScholarPubMed
70.Banchs, RJ, Lerman, J. Preoperative anxiety management, emergence delirium, and postoperative behavior. Anesthesiol Clin. 2014;32(1):123.10.1016/j.anclin.2013.10.011CrossRefGoogle ScholarPubMed
71.Bhalla, T, Sawardekar, A, Dewhirst, E, Jagannathan, N, Tobias, JD. Ultrasound-guided trunk and core blocks in infants and children. J Anesth. 2013;27(1):109–23.CrossRefGoogle ScholarPubMed

References

1.Adamson, K Jr., Gandy, GM, James, LS. The influence of thermal factors upon oxygen consumption of the newborn human infant. J Pediatr. 1965;66:495508.CrossRefGoogle ScholarPubMed
2.Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE. Respiratory system. In Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE, editors. Nelson Textbook of Pediatrics. Philadelphia, PA: Elsevier; 2011; 2680.Google Scholar
3.Walker, RWM, Ravi, R, Haylett, K Effect of cricoid force on airway calibre in children: a bronchoscopic assessment. Br J Anaesth. 2009; 104(1):71–4.Google Scholar
4.Bouvet, L, Albert, ML, Augris, C. Real-time detection of gastric insufflation related to facemask pressure–controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients. Anesthesiology. 2014;120(2):326–34.CrossRefGoogle ScholarPubMed
5.Moynihan, RJ, Brock-Utne, JG, Archer, JH, Feld, LH, Kreitzman, TR. The effect of cricoid pressure on preventing gastric insufflation in infants and children. Anesthesiology. 1993;78(4):652–6.10.1097/00000542-199304000-00007CrossRefGoogle ScholarPubMed
6.Biebuyck, JF, Benumof, JL. Management of the difficult adult airway with special emphasis on awake tracheal intubation. Anesthesiology. 1991;75(6):1087.10.1097/00000542-199112000-00021CrossRefGoogle Scholar
7.Salem, MR, Wong, AY, Mani, M, Sellick, BA. Efficacy of cricoid pressure in preventing gastric inflation during bag-mask ventilation in pediatric patients. Anesthesiology. 1974;40(1):96–8.10.1097/00000542-197401000-00026CrossRefGoogle ScholarPubMed
8.Bannister, CF, Brosius, KK, Wulkan, M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Pediatr Anesth. 2003;13(9):785–9.10.1046/j.1460-9592.2003.01149.xCrossRefGoogle ScholarPubMed
9.Gueugniaud, P-Y, Abisseror, M, Moussa, M, et al. The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg. 1998;86(2):290–3.Google ScholarPubMed
10.Sakka, SG, Huettemann, E, Petrat, G, et al. Transoesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth. 2000;84(3):330–4.10.1093/oxfordjournals.bja.a013434CrossRefGoogle ScholarPubMed
11.Yacoub, OF, Cardona, IJ, Coveler, LA, Dodson, MG. Carbon dioxide embolism during laparoscopy. Anesthesiology. 1982;57(6):533.CrossRefGoogle ScholarPubMed
12.Irgau, I, Koyfman, Y, Tikellis, JI. Elective intraoperative intracranial pressure monitoring during laparoscopic cholecystectomy. Arch Surg Am Med Assoc. 1995;130(9):1011–13.Google ScholarPubMed
13.Schöb, OM, Allen, DC, Benzel, E, et al. A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am J Surg. 1996;172(3):248–53.10.1016/S0002-9610(96)00101-8CrossRefGoogle ScholarPubMed
14.Puligandla, PS, Nguyen, LT, St-Vil, D, Flageole, H Gastrointestinal duplications. J Pediatr Surg. 2003;38(5):740–4.10.1016/jpsu.2003.50197CrossRefGoogle ScholarPubMed
15.Gross, RE, Holcomb, GW Jr., Farber, S. Duplications of the alimentary tract. Pediatrics. 1952;9(4):449–68.10.1542/peds.9.4.449CrossRefGoogle ScholarPubMed
16.Faris, JC, Crowe, JE. The split notochord syndrome. J Pediatr Surg. 1975;10(4):467–72.10.1016/0022-3468(75)90186-4CrossRefGoogle ScholarPubMed
17.Laje, P, Flake, AW, Adzick, NS. Prenatal diagnosis and postnatal resection of intraabdominal enteric duplications. J Pediatr Surg. 2010;45(7):1554–8.10.1016/j.jpedsurg.2010.03.017CrossRefGoogle ScholarPubMed
18.Stringer, MD, Spitz, L, Abel, R, et al. Management of alimentary tract duplication in children. Br J Surg. 1995;82(1):74–8.CrossRefGoogle ScholarPubMed
19.Iyer, CP, Mahour, GH. Duplications of the alimentary tract in infants and children. J Pediatr Surg. 1995;30(9):1267–70.10.1016/0022-3468(95)90482-4CrossRefGoogle ScholarPubMed
20.MacMahon, B. The continuing enigma of pyloric stenosis of infancy. Epidemiology. 2006;17(2):195201.10.1097/01.ede.0000192032.83843.c9CrossRefGoogle ScholarPubMed
21.Bissonnette, B, Sullivan, PJ. Pyloric stenosis. Can J Anesth. 1991;38(5):668–76.10.1007/BF03008206CrossRefGoogle ScholarPubMed
22.Schechter, R, Torfs, CP, Bateson, TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol. 1997;11(4):407–27.10.1046/j.1365-3016.1997.d01-32.xCrossRefGoogle ScholarPubMed
23.Breaux, CW, Hood, JS, Georgeson, KE. The significance of alkalosis and hypochloremia in hypertrophic pyloric stenosis. J Pediatr Surg. 1989;24(12):1250–2.10.1016/S0022-3468(89)80561-5CrossRefGoogle ScholarPubMed
24.Pandya, S, Heiss, K. Pyloric stenosis in pediatric surgery. Surg Clin North Am. 2012;92(3):527–39.10.1016/j.suc.2012.03.006CrossRefGoogle ScholarPubMed
25.Ein, SH, Masiakos, PT, Ein, A The ins and outs of pyloromyotomy: what we have learned in 35 years. Pediatr Surg Int. 2014;30(5):467–80.10.1007/s00383-014-3488-8CrossRefGoogle ScholarPubMed
26.Goh, DW, Hall, SK, Gornall, P, et al. Plasma chloride and alkalaemia in pyloric stenosis. Br J Surg. 1990;77(8):922–3.10.1002/bjs.1800770827CrossRefGoogle ScholarPubMed
27.Shanbhogue, LKR, Sikdar, T, Jackson, M, Lloyd, DA. Serum electrolytes and capillary blood gases in the management of hypertrophic pyloric stenosis. Br J Surg. 1992;79(3):251–3.10.1002/bjs.1800790322CrossRefGoogle ScholarPubMed
28.Davis, PJ, Galinkin, J, McGowan, FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy: I. Emergence and recovery profiles. Anesth Analg. 2001;93(6):1380–6.CrossRefGoogle ScholarPubMed
29.Carlo, W Respiratory Tract Disorders. In Kliegman, RM, Stanton, BMD, Geme, JS, Schor, NF, Behrman, RE, editors. Nelson Textbook of Pediatrics. Philadelphia, PA: Elsevier; 2011.Google Scholar
30.Berman, L, Moss, RL. Necrotizing enterocolitis: an update. Semin Fetal Neonat Med. 2011;16(3):145–50.10.1016/j.siny.2011.02.002CrossRefGoogle ScholarPubMed
31.Lambert, DK, Christensen, RD, Henry, E, et al. Necrotizing enterocolitis in term neonates: data from a multihospital health-care system. J Perinatol. 2007;27(7):437–43.CrossRefGoogle ScholarPubMed
32.Rees, CM, Pierro, A, Eaton, S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child FetalNeonatal Ed. 2007;92(3):F193–8.Google ScholarPubMed
33.Guthrie, SO, Gordon, PV, Thomas, V, et al. Necrotizing enterocolitis among neonates in the United States. J Perinatol. 2003;23(4):278–85.10.1038/sj.jp.7210892CrossRefGoogle ScholarPubMed
34.Dicken, BJ, Ziegler, MM. Surgical management of pulmonary and gastrointestinal complications in children with cystic fibrosis. Curr Op Pediatr. 2006;18(3):321–9.Google ScholarPubMed
35.Fakhoury, K, Durie, PR, Levison, H, Canny, GJ. Meconium ileus in the absence of cystic fibrosis. Arch Dis Child. 1992;67(10):1204–6.10.1136/adc.67.10_Spec_No.1204CrossRefGoogle ScholarPubMed
36.Carlyle, BE, Borowitz, DS, Glick, PL A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J Pediatr Surg. 2012;47(4):772–81.10.1016/j.jpedsurg.2012.02.019CrossRefGoogle ScholarPubMed
37.Leonidas, JC, Burry, VF, Fellows, RA, Beatty, EC. Possible adverse effect of methylglucamine diatrizoate compounds on the bowel of newborn infants with meconium ileus. Radiology. 1976;121(3 Pt. 1):693–6.10.1148/121.3.693CrossRefGoogle ScholarPubMed
38.Burke, MS, Ragi, JM, Karamanoukian, HL, et al. New strategies in nonoperative management of meconium ileus. J Pediatr Surg. 2002;37(5):760–4.10.1053/jpsu.2002.32272CrossRefGoogle ScholarPubMed
39.Gourlay, DM. Colorectal considerations in pediatric patients. Surg Clin North Am. 2013; 93(1):251–72.CrossRefGoogle ScholarPubMed
40.Shew, SB. Surgical concerns in malrotation and midgut volvulus. Pediatr Radiol. 2009; 39(Suppl 2):S167–71.10.1007/s00247-008-1129-xCrossRefGoogle ScholarPubMed
41.Powell, DM, Othersen, HB, Smith, CD. Malrotation of the intestines in children: the effect of age on presentation and therapy. J Pediatr Surg. 1989;24(8):777–80.10.1016/S0022-3468(89)80535-4CrossRefGoogle ScholarPubMed
42.Ford, EG, Senac, MO, Srikanth, MS, Weitzman, JJ. Malrotation of the intestine in children. Annals of Surgery. 1992;215(2):172–8.CrossRefGoogle Scholar
43.Dilley, AV, Pereira, J, Shi, ECP, et al. The radiologist says malrotation: does the surgeon operate? Pediatr Surg Int. 2000;16(1–2):45–9.CrossRefGoogle ScholarPubMed
44.Vecchia, LKD, Grosfeld, JL, West, KW, et al. Intestinal atresia and stenosis: a 25-year experience with 277 cases. Arch Surg Am Med Assoc. 1998;133(5):490–7.Google ScholarPubMed
45.Best, KE, Tennant, PWG, Addor, M-C, et al. Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2012;97(5):F353–8.10.1136/fetalneonatal-2011-300631CrossRefGoogle ScholarPubMed
46.N-Fek, C. Total colonic aganglionosis (with or without ileal involvement): a review of 27 cases. J Pediatr Surg. 1986;21(3):251–4.Google Scholar
47.Suita, S, Taguchi, T, Kamimura, T, Yanai, K. Total colonic aganglionosis with or without small bowel involvement: a changing profile. J Pediatr Surg. 1997;32(11):1537–41.10.1016/S0022-3468(97)90446-2CrossRefGoogle ScholarPubMed
48.Badner, JA, Sieber, WK, Garver, KL, Chakravarti, A. A genetic study of Hirschsprung disease. Am J Hum Genet.1990;46(3):568–80.Google ScholarPubMed
49.Amiel, J, Sproat-Emison, E, Garcia-Barcelo, M Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):114.CrossRefGoogle ScholarPubMed
50.Shah, S. An update on common gastrointestinal emergencies. Emerg Med Clin North Am. 2013;31(3):775–93.10.1016/j.emc.2013.05.002CrossRefGoogle ScholarPubMed
51.Cuschieri, A. Descriptive epidemiology of isolated anal anomalies: a survey of 4.6 million births in Europe. Am J Med Genet. 2001;103(3):207–15.10.1002/ajmg.1532CrossRefGoogle ScholarPubMed
52.Levitt, MA, Peña, A. Outcomes from the correction of anorectal malformations. Curr Op Pediatr. 2005;17(3):394401.10.1097/01.mop.0000163665.36798.acCrossRefGoogle ScholarPubMed
53.Levitt, MA, Peña, A. Anorectal malformations. Pediatr Surg. 2012: 121. doi: 10.1186/1750-1172-2-33.Google Scholar
54.Stoll, C, Alembik, Y, Dott, B, Roth, MP. Associated malformations in patients with anorectal anomalies. Eur J Med Genet. 2007;50(4):281–90.10.1016/j.ejmg.2007.04.002CrossRefGoogle ScholarPubMed
55.Mandeville, K, Chien, M, Willyerd, FA, et al. Intussusception: clinical presentations and imaging characteristics. Pediatr Emerg Care. 2012;28(9):842–4.10.1097/PEC.0b013e318267a75eCrossRefGoogle ScholarPubMed
56.Kuppermann, N, O’Dea, T, Pinckney, L, Hoecker, C. Predictors of intussusception in young children. Arch Pediatr Adolesc Med Am Med Assoc. 2000;154(3):250–5.Google ScholarPubMed
57.Daneman, A, Navarro, O. Intussusception. Pediatr Radiol. 2004;34(2):97108.CrossRefGoogle ScholarPubMed
58.Whitehouse, JS, Gourlay, DM, Winthrop, AL Is it safe to discharge intussusception patients after successful hydrostatic reduction? J Pediatr Surg. 2010;45(6):1182–6.10.1016/j.jpedsurg.2010.02.085CrossRefGoogle ScholarPubMed

