Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T10:12:22.583Z Has data issue: false hasContentIssue false

Part II - Advanced Analytical Instrumentation

Published online by Cambridge University Press:  06 July 2019

Janice P. L. Kenney
Affiliation:
MacEwan University, Edmonton
Harish Veeramani
Affiliation:
Carleton University, Ottawa
Daniel S. Alessi
Affiliation:
University of Alberta
Get access

Summary

Isothermal titration calorimetry combined with surface complexation modeling is an ideal technique to provide further characterization of microbial surface reactivity towards protons and metal ions. This technique can produce enthalpies of protonation and metal ion coordination of acidic functional groups on microbial surfaces. This information is critical for understanding the thermodynamic driving force of surface complexation and provides key information for the indirect identification of surface ligands. Topics covered in this chapter include how this technique complements traditional methods of microbial surface reactivity, necessary system characterization prior to performing calorimetric experiments, how to prepare biomass and solutions for calorimetric titrations, difficult aspects of this technique, and data analysis and interpretation.

Type
Chapter
Information
Analytical Geomicrobiology
A Handbook of Instrumental Techniques
, pp. 61 - 118
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2.4 References

Alderighi, L., Gans, P., Ienco, A., et al., 1999. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184, 311318.CrossRefGoogle Scholar
Ahrland, S., Chatt, J., Davies, N.R., 1958. The relative affinities of ligand atoms for acceptor molecules and ions. Q Rev Chem Soc 12, 265276.Google Scholar
Alessi, D.S., Henderson, J.M., Fein, J.B., 2010. Experimental measurement of monovalent cation adsorption onto Bacillus subtilis cells. Geomicrobiol J 27, 464472.Google Scholar
Banfield, J.F., Nealson, K.H., 1997. Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy. Mineralogical Society of America, Washington, DC.Google Scholar
Barker, W.W., Welch, S.A., Chu, S., Banfield, J.F., 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83, 15511563.Google Scholar
Beck, M.T., Nagypal, I., 1990. Chemistry of Complex Equilibria. Ellis Horwood, Chichester.Google Scholar
Beveridge, T.J., 1988. The bacterial surface: general considerations towards design and function. Can J Microbiol 34, 363372.Google Scholar
Beveridge, T.J., 1994. Bacterial S-layers. Curr Opin Struct Biol 4, 204212.CrossRefGoogle Scholar
Beveridge, T.J., Murray, R.G.E., 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141, 876887.CrossRefGoogle ScholarPubMed
Borrok, D.M., Fein, J.B., 2005. The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. J Colloid Interface Sci 286, 110126.Google Scholar
Boyanov, M.I., Kelly, S.D., Kemner, K.M., et al., 2003. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67, 32993311.Google Scholar
Christensen, J.J., Hansen, L.D., Izatt, R.M., 1976. Handbook of Proton Ionization Heats and Related Thermodynamic Quantities. Wiley-Interscience, New York.Google Scholar
Christensen, J.J., Izatt, R.M., Hansen, L.D., 1967. Thermodynamics of proton ionization in dilute aqueous solution. VII. DH and DS values for proton ionization from carboxylic acids at 25C. J Am Chem Soc 89, 213222.Google Scholar
Christensen, J.J., Wrathall, D.P., Izatt, R.M., 1968. Calorimetric determination of log K, ΔH, and ΔS from thermometric titration data. Anal Chem 40, 175181.Google Scholar
Culha, M., Adiguzel, A., Yazici, M.M., et al., 2008. Characterization of thermophilic bacteria using surface-enhanced Raman scattering. Appl Spectrosc 62, 12261232.Google Scholar
Ehrlich, H.L., 1996. How microbes influence mineral growth and dissolution. Chem Geol 132, 59.Google Scholar
Ehrlich, H.L., 2002. Geomicrobiology, 4th ed. Marcel Dekker, Inc., New York, NY.Google Scholar
Fein, J.B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B.F., 2005. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim Cosmochim Acta 69, 11231132.Google Scholar
Fein, J.B., Daughney, C.J., Yee, N., Davis, T.A., 1997. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61, 33193328.Google Scholar
Ferris, F.G., Beveridge, T.J., 1985. Functions of bacterial cell surface structures. Bioscience 35, 172177.CrossRefGoogle Scholar