References

1.Yaster, M. Multimodal analgesia in children. Eur J Anaesthesiol. 2010;27(10):851–7.CrossRefGoogle ScholarPubMed
2.Monitto, CL, Kost-Byerly, S, Yaster, M Pain management. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. Philadelphia, PA: Elsevier; 2006.Google Scholar
3.Elder, JS, Shapiro, E. Posterior urethral valves. In Holcomb, GW, Murphy, JP, Ostlie, DJ, editors. Ashcraft’s Pediatric Surgery, 6th edn. Philadelphia, PA: Elsevier; 2014; 762–72.Google Scholar
4.Krishnan, A, de Souza, A, Konijeti, R, Baskin, L. The anatomy and embryology of posterior urethral valves. J Urol. 2006;175(4):1214–20.10.1016/S0022-5347(05)00642-7CrossRefGoogle ScholarPubMed
5.Nasir, AA, Ameh, EA, Abdur-Rahman, LO, Adeniran, JO, Abraham, MK. Posterior urethral valve. World J Pediatr. 2011;7(3):205–16.10.1007/s12519-011-0289-1CrossRefGoogle ScholarPubMed
6.Tekgul, S, Riedmiller, H, Dogan, HS, et al. Guidelines on Paediatric Urology. n.p.: European Society for Paediatric Urology; 2013.Google Scholar
7.Yamaçake, KGR, Nguyen, HT. Current management of antenatal hydronephrosis. Pediatr Nephrol. 2013;28(2):237–43.10.1007/s00467-012-2240-7CrossRefGoogle ScholarPubMed
8.Figenshau, RS, Clayman, RV. Endourologic options for management of ureteropelvic junction obstruction in the pediatric patient. Urol Clin North Am. 1998;25:199209.10.1016/S0094-0143(05)70008-2CrossRefGoogle ScholarPubMed
9.Lee, RS, Borer, JG. Perinatal urology. In Wein, AJ, Kavoussi, LR, Novick, AC, Partin, AW, Peters, CA, editors. Campbell-Walsh Urology, 10th edn. Philadelphia, PA: Elsevier Saunders; 2014.Google Scholar
10.Brandström, P, Nevéus, T, Sixt, R, et al. The Swedish reflux trial in children: IV. Renal damage. J Urol. 2010;184(1):292–7.CrossRefGoogle ScholarPubMed
11.Esbjörner, E, Hansson, S, Jakobsson, B. Management of children with dilating vesico-ureteric reflux in Sweden. Acta Paediatr. 2004;93:3742.CrossRefGoogle ScholarPubMed
12.Gundeti, M. Wilms tumor. In Gearhart, JP, Rink, RC, Mouriquand, PDE, editors. Pediatric Urology. 2nd edn. Philadelphia, PA: Elsevier; 2014.Google Scholar
13.Mei, H, Pu, J, Yang, C, et al. Laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children: a systematic review and meta-analysis. J Endourol. 2011;25:727–36.10.1089/end.2010.0544CrossRefGoogle ScholarPubMed
14.Turner, RM, Fox, JA, Tomaszewski, JJ, et al. Laparoscopic pyeloplasty for ureteropelvic junction obstruction in infants. J Urol. 2013;189:1503–6.10.1016/j.juro.2012.10.067CrossRefGoogle ScholarPubMed
15.Cunningham, AJ. Anesthetic implications of laparoscopic surgery. Yale J Biol Med. 1998;71:551–78.Google ScholarPubMed
16.Goel, S. Anesthesia for pediatric laparoscopy. Pediatric OnCall. 2005. Available at: www.pediatriconcall.com/Journal/Article/FullText.aspx?artid=748&type=J&tid=&imgid=&reportid=392&tbltype=.Google Scholar
17.Davidoff, AM. Wilms tumor. Adv Pediatr. 2012;59(1):247–67.10.1016/j.yapd.2012.04.001CrossRefGoogle ScholarPubMed
18.Ross, JH. Genitourinary tumors. In Palmer, JS, editor. Pediatric Urology. Totowa, NJ: Humana Press; 2011.Google Scholar
19.Dénes, FT, Duarte, RJ, Cristófani, LM, Lopes, RI. Pediatric genitourinary oncology. Front Pediatr. 2013;1:48.10.3389/fped.2013.00048CrossRefGoogle ScholarPubMed
20.Sausville, JE, Hernandez, DJ, Argani, P, Gearhart, JP. Pediatric renal cell carcinoma. J Pediatr Urol. 2009;5(4):308–14.CrossRefGoogle Scholar
21.Massanyi, EZ, Gearhart, JP, Kost-Byerly, S. Perioperative management of classic bladder exstrophy. Res Reports Urol. 2013;5:6775.Google ScholarPubMed
22.Kost-Byerly, S, Jackson, E. Perioperative anesthetic and analgesic management of newborn bladder exstrophy repair. J Pediatr. 2008;4(4):280–5.Google ScholarPubMed
23.Yaster, M, Kost-Byerly, S, Berde, C, Billet, C. The management of opioid and benzodiazepine dependence in infants, children, and adolescents. Pediatrics. 1996;98(1):135–40.10.1542/peds.98.1.135CrossRefGoogle ScholarPubMed
24.Tobias, JD, Schleien, CL, Haun, SE. Methadone as treatment for iatrogenic narcotic dependency in pediatric intensive care unit patients. Crit Care Med. 1990;18(11):1292–3.10.1097/00003246-199011000-00024CrossRefGoogle ScholarPubMed
25.Tobias, JD, Deshpande, JK, Gregory, DF. Outpatient therapy of iatrogenic drug dependency following prolonged sedation in the pediatric intensive care unit. Intensive Care Med. 1994;20(7):504–7.CrossRefGoogle ScholarPubMed
26.Jost, A. Becoming a male. Adv Biosci. 1973;10:313.Google ScholarPubMed
27.Woodhouse, CJ. Ambiguous genitalia in male adolescents. In Gearhart, JP, Rink, RC, Mouriquand, PDE, editors, Pediatric Urology. 2nd edn. Philadelphia, PA: Elsevier; 2014.Google Scholar
28.Vidal, I, Gorduza, DB, Haraux, E, et al. Surgical options in disorders of sex development (DSD) with ambiguous genitalia. Best Pract Res Clin Endocrinol Metab. 2010;24(2):311–24.10.1016/j.beem.2009.10.004CrossRefGoogle ScholarPubMed
29.Rangecroft, L. Surgical management of ambiguous genitalia. Arch Dis Child. 2003;88:799801.CrossRefGoogle ScholarPubMed
30.Kipnis, K, Diamond, M. Pediatric ethics and the surgical assignment of sex. J Clin Ethics. 1998;9:398410.CrossRefGoogle ScholarPubMed
31.Hayashi, Y, Kojima, Y, Mizuno, K, Kohri, K. Prepuce: phimosis, paraphimosis, and circumcision. Scientific World J. 2011;11:289301.CrossRefGoogle ScholarPubMed
32.Drake, T, Rustom, J. Phimosis in childhood. BMJ. 2013;3678:14.Google Scholar
33.Monsour, MA, Rabinovitch, HH, Dean, GE. Medical management of phimosis in children: our experience with topical steroids. J Urol. 1999.162:1162–4.10.1016/S0022-5347(01)68112-6CrossRefGoogle ScholarPubMed
34.Palmer, LS, Palmer, JS. The efficacy of topical betamethasone for treating phimosis: a comparison of two treatment regimens. Urology. 2008;72:6871.10.1016/j.urology.2008.02.030CrossRefGoogle ScholarPubMed
35.Golubovic, Z, Milanovic, D, Vukadinovic, V, Rakic, I, Perovic, S. The conservative treatment of phimosis in boys. Br J Urol. 1996;78:786–8.10.1046/j.1464-410X.1996.21724.xCrossRefGoogle ScholarPubMed
36.De Castella, H. Prepuceplasty: an alternative to circumcision. Ann R Coll Surg Engl. 1994;76:257–8.Google ScholarPubMed
37.Steadman, B, Ellsworth, P. To circ or not to circ: indications, risks, and alternatives to circumcision in the pediatric population with phimosis. Urol Nurs Off J Am Urol Assoc Allied. 2006;26:181–94.Google ScholarPubMed
38.Stevens, B. Pain: Clinical Manual, 2nd edn. St. Louis, MO: Mosby; 1999.Google Scholar
39.Pasero, C. Circumcision requires anesthesia and analgesia. Am J Nurs. 2001;101(9):22–3.CrossRefGoogle ScholarPubMed
40.Taddio, A, Pollock, N, Gilbert-MacLeod, C, Ohlsson, K, Koren, G. Combined analgesia and local anesthesia to minimize pain during circumcision. Arch Pediatr Adolesc Med. 2000;154(6):620–3.10.1001/archpedi.154.6.620CrossRefGoogle ScholarPubMed
41.Haliloglu, AH, Gokce, MI, Tangal, S, et al. Comparison of postoperative analgesic efficacy of penile block, caudal block and intravenous paracetamol for circumcision: a prospective randomized study. Int Braz J Urol. 2013;39:551–7.10.1590/S1677-5538.IBJU.2013.04.13CrossRefGoogle ScholarPubMed
42.Kaya, Z, Süren, M, Arici, S, et al. Prospective, randomized, double-blinded comparison of the effects of caudally administered levobupivacaine 0.25% and bupivacaine 0.25% on pain and motor block in children undergoing circumcision surgery. Eur Rev Med Pharmacol Sci. 2012;16:2014–20.Google ScholarPubMed
43.Carmichael, SL, Shaw, GM, Lammer, EJ. Environmental and genetic contributors to hypospadias: a review of the epidemiologic evidence. Birth Defects Res A Clin Mol Teratol. 2012;94:499510.10.1002/bdra.23021CrossRefGoogle ScholarPubMed
44.Hayashi, Y, Kojima, Y. Current concepts in hypospadias surgery. Int J Urol. 2008;15:651–64.10.1111/j.1442-2042.2008.02081.xCrossRefGoogle ScholarPubMed
45.Kalfa, N, Philibert, P, Baskin, LS, Sultan, C. Hypospadias: interactions between environment and genetics. Molec Cell Endocrinol. 2011;335:8995.10.1016/j.mce.2011.01.006CrossRefGoogle ScholarPubMed
46.Roberts, J. Hypospadias surgery past, present and future. Curr Opin Urol. 2010;20:483–9.10.1097/MOU.0b013e32833e4c80CrossRefGoogle ScholarPubMed
47.Shukla, AR, Patel, RP, Canning, DA. Hypospadias. Urol Clin North Am. 2004;31:445–60.CrossRefGoogle ScholarPubMed
48.American Academy of Pediatrics. Timing of elective surgery on the genitalia of male children with particular reference to the risks, benefits, and psychological effects of surgery and anesthesia. Pediatrics. 1996;97(4):590–4.Google Scholar
49.Macedo, A, Rondon, A, Ortiz, V. Hypospadias. Curr Op Urol. 2012;22:447–52.10.1097/MOU.0b013e328357bc62CrossRefGoogle ScholarPubMed
50.Naja, ZM, Ziade, FM, Kamel, R, et al. The effectiveness of pudendal nerve block versus caudal block anesthesia for hypospadias in children. Anesth Analg. 2013;117:1401–7.10.1213/ANE.0b013e3182a8ee52CrossRefGoogle ScholarPubMed
51.Gunduz, M, Ozalevli, M, Ozbek, H, Ozcengiz, D. Comparison of caudal ketamine with lidocaine or tramadol administration for postoperative analgesia of hypospadias surgery in children. Paediatr Anaesth. 2006;16:158–63.10.1111/j.1460-9592.2005.01650.xCrossRefGoogle ScholarPubMed
52.Abdulatif, M, El-Sanabary, M. Caudal neostigmine, bupivacaine, and their combination for postoperative pain management after hypospadias surgery in children. Anesth Analg. 2002;95:1215–18.10.1097/00000539-200211000-00018CrossRefGoogle ScholarPubMed
53.Turan, A, Memiş, D, Başaran, UN, Karamanlioğlu, B, Süt, N. Caudal ropivacaine and neostigmine in pediatric surgery. Anesthesiology. 2003;98:719–22.CrossRefGoogle ScholarPubMed
54.Apiliogullari, S, Duman, A, Gok, F, Akillioglu, I, Ciftci, I. Efficacy of a low-dose spinal morphine with bupivacaine for postoperative analgesia in children undergoing hypospadias repair. Paediatr Anaesth. 2009;19:1078–83.10.1111/j.1460-9592.2009.03136.xCrossRefGoogle ScholarPubMed