Flynn, S., Szymanowski, J., Fein, J., 2014. Modeling bacterial metal toxicity using a surface complexation approach. Chem Geol 374375, 110116.Google Scholar
Ginn, B., Fein, J.B., 2009. Temperature dependence of Cd and Pb binding onto bacterial cells. Chem Geol 259, 99106.Google Scholar
Gorman-Lewis, D., 2009. Calorimetric measurements of proton adsorption onto Pseudomonas putida. J Colloid Interface Sci 337, 390395.Google Scholar
Gorman-Lewis, D., 2011. Enthalpies of proton adsorption onto Bacillus licheniformis at 25, 37, 50, and 75°C. Geochim Cosmochim Acta 75, 12971307.Google Scholar
Gorman-Lewis, D., 2014. Enthalpies and entropies of Cd and Zn adsorption onto Bacillus licheniformis and enthalpies and entropies of Zn adsorption onto Bacillus subtilis from isothermal titration calorimetry and surface complexation modeling. Geomicrobiol J 31, 383395.Google Scholar
Gorman-Lewis, D., Fein, J.B., Jensen, M.P., 2006. Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim Cosmochim Acta 70, 48624873.Google Scholar
Gorman-Lewis, D., Martens-Habbena, W., Stahl, D.A., 2014. Thermodynamic characterization of proton-ionizable functional groups on the cell surfaces of ammonia-oxidizing bacteria and archaea. Geobiology 12, 157171.Google Scholar
Guine, V., Spadini, L., Sarret, G., et al., 2006. Zinc sorption to three Gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40, 18061813.Google Scholar
Harrold, Z.R., Gorman-Lewis, D., 2013. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry. Geochim Cosmochim Acta 109, 296305.Google Scholar
Hoyle, B., Beveridge, T.J., 1983. Binding of metallic ions to the outer membrane of Escherichia coli. Appl Environ Microbiol 46, 749752.Google Scholar
Jensen, M.P., Beitz, J.V., Rogers, R.D., Nash, K.L., 2000. Thermodynamics and hydration of the europium complexes of a nitrogen heterocycle methane-1,1-diphosphonic acid. J Chem Soc Dalton Trans, 30583064.Google Scholar
Jespersen, N.D., Jordan, J., 1970. Thermometric enthalpy titration of proteins. Anal Lett 3, 323334.Google Scholar
Kelly, S.D., Kemner, K.M., Fein, J.B., et al., 2002. X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta 66, 38553871.Google Scholar
Martell, A.E., 2001. NIST Critically Selected Stability Constants of Metal Complexes. U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology.Google Scholar
Martell, A.E., Hancock, R.D., 1996. Metal Complexes in Aqueous Solution. Modern Inorganic Chemistry. Plenum Press, New York.Google Scholar
Mishra, B., Boyanov, M., Bunker, B.A., et al., 2010. High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis. Geochim Cosmochim Acta 74, 42194233.Google Scholar
Mishra, B., Boyanov, M.I., Bunker, B.A., et al., 2009. An X-ray absorption spectroscopy study of Cd binding onto bacterial consortia. Geochim Cosmochim Acta 73, 43114325.Google Scholar
Nash, K.L., Rao, L.F., Choppin, G.R., 1995. Calorimetric and laser induced fluorescence investigation of the complexation geometry of selected europium-gem-diphosphonate complexes in acidic solutions. Inorg Chem 34, 27532758.Google Scholar
Nell, R. M., Szymanowski, J. E. S., Fein, J. B., 2016. Divalent metal cation adsorption onto Leptothrix cholodnii SP-6SL bacterial cells. Chem Geol 439, 132138.Google Scholar
Ngwenya, B.T., Sutherland, I.W., Kennedy, L., 2003. Comparison of the acid-base behavior and metal adsorption characteristics of a Gram-negative bacterium with other strains. Appl Geochem 18, 527538.Google Scholar
Pearson, R.G., 1968a. Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ 45, 581587.Google Scholar
Pearson, R.G., 1968b. Hard and soft acids and bases, HSAB, part II: underlying theories. J Chem Educ 45, 643648.Google Scholar
Perdue, E.M., 1978. Solution thermochemistry of humic substances – I.Acid-base equilibria of humic acid.Geochim Cosmochim Acta 42, 13511358.Google Scholar
Pettit, L.D., Powell, K.J., 2005. IUPAC Stability Constants Database (SC-Database). Acad. Softw. Data Version 4.82.Google Scholar
Plette, A.C.C., van Riemsdijk, W.H., Benedetti, M.F., Van der Wal, A., 1995. pH dependent charging behavior of isolated cell walls of a Gram-positive soil bacterium. J Colloid Interface Sci 173, 354363.Google Scholar
Sheng, X.F., Zhao, F., He, L.Y., Qiu, G., Chen, L., 2008. Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54, 10641068.Google Scholar
Song, Z., Kenney, J.P.L., Fein, J.B., Bunker, B.A., 2012. An X-ray absorption fine structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species. Geochim Cosmochim Acta 86, 103117.Google Scholar
Wei, J., Saxena, A., Song, B., et al., 2004. Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20, 1143311442.Google Scholar
Westall, J.C., 1982. FITEQL, a Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. Version 2.0. Report 82–02. Department of Chemistry, Oregon State University.Google Scholar
Wightman, P.G., Fein, J.B., 2004. The effect of bacterial cell wall adsorption on mineral solubilities. Bact Geochem Speciat Met 212, 247254.Google Scholar
Wightman, P.G., Fein, J.B., Wesolowski, D.J., et al., 2001. Measurement of bacterial surface protonation constants for two species at elevated temperatures. Geochim Cosmochim Acta 65, 36573669.Google Scholar
Yee, N., Benning, L.G., Phoenix, V.R., Ferris, F.G., 2004. Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38, 775782.CrossRefGoogle ScholarPubMed

3.6 References

Alam, M. S., Gorman-Lewis, D., Chen, N., et al. (2018) Thermodynamic analysis of nickel(II) and zinc(II) adsorption to biochar. Environ. Sci. Technol. 52(11): 62466255.Google Scholar
Alessi, D. S., Fein, J. B. (2010) Cadmium adsorption to mixtures of soil components: Testing the component additivity approach. Chem. Geol. 270(1–4): 186195.Google Scholar
Alessi, D. S., Henderson, J. M., Fein, J. B. (2010) Experimental measurement of monovalent cation adsorption onto Bacillus subtilis cells. Geomicrobiol. J 27(5): 464472.Google Scholar
Baker, M. G., Lalonde, S. V., Konhauser, K. O., Foght, J. M. (2010) Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl. Environ. Microbiol. 76(1): 102109.Google Scholar
Bethke, C. M., Brady, P. V. (2000) How the Kd approach undermines ground water cleanup. Ground Water 38(3): 435443.Google Scholar
Beveridge, T. J., Murray, R. G. E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141(2): 876887.Google Scholar
Borrok, D. M., Fein, J. B. (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. J. Colloid Interface Sci. 286: 110126.CrossRefGoogle ScholarPubMed
Borrok, D. M., Fein, J. B., Kulpa, C. F. (2004) Proton and Cd adsorption onto natural bacterial consortia: testing universal adsorption behavior. Geochim. Cosmochim. Acta 68: 32313238.Google Scholar
Brassard, P., Kramer, J. R., Collins, P. V. (1990) Binding site analysis using linear programming. Environ. Sci. Technol. 24(2): 195201.CrossRefGoogle Scholar
Cox, J. S., Smith, D. S., Warren, L. A., Ferris, F. G. (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 33(24): 45144521.Google Scholar
Davis, J.A., Kent, D. (1990) Surface complexation modeling in aqueous geochemistry. Rev. Mineral. Geochem. 23(1): 177260.Google Scholar
Davis, J. A., Coston, J. A., Kent, D. B., Fuller, C. C. (1998) Application of the surface complexation modeling concept to complex mineral assemblages. Environ. Sci. Technol. 32(19): 28202828.Google Scholar
Driver, S. J., Perdue, E. M. (2015) Acid-base chemistry of natural organic matter, hydrophobic acids, and transphilic acids from the Suwannee River, Georgia, as determined by direct potentiometric titration. Environ. Engineer. Sci. 32(1): 6670.Google Scholar
Duc, M., Gaboriaud, F., Thomas, F. (2005a) Sensitivity of the acid-base properties of clays to the method of preparation and measurement: 1. Literature review. J. Colloid Interface Sci. 289: 139147.Google Scholar
Duc, M., Gaboriaud, F., Thomas, F. (2005b) Sensitivity of the acid-base properties of clays to the method of preparation and measurement: 2. Evidence from continuous potentiometric titrations. J. Colloid Interface Sci. 289: 139147.Google Scholar
Dzombak, D. A., Morel, F. M. M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley-Interscience, New York, NY, 393 pp.Google Scholar
Fein, J. B. (2006) Thermodynamic modeling of metal adsorption onto bacterial cell walls: Current challenges. Adv. Agron. 90: 179202.Google Scholar
Fein, J. B., Delea, D. E. (1999) Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: A test of the chemical equilibrium approach. Chem. Geol. 161: 375383.Google Scholar
Fein, J. B., Daughney, C. J., Yee, N., Davis, T. A. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 61: 33193328.Google Scholar