References

1.Guidry, C, McGahren, ED. Pediatric chest I: developmental and physiologic conditions for the surgeon. Surg Clin North Am. 2012;92(3):615–43. doi: 10.1016/j.suc.2012.03.013.CrossRefGoogle ScholarPubMed
2.Griese, M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13(6):1455–76.10.1183/09031936.99.13614779CrossRefGoogle ScholarPubMed
3.Brownfoot, FC, Gagliardi, DI, Bain, E, Middleton, P, Crowther, CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;29(8): CD006764.Google Scholar
4.Ramachandrappa, A, Jain, L. Elective cesarean section: its impact on neonatal respiratory outcome. Clin Perinatol. 2008;35(2):373–93. doi: 10.1016/j.clp.2008.03.006.CrossRefGoogle ScholarPubMed
5.Blanco, CE. Maturation of fetal breathing activity. Biol Neonate. 1994;65(3–4):182–8.10.1159/000244050CrossRefGoogle ScholarPubMed
6.Polla, B, D’Antona, G, Bottinelli, R, Reggiani, C. Respiratory muscle fibres: specialization and plasticity. Thorax. 2004;59:808–17. doi:10.1136/thx.2003.009894CrossRefGoogle ScholarPubMed
7.West, J. Respiratory Physiology: The Essentials, 8th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.Google Scholar
8.Aaronson, PI, Robertson, TP, Knock, GA, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570(Pt 1):53–8.10.1113/jphysiol.2005.098855CrossRefGoogle ScholarPubMed
9.Hinton, M, Mellow, L, Halayko, AJ, Gutsol, A, Dakshinamurti, S. Hypoxia induces hypersensitivity and hyperreactivity to thromboxane receptor agonist in neonatal pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L375–84.CrossRefGoogle ScholarPubMed
10.Fell, SC. Special article: a brief history of pneumonectomy. Chest Surg Clin North Am. 2002;12(3):541–63.10.1016/S1052-3359(02)00023-6CrossRefGoogle ScholarPubMed
11.Graham, EA. The first pneumonectomy. Cancer Bull. 1949;2:2.Google Scholar
12.Fry, WA. Thoracic incisions. Chest Surg Clin North Am. 1995;5(2):177–88.CrossRefGoogle ScholarPubMed
13.Elshiekh, MA, Lo, TT, Shipolini, AR, McCormack, DJ. Does muscle-sparing thoracotomy as opposed to posterolateral thoractomy result in better recovery? Interact Cardiovasc Thorac Surg. 2013;16(1):60–7.10.1093/icvts/ivs295CrossRefGoogle Scholar
14.Wildgaard, K, Ravn, J, Kehlet, H. Chronic post-thoracotomy pain: a critical review of pathogenic mechanisms and strategies for prevention. Eur J Cardiothorac Surg. 2009;36(1):170–80.10.1016/j.ejcts.2009.02.005CrossRefGoogle Scholar
15.Rodriguez-Panadero, F, Janssen, JP, Astoul, P. Thoracoscopy: general overview and place in the diagnosis and management of pleural effusion. ERJ. 2006;28(2):409–22.10.1183/09031936.06.00013706CrossRefGoogle ScholarPubMed
16.Bishay, MI, Giacomello, L, Retrosi, G, M et al. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: results of a pilot randomized controlled trial. Ann Surg. 2013; 258(6):895900. doi: 10.1097/SLA.0b013e31828fab55.CrossRefGoogle ScholarPubMed
17.Kunisaki, SM, Powelson, IA, Haydar, B, et al. Thoracoscopic vs open lobectomy in infants and young children with congenital lung malformations. J Am Coll Surg. 2014;218(2):261–70. doi: 10.1016/j.jamcollsurg.2013.10.010CrossRefGoogle ScholarPubMed
18.Seong, YW, Kang, CH, Kim, JT, et al. Video-assisted thoracoscopic lobectomy in children: safety, efficacy, and risk factors for conversion to thoracotomy. Ann Thorac Surg. 2013;95(4):1236–42. doi: 10.1016/j.athoracsur.2013.01.013.CrossRefGoogle ScholarPubMed
19.Vale, R. Selective bronchial blocking in a small child. Br J Anaesth. 1969;41:453–4.10.1093/bja/41.5.453CrossRefGoogle Scholar
20.Hammer, GB, Harrison, TK, Vricella, LA et al. Single-lung ventilation in children using a new paediatric bronchial blocker. Paediatr Anaesth. 2002;12:6972.10.1046/j.1460-9592.2002.00818.xCrossRefGoogle ScholarPubMed
21.Wolf, AR. Effects of regional analgesia on stress responses to pediatric surgery. Paediatr Anaesth. 2012;22(1):1924.10.1111/j.1460-9592.2011.03714.xCrossRefGoogle ScholarPubMed
22.Heaney, A, Buggy, DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109 (S1): i17i28.10.1093/bja/aes421CrossRefGoogle ScholarPubMed
23.Jevtovic-Todorovic, V, Absalom, AR, Blomgren, K, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth. 2013;111(2):143–51. doi: 10.1093/bja/aet177.CrossRefGoogle Scholar
24.Di Pede, A, Morini, F, Lombardi, MH, et al. Comparison of regional vs. systemic analgesia for post-thoracotomy care in infants. Paediatr Anaesth. 2014;24(6):569–73.10.1111/pan.12380CrossRefGoogle ScholarPubMed
25.Ch’in, KY, Tang, MY. Congenital adenomatoid malformation of one lobe of a lung with general anasarca. Arch Pathol Lab Med. 1949;48:221–9.Google ScholarPubMed
26.Stocker, JT. Congenital pulmonary airway malformation: a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology. 2002;41(Suppl. 2): 424–31.Google Scholar
27.Hammer, GB. Pediatric thoracic anesthesia. Anesthesiol Clin North Am. 2002;20:153–80.CrossRefGoogle ScholarPubMed
28.Petroze, R, McGahren, ED. Pediatric chest II: benign tumors and cysts. Surg Clin North Am. 2012;92(3):645–58. doi: 10.1016/j.suc.2012.03.014.CrossRefGoogle ScholarPubMed
29.Nelson, RL. Congenital cystic disease of the lung. J Pediatr. 1932;1:233.10.1016/S0022-3476(32)80105-8CrossRefGoogle Scholar
30.Krivchenya, DU, Rudenko, EO, Dubrovin, AG. Congenital emphysema in children: segmental lung resection as an alternative to lobectomy. J Pediatr Surg. 2013;48:309–14.10.1016/j.jpedsurg.2012.11.009CrossRefGoogle Scholar
31.Irish, MS, Holm, BA, Glick, PL. Congenital diaphragmatic hernia: a historical review. Clin Perinatol. 1996;23(4):625–53.10.1016/S0095-5108(18)30199-4CrossRefGoogle ScholarPubMed
32.Mah, VK, Zamakhshary, M, Mah, DY, et al. Absolute vs relative improvements in congenital diaphragmatic hernia survival: what happened to “hidden mortality”. J Pediatr Surg. 2009; 44(5):877–82. doi: 10.1016/j.jpedsurg.2009.01.046.CrossRefGoogle ScholarPubMed
33.Jani, P, Bidarkar, SS, Walker, K, et al. Right-sided congenital diaphragmatic hernia: a tertiary centre’s experience over 25 years. J Neonatal Perinatal Med. 2014;7(1):3945.CrossRefGoogle ScholarPubMed
34.Ruttenstock, EM, Doi, T, Dingemann, J, Puri, P. Prenatal retinoic acid upregulates connexin 43 (Cx43) gene expression in pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia rat model. J Pediatr Surg. 2012;47(2):336–40.10.1016/j.jpedsurg.2011.11.026CrossRefGoogle ScholarPubMed
35.Snowise, S, Johnson, A. Tracheal occlusion for fetal diaphragmatic hernia. Am J Perinatol. 2014;31(7):605–16. doi: 10.1055/s-0034-1373842.CrossRefGoogle ScholarPubMed
36.Kitano, Y. Prenatal intervention for congenital diaphragmatic hernia. Semin Pediatr Surg. 2007;16(2):101–8.10.1053/j.sempedsurg.2007.01.005CrossRefGoogle ScholarPubMed
37.Ruano, R, Yoshisaki, CT, da Silva, MM, etal. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39:20–7.10.1002/uog.10142CrossRefGoogle ScholarPubMed
38.Hidaka, N, Ishii, K, Mabuchi, A. Associated anomalies in congenital diaphragmatic hernia: perinatal characteristics and impact on postnatal survival. J Perinat Med. 2014;43(2):245–52 doi: 10.1515/jpm-2014-0110.Google Scholar
39.Ladd, WE, Gross, RE. Congenital diaphragmatic hernia. N Engl J Med. 1940;223:917–25.10.1056/NEJM194012052232301CrossRefGoogle Scholar
40.Kkunisaki, SM, Foker, JE. Surgical advances in the fetus and neonate: esophageal atresia. Clin Perinatol. 2012;39(2):349–61. doi: 10.1016/j.clp.2012.04.007.CrossRefGoogle Scholar
41.Shamberger, RC. Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg. 1999;8(2):61–8.10.1016/S1055-8586(99)70020-XCrossRefGoogle ScholarPubMed

References

1.Clugston, RD, Greer, JJ. Diaphragm development and congenital diaphragmatic hernia. Semin Pediatr Surg. 2007;16(2):94100.10.1053/j.sempedsurg.2007.01.004CrossRefGoogle ScholarPubMed
2.Veenma, DC, de Klein, A, Tibboel, D. Development and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol. 2012;47:534–45.10.1002/ppul.22553CrossRefGoogle Scholar
3.Langham, MR, Kays, DW, Ledbetter, DJ, et al. Congenital diaphragmatic hernia: epidemiology and outcome. Clin Perinatol. 1996;23:671–88.CrossRefGoogle ScholarPubMed
4.Pober, BR. Genetic aspects of human congenital diaphragmatic hernia. Clin Genet. 2008;74:115.CrossRefGoogle ScholarPubMed
5.McAteer, JP, Hecht, A, De Roos, AJ, Goldin, AB. Maternal medical and behavioral risk factors for congenital diaphragmatic hernia. J Pediatr Surg. 2014;49:34–8.10.1016/j.jpedsurg.2013.09.025CrossRefGoogle ScholarPubMed
6.Colvin, J, Bower, C,Dickinson, JE, Sokol, J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics. 2005;117:356–63.Google Scholar
7.Skari, H, Bjornland, K, Haugen, G, et al. Congenital diaphragmatic hernia: a meta-analysis of mortality factors. J Pediatr Surg. 2000;35:1187–97.10.1053/jpsu.2000.8725CrossRefGoogle ScholarPubMed
8.Green, JJ, Babiuk, RP, Thebaud, B, et al. Etiology of congenital diaphragmatic hernia: the retinoid hypothesis. Pediatr Res. 2003;53 726–30.Google Scholar
9.Zamora, IJ, Olutoye, OO. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH). J Pediatr Surg. 2014;49(5):688–93.10.1016/j.jpedsurg.2014.02.048CrossRefGoogle ScholarPubMed
10.Lally, KP, Lally, PA, Langham, MR, et al. Surfactant does not improve survival rate in preterm infants with congenital diaphragmatic hernia. J Pediatr Surg. 2004;39(6):829–33.Google Scholar
11.Kim, ES, Stolar, CJ. ECMO in the newborn. Am J Perinatol. 2000;17(7):345–56.CrossRefGoogle ScholarPubMed
12.Clark, RH, Hardin, WD Jr., Hirschl, RB, et al. Current surgical management of congenital diaphragmatic hernia: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg. 1998;33:1004–9.10.1016/S0022-3468(98)90522-XCrossRefGoogle ScholarPubMed
13.Tsao, K, Lally, PA, Lally, KP, Congenital Diaphragmatic Hernia Study Group. Minimally invasive repair of congenital diaphragmatic hernia. J Pediatr Surg. 2011;46(6):1158–64.CrossRefGoogle ScholarPubMed
14.Moss, RL, Chen, CM, Harrison, MR. Prosthetic patch durability in congenital diaphragmatic hernia: a long-term follow-up study. J Pediatr Surg. 2001;36(1):152–4.10.1053/jpsu.2001.20037CrossRefGoogle ScholarPubMed
15.Yang, EY, Allmendinger, N, Johnson, SM, et al. Neonatal thoracoscopic repair of congenital diaphragmatic hernia: selection criteria for successful outcome. J Pediatr Surg. 2005;40(9):1369–75.10.1016/j.jpedsurg.2005.05.036CrossRefGoogle ScholarPubMed
16.Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.10.1056/NEJMoa035005CrossRefGoogle ScholarPubMed
17.Vrecenak, JD, Flake, AW. Fetal surgical intervention: progress and perspectives. Pediatri Surg Int. 2013;29 407–17.Google Scholar
18.Wildschut, ED, Ahsman, MJ. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16.10.1007/s00134-010-2041-zCrossRefGoogle ScholarPubMed
19.Wynn, J, Krishnan, U, Aspelund, G, et al. Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr. 2013;163(1):114–19.10.1016/j.jpeds.2012.12.036CrossRefGoogle ScholarPubMed

References

1.Mahle, WT, Newburger, JW, Matherne, GP, et al. Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics. Circulation. 2009;120:447–58.10.1161/CIRCULATIONAHA.109.192576CrossRefGoogle ScholarPubMed
2.Fetal Echocardiography Task Force, American Institute of Ultrasound in Medicine Clinical Standards Committee, American College of Obstetricians and Gynecologists, Society for Maternal-Fetal Medicine. AIUM practice guideline for the performance of fetal echocardiography. J Ultrasound Med. 2011;30:127–36.Google Scholar
3.Thangaratinam, S, Brown, K, Zamora, J, et al. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systemic review and meta-analysis. Lancet. 2012;379:2459–64.10.1016/S0140-6736(12)60107-XCrossRefGoogle Scholar
4.Edelman, NH, Lahiri, S, Braudo, L, et al. The blunted ventilatory response to hypoxia in cyanotic congenital heart disease. N England J Med. 1970:282;405–11.10.1056/NEJM197002192820801CrossRefGoogle ScholarPubMed
5.Williams, GD, Feng, A. Heterotaxy syndrome: implications for anesthesia management. J Cardiothorac Vasc Anesth. 2010;24:834–44.10.1053/j.jvca.2010.02.012CrossRefGoogle ScholarPubMed
6.Prouard, P, Bojan, M. Neonatal cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;15:5961.CrossRefGoogle Scholar
7.Tabutt, S, Gaynor, JW, Newburger, JW. Neurodevelopmental outcomes after congenital heart surgery and strategies for improvement. Curr Opin Cardiol. 2012:27:8291.10.1097/HCO.0b013e328350197bCrossRefGoogle Scholar
8.Olsen, EA, Brambrink, AM. Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol. 2013;26:677–84.10.1097/01.aco.0000433061.59939.b7CrossRefGoogle ScholarPubMed
9.Bartakian, S, Fagan, TE, Schaffer, MS, et al. Device closure of secundum atrial septal defects in children <15 kg: complication rates and indications for referral. JACC Cardiovasc Interv. 2012;5:1178–84.10.1016/j.jcin.2012.07.009CrossRefGoogle ScholarPubMed
10.Laussen, PC, Hansen, DD, Perry, SB, et al. Transcatheter closure of ventricular septal defects: hemodynamic instability and anesthetic management. Anesth Analg. 1995;80:1076–82.Google ScholarPubMed
11.Anderson, BR, Stevens, KN, Nicolson, SC, et al. Contemporary outcomes of surgical ventricular septal defect closure. J Thorac Cardiovasc Surg. 2013:145:641–7.10.1016/j.jtcvs.2012.11.032CrossRefGoogle ScholarPubMed
12.Karl, TR, Provenzano, SC, Nunn, GR, et al. The current surgical perspective to repair of atrioventricular septal defect with common atrioventricular junction. Cardiol Young. 2010;20:120–7.10.1017/S1047951110001174CrossRefGoogle ScholarPubMed
13.Mitchell, V, Howard, R, Facer, E. Down’s syndrome and anaesthesia. Paediatr Anaesth. 1995;5:379–84.10.1111/j.1460-9592.1995.tb00331.xCrossRefGoogle ScholarPubMed
14.Noonan, PM, Desai, T, Degiovanni, JV. Closure of an aortopulmonary window using the Amplatzer Duct Occluder II. Pediatr Cardiol. 2013;34:712–14.CrossRefGoogle ScholarPubMed
15.Barnes, ME, Mitchell, ME, Tweddell, JS. Aortopulmonary window. Semin Thorac Cardiovasc Surg: Pediatr Card Surg Annu. 2011:14:6774.CrossRefGoogle ScholarPubMed
16.Noori, S. Patent ductus arteriosus in the preterm infant: to treat or not to treat? J Perinatol. 2010;30:S31–7.10.1038/jp.2010.97CrossRefGoogle ScholarPubMed
17.Ramagnoli, C, Bersani, I, Rubortone, SA, et al. Current evidence on the safety profile of NSAIDs for the treatment of PDA. J Matern Fetal Neonatal Med. 2011;24:1013.10.3109/14767058.2011.604987CrossRefGoogle Scholar
18.Chen, H, Weng, G, Chen, Z, et al. Comparison of posterolateral thoracotomy and video-assisted thocoscopic clipping for the treatment of patent ductus arteriosus in neonates and infants. Pediatr Cardiol. 2011;32:386–90.10.1007/s00246-010-9863-xCrossRefGoogle Scholar
19.Nagata, H, Ihara, K, Yamamura, K, et al. Left ventricular efficiency after ligation of patent ductus arteriosus for premature infants. J Thorac Cardiovasc Surg. 2013;146:1353–8.10.1016/j.jtcvs.2013.02.019CrossRefGoogle ScholarPubMed
20.Clement, WA, El-Hakim, H, Phillipos, EZ, et al. Unilateral vocal cord paralysis following patent ductus arteriosus ligation in extremely low-birth-weight infants. Arch Otolaryngol. 2008;134:2833.10.1001/archoto.2007.2CrossRefGoogle ScholarPubMed
21.El-Said, HG, Bratincsak, A, Foerster, SR, et al. Safety of percutaneous patent ductus arteriosus closure: an unselected multicenter population experience. J Am Heart Assoc. 2013;27:e000424.10.1161/JAHA.113.000424CrossRefGoogle Scholar
22.Dodge-Khatami, A, Mavroudis, C, Backer, CL. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann of Thorac Surg. 2002;74:946–55.10.1016/S0003-4975(02)03633-0CrossRefGoogle ScholarPubMed
23.Walhout, RJ, Lekkerkerker, JC, Oron, GH, et al. Comparison of polytetrafluroethylene patch aortoplasty and end-to-end anastomosis for coarctation of the aorta. J Thorac Cardiovasc Surg. 2003;126:521–8.10.1016/S0022-5223(03)00030-8CrossRefGoogle Scholar
24.Rao, PS, Galal, O, Smith, PA, et al. Five-to nine-year follow-up results of balloon angioplasty of native aortic coarctation in infants and children. J Am Coll Cardiol. 1996;27:462–70.10.1016/0735-1097(95)00479-3CrossRefGoogle ScholarPubMed
25.McElhinney, DB, Lock, JE, Keane, JG, et al. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005;111:451–8.10.1161/01.CIR.0000153809.88286.2ECrossRefGoogle ScholarPubMed
26.Moulaert, AJ, Bruins, CC, Oppenheimer-Dekker, A. Anomalies of the aortic arch and ventricular septal defects. Circulation. 1976;53:1011–15.10.1161/01.CIR.53.6.1011CrossRefGoogle ScholarPubMed
27.Quinonez, LG, Breitbart, R, Tworetsky, W, et al. Stented bovine jugular vein graft (melody valve) for surgical mitral valve replacement in infants and children. J Thorac Cardiovasc Surg. 2013;148(4):1443–9.Google ScholarPubMed
28.Alwi, M, Geetha, K, Bilkis, AA, et al. Pulmonary atresia with intact ventricular septum percutaneous radiofrequency-assisted valvotomy and balloon dilation versus surgical valvotomy and Blalock Taussing shunt. J Am Coll Cardiol. 2000;35:468–76.10.1016/S0735-1097(99)00549-5CrossRefGoogle Scholar
29.Reddy, VM, Liddicoat, JR, Hanley, FL. Midline one stage completes unifocalization and repair of pulmonary atresia with ventricular septal defect and major aorto pulmonary collaterals. J Thorac Cardiovasc Surg. 1995;109:832–45.10.1016/S0022-5223(95)70305-5CrossRefGoogle Scholar
30.Vacanti, C, Segal, S, Sikka, P, Urman, R, editors. Essential Clinical Anesthesia. Cambridge: Cambridge University Press; 2011.10.1017/CBO9780511842306CrossRefGoogle Scholar
31.Stumper, O, Ramchandani, B, Noonan, P, et al. Stenting of the right ventricular outflow tract. Heart. 2013;99:1603–8.10.1136/heartjnl-2013-304155CrossRefGoogle ScholarPubMed
32.Pigula, FA, Khalil, PN, Mayer, JE, et al. Repair of tetralogy of Fallot in neonates and young infants. Circulation. 1999;100:II157–61.10.1161/circ.100.suppl_2.Ii-157CrossRefGoogle ScholarPubMed
33.Delhaas, T, Sarvaas, GJ, Rijlaarsdam, ME, et al. A multicenter, long-term study on arrhythmias in children with Ebstein anomaly. Pediatr Cardiol. 2010;31:229–33.10.1007/s00246-009-9590-3CrossRefGoogle ScholarPubMed
34.Knott-Craig, CJ, Overhold, ED, Ward, KE, et al. Neonatal repair of Ebstein’s anomaly: indications, surgical technique, and medium-term follow-up. Ann Thorac Surg. 2000;69:1505–10.10.1016/S0003-4975(00)01138-3CrossRefGoogle ScholarPubMed
35.Starnes, VA, Pitlick, PT, Bernstein, D, et al. Ebstein’s anomaly appearing in the neonate: a new surgical approach. J Thorac Cardiovasc Surg. 1991:101;1082–7.10.1016/S0022-5223(19)36627-9CrossRefGoogle ScholarPubMed
36.daSilva, JP, Baumgratz, JF, da Fonseca, L, et al. The cone reconstruction of the tricuspid valve in Ebstein’s anomaly: the operation. Early and midterm results. J Thorac Cardiovasc Surg. 2007;133:215–23.Google Scholar
37.Fricke, TA, d’Udekem, Y, Richardson, M, et al. Outcomes of the arterial switch operation for transposition of the great arteries: 25 years of experience. Ann Thorac Surg. 2012;94:139–45.10.1016/j.athoracsur.2012.03.019CrossRefGoogle ScholarPubMed
38.D’Udekem, Y, Xu, MY, Galati, JC, et al. Predictors of survival after single-ventricle palliation: the impact of right ventricular dominance. J Am Coll Cardiol. 2012;13:1178–85.Google Scholar
39.Kobayashi, D, Forbes, TJ, Aggarwal, S. Palliative stent placement in vertical vein in a 1.4 kg infant with obstructed supracardiac total anomalous pulmonary venous connection. Catheter Cardiovasc Interv. 2013;82:574–80.10.1002/ccd.24632CrossRefGoogle Scholar
40.Yoshimura, N, Fukahara, K, Yamashita, A, et al. Management of pulmonary venous obstruction. Gen Thorac Cardiovasc Surg. 2012;60:785–91.10.1007/s11748-012-0154-8CrossRefGoogle ScholarPubMed
41.Rabinovitch, M, Grady, S, David, I, et al. Compression of intrapulmonary bronchi by abnormally branching pulmonary arteries associated with absent pulmonary valves. Am J Cardiol. 1982;50:804–13.CrossRefGoogle ScholarPubMed
42.Kussman, BD, Geva, T, McGowan, FX. Cardiovascular causes of airway compression. Paediatr Anaesth. 2004;14:6074.10.1046/j.1460-9592.2003.01192.xCrossRefGoogle ScholarPubMed