Fein, J. B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B. F. (2005) Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta 69: 11231132.Google Scholar
Flynn, S. L., Gao, Q., Robbins, L. J., et al. (2017) Measurements of bacterial mat metal binding capacity in alkaline and carbonate-rich systems. Chem. Geol. 451: 1724.Google Scholar
Ginn, B. R., Szymanowski, J. S., Fein, J. B. (2008) Metal and proton binding onto the roots of Fescue rubra. Chem. Geol. 253: 130135.Google Scholar
Gorgulho, H. F., Mesquita, J. P., Gonçalves, F., Pereira, M. F. R., Figueiredo, J. L. (2008) Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon 46(12): 15441555.Google Scholar
Gorman-Lewis, D., Fein, J. B., Jensen, M. P. (2006) Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim. Cosmochim. Acta 70: 48624873.Google Scholar
Hao, W., Flynn, S. L., Alessi, D. S., Konhauser, K. O. (2018) Change of the point of zero net proton charge (pHPZNPC) of clay minerals with ionic strength. Chem. Geol. 493: 458467.Google Scholar
Herbelin, A. L., Westall, J. C. (1999) FITEQL: A Computer Program for Determination of Equilibrium Constants from Experimental Data. Department of Chemistry, Oregon State University, Corvallis, OR, Report 99–01.Google Scholar
Hetzer, A., Daughney, C. J., Morgan, H. W. (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl. Environ. Microbiol, 72(6): 40204027.Google Scholar
Kenney, J. P. L., Fein, J. B. (2011) Importance of extracellular polysaccharides in proton and Cd binding to bacteria: A comparative study. Chem. Geol. 286(3–4): 109117.Google Scholar
Koretsky, C. (2000) The significance of surface complexation reactions in hydrologic systems: A geochemist’s perspective. J. Hydrol. 230(3): 127171.Google Scholar
Lalonde, S. V., Smith, D. S., Owttrim, G. W., Konhauser, K. O. (2008a) Acid-base properties of cyanobacterial cell surfaces. I: Influences of growth phase and nitrogen metabolism on cell surface reactivity. Geochim. Cosmochim. Acta 72: 12571268.Google Scholar
Lalonde, S. V., Smith, D. S., Owttrim, G. W., Konhauser, K. O. (2008b) Acid-base properties of cyanobacterial cell surfaces. II: Silica as a chemical stressor influencing cell surface reactivity. Geochim. Cosmochim. Acta 72: 12691280.Google Scholar
Lalonde, S. V., Dafoe, L., Pemberton, S. G., Gingras, M. K., Konhauser, K. O. (2010) Investigating the geochemical impact of burrowing animals: Proton and cadmium adsorption onto the mucus-lining of Terebellid polychaete worms. Chem. Geol. 271: 4451.Google Scholar
Liu, Y., Alessi, D. S., Owttrim, G. W., et al. (2015) Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. Geochim. Cosmochim. Acta 169: 3044.Google Scholar
Liu, Y., Alessi, D. S., Owttrim, G. W., et al. (2016) Cell surface acid-base properties of cyanobacterium Synechococcus: Influences of nitrogen source, growth phase, and N:P ratios. Geochim. Cosmochim. Acta 187: 179194.Google Scholar
Lützenkirchen, J., Preočanin, T., Kovačević, D., et al. (2012) Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 85(4): 391417.CrossRefGoogle Scholar
Martinez, R. E., Ferris, F. G. (2001) Chemical equilibrium modeling techniques for the analysis of high-resolution bacterial metal sorption data. J. Colloid Interface Sci. 243: 7380.Google Scholar
Martinez, R. E., Smith, D. S., Kulczycki, E., Ferris, F. G. (2002) Determination of intrinsic bacterial acidity constants using a Donnan shell model and a continuous pKa distribution method. J. Colloid Interface Sci. 253(1): 130139.Google Scholar
Ngwenya, B. T., Sutherland, I. W., Kennedy, L. (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl. Geochem. 18(4): 527538.Google Scholar
Pagnanelli, F., Bornoroni, L., Moscardini, E., Toro, L. (2006) Non-electrostatic surface complexation models for protons and lead(II) sorption onto single minerals and their admixtures. Chemosphere 63(7): 10631073.Google Scholar
Petrash, D. P., Raudsepp, M., Lalonde, S. V., and Konhauser, K. O. (2011a) Assessing the importance of matrix materials in biofilm chemical reactivity: Insights from proton and cadmium adsorption onto the commercially-available biopolymer alginate. Geomicrobiol. J. 28: 266273.Google Scholar
Petrash, D. A., Lalonde, S. V., Gingras, M. K., and Konhauser, K. O. (2011b) A surrogate approach to studying the chemical reactivity of burrow mucus linings. Palaios 26: 595602.CrossRefGoogle Scholar