References

1.Baum, VC, Barton, DM, Gutgesell, HP. Influence of congenital heart disease on mortality after noncardiac surgery in hospitalized children. Pediatrics. 2000;105(2):332–5.10.1542/peds.105.2.332CrossRefGoogle ScholarPubMed
2.Flick, RP, Sprung, J, Harrison, TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37.CrossRefGoogle Scholar
3.Ramamoorthy, C, Haberkern, CM, Bhananker, SM, et al. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg. 2010;110(5):1376–82.10.1213/ANE.0b013e3181c9f927CrossRefGoogle ScholarPubMed
4.van der Griend, BF, Lister, NA, McKenzie, IM, et al. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112(6):1440–7.CrossRefGoogle Scholar
5.Chan, DMSA. Congenital heart disease. In: Vacanti, CASP, Urman, RD, Derswitz, M, Segal, BS, editors. Essential Clinical Anesthesia. Cambridge: Cambridge University Press; 2011.Google Scholar
6.Wilson, W, Taubert, KA, Gewitz, M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736–54.10.1161/CIRCULATIONAHA.106.183095CrossRefGoogle Scholar
7.Wulkan, ML, Vasudevan, SA. Is end-tidal CO2 an accurate measure of arterial CO2 during laparoscopic procedures in children and neonates with cyanotic congenital heart disease? J Pediatr Surg. 2001;36(8):1234–6.10.1053/jpsu.2001.25775CrossRefGoogle ScholarPubMed
8.Sumpelmann, R, Osthaus, WA. The pediatric cardiac patient presenting for noncardiac surgery. Curr Op Anaesth. 2007;20(3):216–20.Google ScholarPubMed
9.White, MC. Approach to managing children with heart disease for noncardiac surgery. Paediatr Anaesth. 2011;21(5):522–9.CrossRefGoogle ScholarPubMed
10.Torres, A, Jr., DiLiberti, J, Pearl, RH, et al. Noncardiac surgery in children with hypoplastic left heart syndrome. J Pediatr Surg. 2002;37(10):1399–403.CrossRefGoogle ScholarPubMed
11.Wright, GE, Crowley, DC, Charpie, JR, et al. High systemic vascular resistance and sudden cardiovascular collapse in recovering Norwood patients. Ann Thorac Surg. 2004;77(1):4852.10.1016/S0003-4975(03)01190-1CrossRefGoogle ScholarPubMed
12.Walker, SG, Stuth, EA. Single-ventricle physiology: perioperative implications. Semin Pediatr Surg. 2004;13(3):188202.10.1053/j.sempedsurg.2004.04.005CrossRefGoogle ScholarPubMed
13.Carmosino, MJ, Friesen, RH, Doran, A, Ivy, DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–7.CrossRefGoogle ScholarPubMed
14.Friesen, RH, Williams, GD. Anesthetic management of children with pulmonary arterial hypertension. Paediatr Anaesth. 2008;18(3):208–16.10.1111/j.1460-9592.2008.02419.xCrossRefGoogle ScholarPubMed
15.Burch, TM, McGowan, FX, Jr., Kussman, BD, Powell, AJ, DiNardo, JA. Congenital supravalvular aortic stenosis and sudden death associated with anesthesia: what’s the mystery? Anesth Analg. 2008;107(6):1848–54.10.1213/ane.0b013e3181875a4dCrossRefGoogle ScholarPubMed
16.Kipps, AK, Ramamoorthy, C, Rosenthal, DN, Williams, GD. Children with cardiomyopathy: complications after noncardiac procedures with general anesthesia. Paediatr Anaesth. 2007;17(8):775–81.CrossRefGoogle ScholarPubMed
17.Lynch, J, Pehora, C, Holtby, H, Schwarz, SM, Taylor, K. Cardiac arrest upon induction of anesthesia in children with cardiomyopathy: an analysis of incidence and risk factors. Paediatr Anaesth. 2011;21(9):951–7.10.1111/j.1460-9592.2011.03645.xCrossRefGoogle ScholarPubMed
18.Schure, AY, Kussman, BD. Pediatric heart transplantation: demographics, outcomes, and anesthetic implications. Paediatr Anaesth. 2011;21(5):594603.10.1111/j.1460-9592.2010.03418.xCrossRefGoogle ScholarPubMed
19.Watkins, SC, McNew, BS, Donahue, BS. Risks of noncardiac operations and other procedures in children with complex congenital heart disease. Ann Thorac Surg. 2013;95(1):204–11.10.1016/j.athoracsur.2012.09.023CrossRefGoogle ScholarPubMed
20.Watkins, S, Morrow, SE, McNew, BS, Donahue, BS. Perioperative management of infants undergoing fundoplication and gastrostomy after stage I palliation of hypoplastic left heart syndrome. Pediatr Cardiol. 2012;33(5):697704.CrossRefGoogle Scholar
21.Bannister, CF, Brosius, KK, Wulkan, M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Paediatr Anaesth. 2003;13(9):785–9.10.1046/j.1460-9592.2003.01149.xCrossRefGoogle ScholarPubMed
22.Huettemann, E, Sakka, SG, Petrat, G, Schier, F, Reinhart, K. Left ventricular regional wall motion abnormalities during pneumoperitoneum in children. Br J Anaesth. 2003;90(6):733–6.10.1093/bja/aeg130CrossRefGoogle ScholarPubMed
23.Gomez Dammeier, BH, Karanik, E, Gluer, S, et al. Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg. 2005;40(9):1454–8.10.1016/j.jpedsurg.2005.05.044CrossRefGoogle ScholarPubMed
24.McHoney, M, Corizia, L, Eaton, S, et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg. 2003;38(1):105–10.10.1053/jpsu.2003.50021CrossRefGoogle ScholarPubMed
25.Kalfa, N, Allal, H, Raux, O, et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics. 2005;116(6):e785–91.10.1542/peds.2005-0650CrossRefGoogle ScholarPubMed
26.Mariano, ER, Boltz, MG, Albanese, CT, Abrajano, CT, Ramamoorthy, C. Anesthetic management of infants with palliated hypoplastic left heart syndrome undergoing laparoscopic nissen fundoplication. Anesth Analg. 2005;100(6):1631–3.10.1213/01.ANE.0000149899.03904.3FCrossRefGoogle ScholarPubMed
27.Slater, B, Rangel, S, Ramamoorthy, C, Abrajano, C, Albanese, CT. Outcomes after laparoscopic surgery in neonates with hypoplastic heart left heart syndrome. J Pediatr Surg. 2007;42(6):1118–21.10.1016/j.jpedsurg.2007.01.049CrossRefGoogle ScholarPubMed
28.Walker, A, Stokes, M, Moriarty, A. Anesthesia for major general surgery in neonates with complex cardiac defects. Paediatr Anaesth. 2009;19(2):119–25.10.1111/j.1460-9592.2008.02801.xCrossRefGoogle Scholar

References

1.SEER. Age-adjusted and age-specific seer cancer incidence rates, 2007–2011 (Table 29.1). 2011. Available at: http://seer.cancer.gov/csr/1975_2011/results_merged/sect_29_childhood_cancer_iccc.pdf.Google Scholar
2.Steliarova-Foucer, E, Stiller, C, Lacour, B, Kaatsch, P. International classification of childhood cancer, third edition. Cancer. 2005;103:1457–67.Google Scholar
3.Orbach, D, Sarnacki, S, Brisse, HJ, et al. Neonatal cancer. Lancet Oncol. 2013;14: e609–20.10.1016/S1470-2045(13)70236-5CrossRefGoogle ScholarPubMed
4.Kamil, D, Tepelmann, J, Berg, C, et al. Spectrum and outcome of prenatally diagnosed fetal tumors: ultrasound. Obstet Gynecol. 2008;31:296302.Google Scholar
5.Merks, JHM, Caron, HN, Hennekam, RCM. High incidence of malformation syndromes in a series of 1073 children with cancer. Am J Med Genet. 2005;134A: 132–43.10.1002/ajmg.a.30603CrossRefGoogle Scholar
6.Tubergen, DG, Bleyer, A, Ritchey, AK. The leukemias. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors. Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
7.Kuttesch, JF, Jr., Rush, SZ, Ater, JL. Brain tumors in childhood. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors. Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
8.Lang, S-S, Beslow, LA, Gabel, B, et al. Surgical treatment of brain tumors in infants younger than six months of age and review of the literature. World Neurosurg. 2012;78:137–44.10.1016/j.wneu.2011.09.012CrossRefGoogle ScholarPubMed
9.National Cancer Institute. Childhood craniopharyngioma treatment (PDQ®). 2017. Available at: www.cancer.gov/cancertopics/pdq/treatment/child-cranio/healthprofessional.Google Scholar
10.Zage, PE, Ater, JL. Neuroblastoma. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
11.Fisher, JPH, Tweddle, DA. Neonatal neuroblastoma. Semi Fetal Neonatal Med. 2012;17:207–15.Google ScholarPubMed
12.Hammer, G, Hall, S, Davis, PJ. Anesthesia for general abdominal, thoracic, urologic, and bariatric surgery. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
13.Gombos, DS. Retinoblastomoa in the perinatal and neonatal child. Semin Fetal Neonatal Med. 2012;17:239–42.10.1016/j.siny.2012.04.003CrossRefGoogle ScholarPubMed
14.Zage, PE, Herzog, CE. Retinoblastoma. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
15.Thompson, PA, Chintagumpala, M. Renal and hepatic tumors in the neonatal period. Semin Fetal Neonatal Med. 2012;17:216–21.10.1016/j.siny.2012.04.002CrossRefGoogle ScholarPubMed
16.Anderson, PM, Dhamne, CA, Huff, V. Neoplasmas of the kidney: other pediatric renal tumors. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
17.Anderson, PM, Dhamne, CA, Huff, V. Neoplasmas of the kidney: Wilms tumor. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
18.Herzog, C. Neoplasmas of liver. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
19.Sultan, I, Casanova, M, Al-Jumail, U, et al. Soft tissue sarcomas in the first year of life. Eur J Cancer. 2010;46:2449–56.10.1016/j.ejca.2010.05.002CrossRefGoogle ScholarPubMed
20.Ferrari, A, Orbach, D, Sulton, I, et al. Neonatal soft tissue sarcomas. Semin Fetal Neonatal Med. 2012;17:231–8.10.1016/j.siny.2012.05.003CrossRefGoogle ScholarPubMed
21.Arndt, CAS. Soft tissue sarcomas. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
22.Frazier, AL, Wheldon, C, Amatruda, J. Fetal and neonatal germ cell tumors. Semin Fetal Neonatal Med. 2012;17:222–30.10.1016/j.siny.2012.05.004CrossRefGoogle ScholarPubMed
23.Herzog, CE, Huh, WW. Gonadal and germ cell neoplasms. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
24.Miniati, DN, Chintagumpala, M, Langston, C, et al. Prenatal presentation and outcome of children with pleuropulmonary blastoma. J Ped Surg. 2006;41:6671.CrossRefGoogle ScholarPubMed
25.Bleyer, A, Ritchey, AK. Principles of treatment. In Kliegman, RM, Stanton, BMD, St Geme, J, et al., editors Nelson Textbook of Pediatrics: Expert Consult Premium Edition, 19th edn. Philadelphia, PA: Elsevier; 2011.Google Scholar