Turner, B. F., Fein, J. B. (2006) Protofit: A program for determining surface protonation constants from titration data. Comput. Geosci. 32: 13441356.Google Scholar
Warchola, T., Flynn, S. L., Robbins, L. J., et al. (2017) Field- and lab-based potentiometric titrations of microbial mats from the Fairmont Hot Spring, Canada. Geomicrobiol. J. 34(10): 851863.Google Scholar
Westall, J. C., Jones, J. D., Turner, G. D., Zachara, J. M. (1995) Models for association of metal ions with heterogeneous environmental sorbents. 1. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO4 concentration. Environ. Sci. Technol. 29: 951959.Google Scholar
Yee, N., Fein, J. (2001) Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochim. Cosmochim. Acta 65: 20372042.Google Scholar
Yu, Q., Fein, J. B. (2016) Sulfhydryl binding sites within bacterial extracellular polymeric substances. Environ. Sci. Technol. 50(11): 54985505.Google Scholar
Zhao, Z., Jia, Y., Xu, L., Zhao, S. (2011) Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Res. 45(19): 64966504.Google Scholar

4.5 References

Albarède, F., Beard, B.L., 2004. Analytical methods for non-traditional isotopes, in Johnson, C.M., Beard, B.L., Albarede, F. (Eds.), Geochemistry of Non-traditional Stable Isotopes. The Mineralogical Society of America, Washington, DC, USA, pp. 113152.Google Scholar
Anbar, A.D., 2004. Iron stable isotopes: Beyond biosignatures. Earth and Planetary Science Letters 217, 223236.Google Scholar
Anbar, A.D., Roe, J.E., Barling, J., Nealson, K.H., 2000. Nonbiological fractionation of iron isotopes. Science 288, 126128.Google Scholar
Azrieli-Tal, I., Matthews, A., Bar-Matthews, M., et al., 2014. Evidence from molybdenum and iron isotopes and molybdenum–uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation. Earth and Planetary Science Letters 393, 231242.Google Scholar
Barling, J., Anbar, A.D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters 217, 315329.Google Scholar
Beard, B.L., Johnson, C.M., 1999. High precision iron isotope measurements of terrestrial and lunar materials. Geochimica et Cosmochimica Acta 63, 16531660.Google Scholar
Beard, B.L., Johnson, C.M., 2004. Fe isotope variations in the modern and ancient earth and other planetary bodies. Reviews in Mineralogy and Geochemistry 55, 319357.Google Scholar
Beard, B.L., Johnson, C.M., Cox, L., et al., 1999. Iron isotope biosignatures. Science 285, 18891892.Google Scholar
Beard, B.L., Johnson, C.M., Skulan, J.L., et al., 2003a. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195, 87117.Google Scholar
Beard, B.L., Johnson, C.M., Von Damm, K.L., Poulson, R.L., 2003b. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31, 629632.Google Scholar
Becker, J.S., 2007. Inorganic Mass Spectrometry: Principles and Applications. Wiley, Chichester, England.Google Scholar
Belshaw, N.S., Zhu, X., Guo, Y., O’Nions, R.K., 2000. High precision measurement of iron isotopes by plasma source mass spectrometry. International Journal of Mass Spectrometry 197, 191195.Google Scholar
Bergquist, B.A., Boyle, E.A., 2006. Iron isotopes in the Amazon River system: Weathering and transport signatures. Earth and Planetary Science Letters 248, 5468.Google Scholar
Borrok, D.M., Wanty, R.B., Ridley, W.I., et al., 2007. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chemical Geology 242, 400414.Google Scholar
Brantley, S.L., Liermann, L.J., Guynn, R.L., et al., 2004. Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta 68, 31893204.Google Scholar
Bufflap, S.E., Allen, H.E., 1995. Sediment pore water collection methods for trace metal analysis: A review. Water Research 29, 165177.Google Scholar
Bullen, T.D., White, A.F., Childs, C.W., Vivit, D.V., Schulz, M.S., 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29, 699.Google Scholar
Burdige, D.J., 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton, NJ, USA.Google Scholar
Burton, K.W., Vigier, N., 2011. Lithium isotopes as tracers in marine and terrestrial environments, in Baskaran, M. (Ed.), Handbook of Environmental Isotope Geochemistry. Springer, Berlin, Germany, pp. 4159.Google Scholar
Busigny, V., Planavsky, N.J., Jézéquel, D., et al., 2014. Iron isotopes in an Archean ocean analogue. Geochimica et Cosmochimica Acta 133, 443462.Google Scholar