References

1.Bennett, J, Bromley, P. Perioperative issues in pediatric liver transplantation. Int Anesthesiol Clin. 2006;44(3):125–47.10.1097/01.aia.0000210801.37760.70CrossRefGoogle ScholarPubMed
2.United Network for Organ Sharing. www.unos.org/data/.Google Scholar
3.Guo, CB, Li, YC, Zhang, MM, et al. Early postoperative care of liver transplantation for infants with biliary atresia during pediatric intensive care unit stay. Transplant Proc. 2010;42(5):1750–4.10.1016/j.transproceed.2010.02.086CrossRefGoogle ScholarPubMed
4.Soler, X, Myo Bui, CC, Aronson, LA, Saied, AS. Current issues in pediatric liver transplantation. Int Anesthesiol Clin. 2012;50(4):5465.10.1097/AIA.0b013e31826e3438CrossRefGoogle ScholarPubMed
5.Uejima, T. Anesthetic management of the pediatric patient undergoing solid organ transplantation. Anesthesiol Clin N Am. 2004;22(4):809–26.10.1016/j.atc.2004.06.005CrossRefGoogle ScholarPubMed
6.Yudkowitz, FS, Chietero, M. Anesthetic issues in pediatric liver transplantation. Pediatr Transplant. 2005;9(5):666–72.10.1111/j.1399-3046.2005.00369.xCrossRefGoogle ScholarPubMed
7.Condino, AA, Ivy, DD, O’Connor, JA, et al. Portopulmonary hypertension in pediatric patients. J Pediatr. 2005;147(1):20–6.10.1016/j.jpeds.2005.02.019CrossRefGoogle ScholarPubMed
8.Iwatsuki, S, Popovtzer, MM, Corman, JL, et al. Recovery from “hepatorenal syndrome” after orthotopic liver transplantation. New Eng J Med. 1973;289(22):1155–9.CrossRefGoogle ScholarPubMed
9.Matsumoto, N, Rorie, DK, Van Dyke, RA. Hepatic oxygen supply and consumption in rats exposed to thiopental, halothane, enflurane, and isoflurane in the presence of hypoxia. Anesthesiology. 1987;66(3):337–43.CrossRefGoogle ScholarPubMed
10.Merin, RG, Bernard, JM, Doursout, MF, Cohen, M, Chelly, JE. Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology. 1991;74(3):568–74.10.1097/00000542-199103000-00027CrossRefGoogle ScholarPubMed
11.Bernard, JM, Doursout, MF, Wouters, P, et al. Effects of sevoflurane and isoflurane on hepatic circulation in the chronically instrumented dog. Anesthesiology. 1992;77(3):541–5.10.1097/00000542-199209000-00021CrossRefGoogle ScholarPubMed
12.Bernard, JM, Doursout, MF, Wouters, P, et al. Effects of enflurane and isoflurane on hepatic and renal circulations in chronically instrumented dogs. Anesthesiology. 1991;74(2):298302.10.1097/00000542-199102000-00016CrossRefGoogle ScholarPubMed
13.Frink, EJ, Jr., Morgan, SE, Coetzee, A, Conzen, PF, Brown, BR, Jr. The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology. 1992;76(1):8590.10.1097/00000542-199201000-00013CrossRefGoogle ScholarPubMed
14.Huang, HW, Lu, HF, Chiang, MH, et al. Hemodynamic changes during the anhepatic phase in pediatric patient with biliary atresia versus glycogen storage disease undergoing living donor liver transplantation. Transplant Proc. 2012;44(2):473–5.10.1016/j.transproceed.2011.12.062CrossRefGoogle ScholarPubMed
15.Aggarwal, S, Kang, Y, Freeman, JA, Fortunato, FL, Pinsky, MR. Postreperfusion syndrome: cardiovascular collapse following hepatic reperfusion during liver transplantation. Transplant Proc. 1987;19(4 Suppl. 3):54–5.Google ScholarPubMed
16.Hilmi, I, Horton, CN, Planinsic, RM, et al. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transplant. 2008;14(4):504–8.CrossRefGoogle ScholarPubMed
17.Ayala, R, Martinez-Lopez, J, Cedena, T, et al. Recipient and donor thrombophilia and the risk of portal venous thrombosis and hepatic artery thrombosis in liver recipients. BMC Gastroenterol. 2011;11:130.10.1186/1471-230X-11-130CrossRefGoogle ScholarPubMed
18.Alper, I, Ulukaya, S. Anesthetic management in pediatric liver transplantation: a comparison of deceased or live donor liver transplantations. J Anesth. 2010;24(3):399406.10.1007/s00540-010-0928-zCrossRefGoogle ScholarPubMed
19.Xia, VW, Du, B, Tran, A, et al. Intraoperative hypokalemia in pediatric liver transplantation: incidence and risk factors. Anesth Analg. 2006;103(3):587–93.10.1213/01.ane.0000229650.23931.0cCrossRefGoogle ScholarPubMed
20.Glanemann, M, Langrehr, JM, Muller, AR, et al. Incidence and risk factors of prolonged mechanical ventilation and causes of reintubation after liver transplantation. Transplant Proc. 1998;30(5):1874–5.10.1016/S0041-1345(98)00466-7CrossRefGoogle ScholarPubMed
21.Castaneda-Martinez, PD, Alcaide-Ortega, RI, Fuentes-Garcia, VE, et al. Anesthetic risk factors associated with early mortality in pediatric liver transplantation. Transplant Proc. 2010;42(6):2383–6.10.1016/j.transproceed.2010.06.011CrossRefGoogle ScholarPubMed
22.Donovan, KL, Janicki, PK, Striepe, VI, et al. Decreased patient analgesic requirements after liver transplantation and associated neuropeptide levels. Transplantation. 1997;63(10):1423–9.CrossRefGoogle ScholarPubMed
23.Moretti, EW, Robertson, KM, Tuttle-Newhall, JE, Clavien, PA, Gan, TJ. Orthotopic liver transplant patients require less postoperative morphine than do patients undergoing hepatic resection. J Clin Anesth. 2002;14(6):416–20.10.1016/S0952-8180(02)00390-2CrossRefGoogle ScholarPubMed
24.Eisenach, JC, Plevak, DJ, Van Dyke, RA, et al. Comparison of analgesic requirements after liver transplantation and cholecystectomy. Mayo Clin Proc. 1989;64(3):356–9.10.1016/S0025-6196(12)65257-4CrossRefGoogle ScholarPubMed
25.Kim, TW, Harbott, M. The use of caudal morphine for pediatric liver transplantation. Anesth Analg. 2004;99(2):373–4.Google ScholarPubMed
26.Diaz, R, Gouvea, G, Auler, L, Miecznikowski, R. Thoracic epidural anesthesia in pediatric liver transplantation. Anesth Analg. 2005;101(6):1891–2.Google ScholarPubMed

References

1.Schenker, MP, Martin, R, Shyn, PB, Baum, RA. Interventional radiology and anesthesia. Anesthesiol Clin. 2009;27:8794.10.1016/j.anclin.2008.10.012CrossRefGoogle ScholarPubMed
2.Wachtel, RE, Dexter, F, Dow, AJ. Growth rates in pediatric imaging and sedation. Anesth Analg. 2009;108:1616–21.CrossRefGoogle ScholarPubMed
3.Kaufman, T, Kallmes, D. Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? Am J Roentgenol. 2008;190:1435–7.Google Scholar
4.Frankel, A. Patient safety: anesthesia in remote locations. Anesthesiol Clin. 2009;27(1):127–39.10.1016/j.anclin.2008.10.005CrossRefGoogle ScholarPubMed
5.The Joint Commission. The Joint Commission Comprehensive Accreditation and Certification Manual. Oak Brook, IL: Joint Commission Resources; 2014.Google Scholar
6.Li, AH, Armstrong, D, terBrugge, KG. Endovascular treatment of vein of Galen aneurysmal malformation: management strategy and 21-year experience in Toronto. J Neurosurg Pediatr. 2011;7(1):310.10.3171/2010.9.PEDS0956CrossRefGoogle ScholarPubMed
7.Lorenz, J, Thomas, JL. Complications of percutaneous fluid drainage. Semin Intervent Radiol. 2006;23(2):194204.10.1055/s-2006-941450CrossRefGoogle ScholarPubMed
8.Govender, P, Jonas, MM, Alomari, AI, et al. Sonography-guided percutaneous liver biopsies in children. AJR Am J Roentgenol. 2013;201(3):645–50.CrossRefGoogle ScholarPubMed
9.Cahill, AM, Nijs, ELF. Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology. Cardiovasc Intervent Radiol. 2011;34:691704.10.1007/s00270-011-0123-0CrossRefGoogle ScholarPubMed
10.Greene, AK, Alomari, AI. Management of venous malformations. Clin Plast Surg. 2011;38(1):8393.CrossRefGoogle ScholarPubMed
11.Schook, CC, Mulliken, JB, Fishman, SJ, et al. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast Reconstr Surg. 2011;127(4):1571–81.CrossRefGoogle ScholarPubMed
12.Alomari, AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):17.10.1097/MCD.0b013e328317a716CrossRefGoogle ScholarPubMed
13.Hassanein, AH, Mulliken, JB, Fishman, SJ, et al. Venous malformation: risk of progression during childhood and adolescence. Ann Plast Surg. 2012;68(2):198201.10.1097/SAP.0b013e31821453c8CrossRefGoogle ScholarPubMed
14.Greene, AK, Perlyn, CA, Alomari, AI. Management of lymphatic malformations. Clin Plast Surg. 2011;38(1):7582.CrossRefGoogle ScholarPubMed
15.Lenhard, DC, Pietsch, H, Sieber, MA, et al. The osmolality of nonionic, iodinated contrast agents as an important factor for renal safety. Invest Radiol. 2012;47(9):503–10.10.1097/RLI.0b013e318258502bCrossRefGoogle Scholar
16.Barranco-Pons, R, Burrows, PE, Landrigan-Ossar, M, Trenor, CC,III, Alomari, AI. Gross hemoglobinuria and oliguria are common transient complications of sclerotherapy for venous malformations: review of 475 procedures. AJR Am J Roentgenol. 2012;199(3):691–4.CrossRefGoogle ScholarPubMed
17.Adams, DM. Special considerations in vascular anomalies: hematologic management. Clin Plast Surg. 2011;38(1):153–60.10.1016/j.cps.2010.08.002CrossRefGoogle ScholarPubMed
18.Kelly, M. Kasabach–Merritt phenomenon. Pediatr Clin N Am. 2010;57:1085–9.CrossRefGoogle Scholar
19.Duffy, DM. Sclerosants: a comparative review. Dermatol Surg. 2010;36(Suppl 2):1010–25.CrossRefGoogle ScholarPubMed
20.Mason, K. Pediatric procedures in interventional radiology. Int Anesth Clin. 2009;47(3):3543.10.1097/AIA.0b013e3181939b47CrossRefGoogle ScholarPubMed
21.Bisdorff, A, Mazighi, M, Saint-Maurice, JP, et al. Ethanol threshold doses for systemic complications during sclerotherapy of superficial venous malformations: a retrospective study. Neuroradiology. 2011;53(11):891–4.CrossRefGoogle ScholarPubMed
22.Burrows, PE, Mitri, RK, Alomari, A, et al. Percutaneous sclerotherapy of lymphatic malformations with doxycycline. Lymphat Res Biol. 2008;6(3–4):209–16.10.1089/lrb.2008.1004CrossRefGoogle ScholarPubMed
23.Nehra, D, Jacobson, L, Barnes, P, et al. Doxycycline sclerotherapy as primary treatment of head and neck lymphatic malformations in children. J Pediatr Surg. 2008;43(3):451–60.10.1016/j.jpedsurg.2007.10.009CrossRefGoogle ScholarPubMed
24.Bajpai, H, Bajpai, S. Comparative analysis of intralesional sclerotherapy with sodium tetradecyl sulfate versus bleomycin in the management of low flow craniofacial soft tissue vascular lesions. J Maxillofac Oral Surg. 2012;11(1):1320.10.1007/s12663-011-0325-7CrossRefGoogle ScholarPubMed
25.Muir, T, Kirsten, M, Fourie, P, Dippenaar, N, Ionescu, GO. Intralesional bleomycin injection (IBI) treatment for haemangiomas and congenital vascular malformations. Pediatr Surg Int. 2004;19(12):766–73.10.1007/s00383-003-1058-6CrossRefGoogle ScholarPubMed
26.Rajebi, MR, Chaudry, G, Padua, HM, et al. Intranodal lymphangiography: feasibility and preliminary experience in children. J Vasc Interv Radiol. 2011;22(9):1300–5.10.1016/j.jvir.2011.05.003CrossRefGoogle ScholarPubMed
27.Wolfe, TJ, Hussain, SI, Lynch, JR, Fitzsimmons, B, Zaidat, OO. Pediatric cerebral angiography: analysis of utilization and findings. Pediatr Neurol. 2009;40:98101.10.1016/j.pediatrneurol.2008.10.006CrossRefGoogle ScholarPubMed
28.Burger, I, Murphy, K, Jordan, L, Tamargo, R, Gailloud, P. Safety of digital subtraction angiography in children: complication rate analysis in 241 consecutive diagnostic angiograms. Stroke. 2006;37:2535–9.10.1161/01.STR.0000239697.56147.77CrossRefGoogle ScholarPubMed
29.Hoffman, CE, Santillan, A, Rotman, L, Gobin, Y, Souweidane, MM. Complications of cerebral angiography in children younger than 3 years of age. J Neurosurg Pediatr. 2014;13(4):414–19.CrossRefGoogle ScholarPubMed
30.Logemann, T, Luetmer, P, Kaliebe, J, Olson, K, Murdock, DK. Two versus six hours of bed rest following left-sided cardiac catheterization and a meta-analysis of early ambulation trials. Am J Cardiol. 1999;84:486–8.10.1016/S0002-9149(99)00344-6CrossRefGoogle Scholar
31.Landrigan-Ossar, M, McClain, CD. Anesthesia for interventional radiology. Paediatr Anaesth. 2014;24(7):698702.10.1111/pan.12411CrossRefGoogle ScholarPubMed
32.Deloison, B, Chalouhi, GE, Sonigo, P, et al. Hidden mortality of prenatally diagnosed vein of Galen aneurysmal malformation: retrospective study and review of the literature. Ultrasound Obstet Gynecol. 2012;40(6):652–8.CrossRefGoogle ScholarPubMed
33.Krings, T, Geibprasert, S, Terbrugge, K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am. 2010;21(3):463–82.10.1016/j.nec.2010.03.010CrossRefGoogle ScholarPubMed
34.Blanc, R, Deschamps, F, Orozco-Vasquez, J, Thomas, P, Gaston, A. A 6F guide sheath for endovascular treatment of intracranial aneurysms. Neuroradiology. 2007;49:563–6.10.1007/s00234-007-0233-1CrossRefGoogle ScholarPubMed
35.Theix, R, Williams, A, Smith, E, Scott, R, Orbach, D. The use of Onyx for embolization of central nervous system arteriovenous lesions in pediatric patients. Am J Neuroradiol. 2010;31:112–20.Google Scholar
36.Lv, X, Li, C, Jiang, Z, Wu, Z. The incidence of trigeminocardiac reflex in endovascular treatment of dural arteriovenous fistula with Onyx. Intervent Neuroradiol. 2010;16:5963.10.1177/159101991001600107CrossRefGoogle ScholarPubMed
37.Lv, X, Wu, Z, Li, Y, Yang, X, Jiang, C. Hemorrhage risk after partial endovascular NBCA and ONYX embolization for brain arteriovenous malformation. Neurol Res. 2012;34:552–6.10.1179/1743132812Y.0000000044CrossRefGoogle ScholarPubMed
38.Henkes, H, Gotwald, T, Brew, S, et al. Pressure measurements in arterial feeders of brain arteriovenous malformations before and after endovascular embolization. Neuroradiology. 2004;46:673–7.10.1007/s00234-004-1229-8CrossRefGoogle ScholarPubMed
39.Natarajan, S, Ghodke, B, Britz, G, Born, D, Sekhar, L. Multimodality treatment of brain arteriovenous malformations with microsurgery after embolization with Onyx: single-center experience and technical nuances. Neurosurgery. 2008;62:1213–26.Google ScholarPubMed
40.Gobin, YP, Dunkel, IJ, Marr, BP, Brodie, SE, Abramson, DH. Intra-arterial chemotherapy for the management of retinoblastoma. Arch Opthalmol. 2011;129:732–7.10.1001/archophthalmol.2011.5CrossRefGoogle ScholarPubMed
41.Abruzzo, T, Patino, M, Leach, J, Rahme, R, Geller, J. Cerebral vasoconstriction triggered by sympathomimetic drugs during intra-arterial chemotherapy. Pediatr Neurol. 2013;48:139–42.CrossRefGoogle Scholar

References

1.Spitz, L, Kiely, EM. Conjoined twins. JAMA. 2003;289(10):1307–10.10.1001/jama.289.10.1307CrossRefGoogle ScholarPubMed
2.Spitz, L. Conjoined twins. Prenat Diagn. 2005;25(9):814–19.CrossRefGoogle ScholarPubMed
3.Mackenzie, TC, Crombleholme, TM, Johnson, MP, et al. The natural history of prenatally diagnosed conjoined twins. J Pediatr Surg. 2002;7(3):303–9.Google Scholar
4.Thomas, J. Anesthesia for conjoined twins. In Davis, PJ, Cladis, FP, Motoyama, EK, editors. Smith’s Anesthesia for Infants and Children, 8th edn. St. Louis, MO: Mosby; 2011; 950–70.Google Scholar
5.El-Gammal, M. Conjoined twins: anesthetic considerations. In: Bissonnette, B, Anderson, BJ, Bosenberg, A, et al, editors. Pediatric Anesthesia: Basic Principles-State of the Art-Future. Shelton, CT: People’s Medical Publishing House; 2001; 1877–90.Google Scholar
6.Cowley, C. The conjoined twins and the limits of rationality in applied ethics. Bioethics. 2003;17(1):6988.CrossRefGoogle ScholarPubMed
7.Lee, M, Gosain, AK, Becker, D. The bioethics of separating conjoined twins in plastic surgery. Plast Reconstr Surg. 2011;128(4):328e334e.10.1097/PRS.0b013e3182268c54CrossRefGoogle ScholarPubMed
8.Rhodes, JL, Yacoe, M. Preoperative planning for the separation of omphalopagus conjoined twins: the role of a multicomponent medical model. J Craniofac Surg. 2013;24(1):175–7.CrossRefGoogle ScholarPubMed
9.O’Neill, JA Jr., Holcomb, GW III, Schnaufer, L, et al. Surgical experience with thirteen conjoined twins. Ann Surg. 1988;208(3):299312.10.1097/00000658-198809000-00007CrossRefGoogle ScholarPubMed
10.Spitz, L, Kiely, EM. Experience in the management of conjoined twins. Br J Surg. 2002;89(9):1188–92.10.1046/j.1365-2168.2002.02193.xCrossRefGoogle ScholarPubMed
11.Leelanukrom, R, Somboonviboon, W, Bunburaphong, P, Kiatkungwanklai, P. Anaesthetic experiences in three sets of conjoined twins in King Chulalongkorn Memorial Hospital. Paediatr Anaesth. 2004;14(2):176–83.10.1111/j.1460-9592.2004.01131.xCrossRefGoogle ScholarPubMed
12.Brizot, ML, Liao, AW, Lopes, LM, et al. Conjoined twins pregnancies: experience with 36 cases from a single center. Prenat Diagn. 2011;31(12):1120–5.10.1002/pd.2843CrossRefGoogle ScholarPubMed
13.Clifton, MS, Heiss, KF, Keating, JJ, et al. Use of tissue expanders in the repair of complex abdominal wall defects. J Pediatr Surg. 2011;46(2):372–7.10.1016/j.jpedsurg.2010.11.020CrossRefGoogle ScholarPubMed
14.Walton, JM, Gillis, DA, Giacomantonio, JM, et al. Emergency separation of conjoined twins. J Pediatr Surg. 1991;26(11):1337–40.10.1016/0022-3468(91)90615-ZCrossRefGoogle Scholar
15.Szmuk, P, Rabb, MF, Curry, B, Smith, KJ, et al. Anaesthetic management of thoracopagus twins with complex cyanotic heart disease for cardiac assessment: special considerations related to ventilation and cross-circulation. Br J Anaesth. 2006;96(3):341–5.10.1093/bja/aei313CrossRefGoogle ScholarPubMed
16.Greenberg, M, Frankville, DD, Hilfiker, M. Separation of omphalopagus conjoined twins using combined caudal epidural-general anesthesia. Can J Anaesth. 2001;48:478–82.10.1007/BF03028313CrossRefGoogle ScholarPubMed