Buss, H.L., Mathur, R., White, A.F., Brantley, S.L., 2010. Phosphorus and iron cycling in deep saprolite, Luquillo Mountains, Puerto Rico. Chemical Geology 269, 5261.Google Scholar
Byrne, J.M., Klueglein, N., Pearce, C., et al., 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 14731476.Google Scholar
Caiazza, N.C., Lies, D.P., Newman, D.K., 2007. Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003. Applied and Environmental Microbiology 73, 61506158.Google Scholar
Chen, J.-B., Busigny, V., Gaillardet, J., Louvat, P., Wang, Y.-N., 2014. Iron isotopes in the Seine River (France): Natural versus anthropogenic sources. Geochimica et Cosmochimica Acta 128, 128143.Google Scholar
Chever, F., Rouxel, O.J., Croot, P.L., et al., 2015. Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochimica et Cosmochimica Acta 162, 6682.Google Scholar
Cloquet, C., Carignan, J., Lehmann, M.F., Vanhaecke, F., 2008. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: A review. Analytical and Bioanalytical Chemistry 390, 451463.Google Scholar
Collins, R.N., Waite, T.D., 2009. Isotopically exchangeable concentrations of elements having multiple oxidation states: The case of Fe(II)/Fe(III) isotope self-exchange in coastal lowland acid sulfate soils. Environmental Science & Technology 43, 53655370.Google Scholar
Couture, R.-M., Gobeil, C., Tessier, A., 2010a. Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochimica et Cosmochimica Acta 74, 12381255.Google Scholar
Couture, R.-M., Shafei, B., Cappallen, P.V., Tessier, A., Gobeil, C., 2010b. Non-steady state modeling of arsenic diagenesis in lake sediments. Environmental Science & Technology 44, 197203.Google Scholar
Crosby, H.A., Johnson, C.M., Roden, E.E., Beard, B.L., 2005. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environmental Science & Technology 39, 66986794.Google Scholar
Crosby, H.A., Roden, E.E., Johnson, C.M., Beard, B.L., 2007. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology 5, 169189.Google Scholar
Cullum, D.C., 1994. Introduction to Surfactant Analysis. Chapman & Hall, London, UK.Google Scholar
Dauphas, N., John, S.G., Rouxel, O., 2017. Iron isotope systematics. Reviews in Mineralogy and Geochemistry 82, 415510.Google Scholar
Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews 34, 119163.Google Scholar
Dekov, V.M., Vanlierde, E., Billström, K., et al., 2014. Ferrihydrite precipitation in groundwater-fed river systems (Nete and Demer river basins, Belgium): Insights from a combined Fe-Zn-Sr-Nd-Pb-isotope study. Chemical Geology 386, 115.Google Scholar
Dideriksen, K., Baker, J.A., Stipp, S.L.S., 2008. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth and Planetary Science Letters 269, 280290.Google Scholar
Dodson, M.H., 1963. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I – General first-order algebraic solutions. Journal of Scientific Instruments 40, 289295.Google Scholar
Ehrenreich, A., Widdel, F., 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology 60, 45174526.Google Scholar
Escoube, R., Rouxel, O.J., Sholkovitz, E., Donard, O.F.X., 2009. Iron isotope systematics in estuaries: The case of North River, Massachusetts (USA). Geochimica et Cosmochimica Acta 73, 40454059.Google Scholar
Fantle, M.S., Bullen, T.D., 2009. Essentials of iron, chromium and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chemical Geology 258, 5064.Google Scholar
Gauger, T., Byrne, J.M., Konhauser, K.O., et al., 2016. Influence of organics and silica on Fe(II) oxidation rates and cell–mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox – Implications for Fe(II) oxidation in ancient oceans. Earth and Planetary Science Letters 443, 8189.Google Scholar
Gelting, J., Breitbarth, E., Stolpe, B., Hassellöv, M., Ingri, J., 2010. Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone. Biogeosciences 7, 24892508.Google Scholar
Glass, J.B., Wolfe-Simon, F., Anbar, A.D., 2009. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7, 100123.Google Scholar
Guelke, M., von Blanckenburg, F., Schoenberg, R., Staubwasser, M., Stuetzel, H., 2010. Determining the stable Fe isotope signature of plant-available iron in soils. Chemical Geology 277, 269280.Google Scholar
Guo, H., Liu, C., Lu, H., et al., 2013. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochimica et Cosmochimica Acta 112, 130145.Google Scholar
Homoky, W.B., John, S.G., Conway, T.M., Mills, R.A., 2013. Distinct iron isotopic signatures and supply from marine sediment dissolution. Nature Communications 4, 2143.Google Scholar
Homoky, W.B., Severmann, S., Mills, R.A., Statham, P.J., Fones, G.R., 2009. Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: Evidence from continental shelf and deep-sea sediments. Geology 37, 751754.Google Scholar
Hotz, K., Walczyk, T., 2013. Natural iron isotopic composition of blood is an indicator of dietary iron absorption efficiency in humans. Journal of Biological Inorganic Chemistry 18, 17.Google Scholar
Ilina, S.M., Poitrasson, F., Lapitskiy, S.A., et al., 2013. Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters. Geochimica et Cosmochimica Acta 101, 96111.Google Scholar
Ingri, J., Malinovsky, D., Rodushkin, I., et al., 2006. Iron isotope fractionation in river colloidal matter. Earth and Planetary Science Letters 245, 792798.Google Scholar
Jiao, Y., Kappler, A., Croal, L.R., Newman, D.K., 2005. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology 71, 44874496.CrossRefGoogle ScholarPubMed
John, S.G., Mendez, J., Moffett, J., Adkins, J., 2012. The flux of iron and iron isotopes from San Pedro Basin sediments. Geochimica et Cosmochimica Acta 93, 1429.Google Scholar
Johnson, C.M., Beard, B.L., 1999. Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. International Journal of Mass Spectrometry 193, 8799.Google Scholar
Johnson, C.M., Beard, B.L., Klein, C., Beukes, N.J., Roden, E.E., 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta 72, 151169.Google Scholar
Johnson, C.M., Roden, E.E., Welch, S.A., Beard, B.L., 2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochimica et Cosmochimica Acta 69, 963993.Google Scholar
Kappler, A., Pasquero, C., Konhauser, K.O., Newman, D.K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865868.Google Scholar
Kendall, B., Dahl, T.W., Anbar, A.D., 2017. The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry 82, 683732.Google Scholar
Labatut, M., Lacan, F., Pradoux, C., et al., 2014. Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Global Biogeochemical Cycles 28, 10441065.Google Scholar
Li, W., Beard, B.L., Johnson, C.M., 2015. Biologically recycled continental iron is a major component in banded iron formations. Proceedings of the National Academy of Sciences of the United States of America 112, 81938198.Google Scholar
Li, W.-Y., Teng, F.-Z., Ke, S., et al., 2010. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta 74, 68676884.Google Scholar
Liu, K., Wu, L., Couture, R.-M., Li, W., Van Cappellen, P., 2015. Iron isotope fractionation in sediments of an oligotrophic freshwater lake. Earth and Planetary Science Letters 423, 164172.Google Scholar
Lovley, D.R., 1993. Dissimilatory metal reduction. Annual Review of Microbiology 47, 263290.Google Scholar
Malinovsky, D., Rodyushkin, L.V., Shcherbakova, E.P., et al., 2005. Fractionation of Fe isotopes as a result of redox processes in a basin. Geochemistry International 43, 797803.Google Scholar
Malinovsky, D., Stenberg, A., Rodushkin, I., et al., 2003. Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. Journal of Analytical Atomic Spectrometry 18, 687695.Google Scholar
Mansfeldt, T., Schuth, S., Häusler, W., et al., 2011. Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. Journal of Soils and Sediments 12, 97114.Google Scholar
Marechal, C.N., Telouk, P., Albarede, F., 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology 156, 251273.Google Scholar
Matthews, A., Zhu, X., O’Nions, R.K., 2001. Kinetic iron stable isotope fractionation between iron (-II) and (-III) complexes in solution. Earth and Planetary Science Letters 192, 8192.Google Scholar
Meija, J., Yang, L., Mester, Z., Sturgeon, R.E., 2012. Correction of instrumental mass discrimination for isotope ratio determination with multi-collector inductively coupled plasma mass spectrometry, in Vanhaecke, F., Degryse, P. (Eds.), Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany, pp. 113137.Google Scholar
Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A., 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews. Microbiology 12, 797808.Google Scholar