References

1.Harrison, MR, Golbus, MS, Filly, RA, et al. Fetal surgery for congenital hydronephrosis. N Engl J Med. 1982;306(10):591–3.10.1056/NEJM198203113061006CrossRefGoogle ScholarPubMed
2.Harrison, MR, Filly, RA, Golbus, MS, et al. Fetal treatment 1982. N Engl J Med. 1982;307(26):1651–2.10.1056/NEJM198212233072623CrossRefGoogle ScholarPubMed
3.Zoler, ML. Myelomeningocele repair drives changes in fetal surgery. Pediatic News Digital Network. October 17, 2012.Google Scholar
4.Roybal, JL, Santore, MT, Flake, AW. Stem cell and genetic therapies for the fetus. Semin Fetal Neonatal Med. 2010;15(1):4651.10.1016/j.siny.2009.05.005CrossRefGoogle ScholarPubMed
5.Thornburg, KL, Jacobson, S-L, Giraud, GD, Morton, MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):1114.10.1016/S0146-0005(00)80047-6CrossRefGoogle ScholarPubMed
6.Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.Google ScholarPubMed
7.Hunter, S, Robson, SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(6):540–3.10.1136/hrt.68.12.540CrossRefGoogle ScholarPubMed
8.DiFederico, EM, Burlingame, JM, Kilpatrick, SJ, Harrison, M, Matthay, MA. Pulmonary edema in obstetric patients is rapidly resolved except in the presence of infection or of nitroglycerin tocolysis after open fetal surgery. Am J Obstet Gynecol. 1998;179(4):925–33.CrossRefGoogle ScholarPubMed
9.Rosen, MA. Management of anesthesia for the pregnant surgical patient. Anesthesiology. 1999;91(4):1159–63.CrossRefGoogle ScholarPubMed
10.Motoyama, EK, Rivard, G, Acheson, F, Cook, CD. The effect of changes in maternal pH and P-CO2 on the P-O2 of fetal lambs. Anesthesiology. 1967;28(5):891903.10.1097/00000542-196709000-00026CrossRefGoogle ScholarPubMed
11.Chan, MT, Mainland, P, Gin, T. Minimum alveolar concentration of halothane and enflurane are decreased in early pregnancy. Anesthesiology. 1996;85(4):782–6.CrossRefGoogle ScholarPubMed
12.Luks, FI, Johnson, BD, Papadakis, K, Traore, M, Piasecki, GJ. Predictive value of monitoring parameters in fetal surgery. J Pediatr Surg. 1998;33(8):1297–301.CrossRefGoogle ScholarPubMed
13.Bower, SJ, Flack, NJ, Sepulveda, W, Talbert, DG, Fisk, NM. Uterine artery blood flow response to correction of amniotic fluid volume. Am J Obstet Gynecol. 1995;173(2):502–7.CrossRefGoogle ScholarPubMed
14.Fisk, NM, Tannirandorn, Y, Nicolini, U, Talbert, DG, Rodeck, CH. Amniotic pressure in disorders of amniotic fluid volume. Obstet Gynecol. 1990;76(2):210–14.Google ScholarPubMed
15.Skillman, CA, Plessinger, MA, Woods, JR, Clark, KE. Effect of graded reductions in uteroplacental blood flow on the fetal lamb. Am J Physiol. 1985;249(6 Pt 2):H1098–105. Available at: http://proxy.library.upenn.edu:2205/content/249/6/H1098.long.Google ScholarPubMed
16.Fenton, KN, Heinemann, MK, Hickey, PR, et al. Inhibition of the fetal stress response improves cardiac output and gas exchange after fetal cardiac bypass. J Thorac Cardiovasc Surg. 1994;107(6):1416–22.10.1016/S0022-5223(94)70416-3CrossRefGoogle ScholarPubMed
17.Rudolph, AM, Heymann, MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol. 1976;124(2):183–92.10.1016/S0002-9378(16)33296-3CrossRefGoogle ScholarPubMed
18.Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980;238(1):H80–6.Google ScholarPubMed
19.Warren, TM, Datta, S, Ostheimer, GW, et al. Comparison of the maternal and neonatal effects of halothane, enflurane, and isoflurane for cesarean delivery. Anesth Analg. 1983;62(5):516–20.10.1213/00000539-198305000-00010CrossRefGoogle ScholarPubMed
20.Dwyer, R, Fee, JP, Moore, J. Uptake of halothane and isoflurane by mother and baby during caesarean section. Br J Anaesth. 1995;74(4):379–83.Google ScholarPubMed
21.Myers, LB, Cohen, D, Galinkin, J, Gaiser, R, Kurth, CD. Anaesthesia for fetal surgery. Paediatr Anaesth. 2002;12(7):569–78.10.1046/j.1460-9592.2002.00840.xCrossRefGoogle ScholarPubMed
22.Biehl, DR, Yarnell, R, Wade, JG, Sitar, D. The uptake of isoflurane by the foetal lamb in utero: effect on regional blood flow. Can J Anaesth. 1983;30(6):581–6.Google ScholarPubMed
23.Palahniuk, RJ, Shnider, SM. Maternal and fetal cardiovascular and acid–base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology. 1974;41(5):462–72.10.1097/00000542-197411000-00010CrossRefGoogle ScholarPubMed
24.Lee, SJ, Ralston, HJP, Drey, EA, Partridge, JC, Rosen, MA. Fetal pain: a systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947–54.10.1001/jama.294.8.947CrossRefGoogle Scholar
25.Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol. 1985;2(2):89103.10.1097/00004691-198504000-00001CrossRefGoogle ScholarPubMed
26.Giannakoulopoulos, X, Glover, V, Sepulveda, W, Kourtis, P, Fisk, NM. Fetal plasma cortisol and β-endorphin response to intrauterine needling. The Lancet. 1994;344(8915):7781.CrossRefGoogle ScholarPubMed
27.Giannakoulopoulos, X, Teixeira, JM, Fisk, NM, Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 1999;45(4):494–9.10.1203/00006450-199904010-00007CrossRefGoogle ScholarPubMed
28.Fisk, NM, Gitau, R, Teixeira, JM, et al. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828–35.10.1097/00000542-200110000-00008CrossRefGoogle ScholarPubMed
29.Meaney, MJ, Aitken, DH. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters. Brain Res. 1985;354(2):301–4.Google ScholarPubMed
30.Clarke, AS, Wittwer, DJ, Abbott, DH, Schneider, ML. Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol. 1994;27(5):257–69.CrossRefGoogle ScholarPubMed
31.Schneider, ML, Coe, CL, Lubach, GR. Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Dev Psychobiol. 1992;25(6):427–39.CrossRefGoogle ScholarPubMed
32.Glover, V, Fisk, N. Do fetuses feel pain? We don’t know; better to err on the safe side from mid-gestation. BMJ. 1996;313(7060):796.CrossRefGoogle ScholarPubMed
33.McElhinney, DB, Tworetzky, W, Lock, JE. Current status of fetal cardiac intervention: circulation. Am Heart Assoc. 2010;121(10):1256–63.Google Scholar
34.van den Bosch, AE, Roos-Hesselink, JW, van Domburg, R, et al. Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol. 2004;93(9):1141–5. Available at: http://proxy.library.upenn.edu:2080/science/article/pii/S0002914904001328.10.1016/j.amjcard.2004.01.041CrossRefGoogle ScholarPubMed
35.Makikallio, K. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113(11):1401–5.10.1161/CIRCULATIONAHA.105.588194CrossRefGoogle ScholarPubMed
36.McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90. Available at: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.109.192655.CrossRefGoogle ScholarPubMed
37.Arzt, W, Wertaschnigg, D, Veit, I, et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011;37(6):689–95.CrossRefGoogle ScholarPubMed
38.Tworetzky, W, McElhinney, DB, Marx, GR, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009;124(3):e510–18.10.1542/peds.2008-2014CrossRefGoogle Scholar
39.Vlahos, AP. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109(19):2326–30.10.1161/01.CIR.0000128690.35860.C5CrossRefGoogle ScholarPubMed
40.Marshall, AC, Levine, J, Morash, D, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):1023–8.10.1002/pd.2114CrossRefGoogle ScholarPubMed
41.Hedrick, HL. Ex utero intrapartum therapy. Semin Pediatr Surg. 2003;12(3):190–5.CrossRefGoogle ScholarPubMed
42.Laje, P, Johnson, MP, Howell, LJ, et al. Ex utero intrapartum treatment in the management of giant cervical teratomas. J Pediatr Surg. 2012;47(6):1208–16.10.1016/j.jpedsurg.2012.03.027CrossRefGoogle ScholarPubMed
43.Laje, P, Howell, LJ, Johnson, MP, et al. Perinatal management of congenital oropharyngeal tumors: the ex utero intrapartum treatment (EXIT) approach. J Pediatr Surg. 2013;48(10):2005–10.CrossRefGoogle ScholarPubMed
44.Hedrick, MH, Ferro, MM, Filly, RA, et al. Congenital high airway obstruction syndrome (CHAOS): a potential for perinatal intervention. J Pediatr Surg. 1994;29(2):271–4.10.1016/0022-3468(94)90331-XCrossRefGoogle Scholar
45.Roybal, JL, Liechty, KW, Hedrick, HL, et al. Predicting the severity of congenital high airway obstruction syndrome. J Pediatr Surg. 2010;45(8):1633–9.10.1016/j.jpedsurg.2010.01.022CrossRefGoogle ScholarPubMed
46.Kohl, T, Van de Vondel, P, Stressig, R, et al. Percutaneous fetoscopic laser decompression of congenital high airway obstruction syndrome (CHAOS) from laryngeal atresia via a single trocar: current technical constraints and potential solutions for future interventions. Fetal Diagn Ther. 2009;25(1):6771.10.1159/000200017CrossRefGoogle Scholar
47.Saadai, P, Jelin, EB, Nijagal, A, et al. Long-term outcomes after fetal therapy for congenital high airway obstructive syndrome. J Pediatr Surg. 2012;47(6):1095–100.10.1016/j.jpedsurg.2012.03.015CrossRefGoogle ScholarPubMed
48.Adzick, NS, Thom, EA, Spong, CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):9931004.10.1056/NEJMoa1014379CrossRefGoogle ScholarPubMed
49.Adzick, NS. Management of fetal lung lesions. Clin Perinatol. 2003;30(3):481–92.CrossRefGoogle ScholarPubMed
50.Peranteau, WH, Wilson, RD, Liechty, KW, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther. 2007;22(5):365–71.CrossRefGoogle ScholarPubMed
51.Tran, KM, Johnson, MP, Almeida-Chen, GM, Schwartz, AJ. The fetus as patient. Anesthesiology. 2010;113(2):462.10.1097/ALN.0b013e3181dcd5b8CrossRefGoogle ScholarPubMed
52.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):1038–43.10.1016/j.jpedsurg.2005.03.024CrossRefGoogle ScholarPubMed
53.Danzer, E, Siegle, J, D’Agostino, JA, et al. Early neurodevelopmental outcome of infants with high-risk fetal lung lesions. Fetal Diagn Ther. 2012;31(4):210–15.10.1159/000336228CrossRefGoogle ScholarPubMed
54.Harrison, MR, Mychaliska, GB, Albanese, CT, et al. Correction of congenital diaphragmatic hernia in utero IX: fetuses with poor prognosis (liver herniation and low lung-to-head ratio) can be saved by fetoscopic temporary tracheal occlusion. J Pediatr Surg. 1998;33(7):1017–22.10.1016/S0022-3468(98)90524-3CrossRefGoogle ScholarPubMed
55.Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.CrossRefGoogle ScholarPubMed
56.Deprest, J, Jani, J, Gratacos, E, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol. 2005;29(2):94103.CrossRefGoogle ScholarPubMed
57.Doné, E, Gratacos, E, Nicolaides, KH, et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2013;42(1):7783.CrossRefGoogle ScholarPubMed
58.Flake, AW. Fetal sacrococcygeal teratoma. Semin Pediatr Surg. 1993;2(2):113–20.Google ScholarPubMed
59.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430–8.10.1016/j.jpedsurg.2003.11.005CrossRefGoogle ScholarPubMed
60.Mieghem, TV, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratomas: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611–19.Google ScholarPubMed
61.Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46(7):1325–32.10.1016/j.jpedsurg.2010.10.020CrossRefGoogle Scholar
62.Tran, KM, Flake, AW, Kalawadia, NV, Maxwell, LG, Rehman, MA. Emergent excision of a prenatally diagnosed sacrococcygeal teratoma. Paediatr Anaesth. 2008;18(5):431–4.10.1111/j.1460-9592.2008.02450.xCrossRefGoogle ScholarPubMed
63.Lewi, L, Van Schoubroeck, D, Gratacós, E, et al. Monochorionic diamniotic twins: complications and management options. Curr Opin Obstet Gynecol. 2003;15(2):177–94.10.1097/00001703-200304000-00013CrossRefGoogle ScholarPubMed
64.Roberts, D, Neilson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev. 2014;1(1):135.Google Scholar
65.Moise, KJ Jr., Dorman, K, Lamvu, G, et al. A randomized trial of amnioreduction versus septostomy in the treatment of twin–twin transfusion syndrome. Am J Obstet Gynecol. 2005;193(3):701–7.10.1016/j.ajog.2005.01.067CrossRefGoogle ScholarPubMed
66.Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin–twin transfusion syndrome. Am J Obstet Gynecol. 2007;197(4):396.e1–9.CrossRefGoogle ScholarPubMed
67.Senat, M-V, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136–44.10.1056/NEJMoa032597CrossRefGoogle ScholarPubMed
68.Slaghekke, F, Lopriore, E, Lewi, L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. The Lancet. 2014;383(9935):2144–51.10.1016/S0140-6736(13)62419-8CrossRefGoogle ScholarPubMed
69.Mizrahi-Arnaud, A, Tworetzky, W, Bulich, LA, et al. Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention. Pediatr Res. 2007;62(3):325–30.10.1203/PDR.0b013e318123fd3aCrossRefGoogle ScholarPubMed
70.Brusseau, R, Mizrahi-Arnaud, A. Fetal anesthesia and pain management for intrauterine therapy. Clin Perinatol. 2013;40(3):429–42.10.1016/j.clp.2013.05.006CrossRefGoogle ScholarPubMed
71.Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22(1):50–5.10.1053/j.sempedsurg.2012.10.009CrossRefGoogle ScholarPubMed
72.Rychik, J. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110(12):1549–56.CrossRefGoogle ScholarPubMed
73.Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Pediatr Anesth. 2010;20(8):748–56.10.1111/j.1460-9592.2010.03350.xCrossRefGoogle ScholarPubMed
74.Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.CrossRefGoogle Scholar
75.Klaritsch, P, Albert, K, Van Mieghem, T, et al. Instrumental requirements for minimal invasive fetal surgery. BJOG. 2008;116(2):188–97.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×