Molot, L.A., Watson, S.B., Creed, I.F., et al., 2014. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron. Freshwater Biology 59, 13231340.Google Scholar
Morgan, J.L.L., Wasylenki, L.E., Nuester, J., Anbar, A.D., 2011. Fe isotope fractionation during equilibration of Fe-organic complexes. Environmental Science & Technology 44, 60956101.Google Scholar
Moynier, F., Vance, D., Fujii, T., Savage, P., 2017. The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry 82, 543600.Google Scholar
Nishizawa, M., Yamamoto, H., Ueno, Y., et al., 2010. Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater. Geochimica et Cosmochimica Acta 74, 27602778.Google Scholar
Percak-Dennett, E.M., Beard, B.L., Xu, H., et al., 2011. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology 9, 205220.Google Scholar
Percak-Dennett, E.M., Loizeau, J.-L., Beard, B.L., Johnson, C.M., Roden, E.E., 2013. Iron isotope geochemistry of biogenic magnetite-bearing sediments from the Bay of Vidy, Lake Geneva. Chemical Geology 360361, 3240.Google Scholar
Pinheiro, G.M.S., Poitrasson, F., Sondag, F., Cochonneau, G., Vieiraa, L.C., 2014. Contrasting iron isotopic compositions in river suspended particulate matter: The Negro and the Amazon annual river cycles. Earth and Planetary Science Letters 394, 168178.Google Scholar
Planavsky, N., Rouxel, O.J., Bekker, A., et al., 2012. Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta 80, 158169.Google Scholar
Poitrasson, F., Viers, J., Martin, F., Braun, J.-J., 2008. Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: Implications for the global Fe geochemical cycle. Chemical Geology 253, 5463.Google Scholar
Radic, A., Lacan, F., Murray, J.W., 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters 306, 110.Google Scholar
Rehkamper, M., Schonbachler, M., Andreasen, R., 2012. Application of multiple-collector inductively coupled plasma mass spectrometry to isotopic analysis in cosmochemistry, in Vanhaecke, F., Degryse, P. (Eds.), Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany, pp. 275315.Google Scholar
Rouxel, O., Auro, M., 2010. Iron isotope variations in coastal seawater determined by multicollector ICP-MS. Geostandards and Geoanalytical Research 34, 135144.Google Scholar
Savage, P., Moynier, F., Harvey, J., Burton, K., 2015. The behavior of copper isotopes during igneous processes. AGU conference, San Francisco 390, 451–463.Google Scholar
Schiff, S.L., Tsuji, J.M., Wu, L., et al., 2017. Millions of boreal shield lakes can be used to probe Archaean ocean biogeochemistry. Scientific Reports 7, 46708.Google Scholar
Scholz, F., Severmann, S., McManus, J., Hensen, C., 2014. Beyond the Black Sea paradigm: The sedimentary fingerprint of an open-marine iron shuttle. Geochimica et Cosmochimica Acta 127, 368380.Google Scholar
Severmann, S., Anbar, A.D., 2009. Reconstructing paleoredox conditions through a multitracer approach: The key to the past is the present. Elements 5, 359364.Google Scholar
Severmann, S., Lyons, T.W., Anbar, A., McManus, J., Gordon, G., 2008. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36, 487.Google Scholar
Severmann, S., McManus, J., Berelson, W.M., Hammond, D.E., 2010. The continental shelf benthic iron flux and its isotope composition. Geochimica et Cosmochimica Acta 74, 39844004.Google Scholar
Shi, B., Liu, K., Wu, L., et al., 2016. Iron isotope fractionations reveal a finite bioavailable Fe pool for structural Fe(III) reduction in nontronite. Environmental Science & Technology 50, 86618669.Google Scholar
Skulan, J.L., Beard, B.L., Johnson, C.M., 2002. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochimica et Cosmochimica Acta 66, 29953015.Google Scholar
Song, L., Liu, C.-Q., Wang, Z.-L., et al., 2011. Iron isotope fractionation during biogeochemical cycle: Information from suspended particulate matter (SPM) in Aha Lake and its tributaries, Guizhou, China. Chemical Geology 280, 170179.Google Scholar
Sossi, P.A., Nebel, O., O’Neill, H.S.C., Moynier, F., 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chemical Geology 477, 7384.Google Scholar
Staubwasser, M., Blanckenburg, F., Schoenberg, R., 2006. Iron isotopes in the early marine diagenetic iron cycle. Geology 34, 629632.Google Scholar
Stookey, L.L., 1970. Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779781.Google Scholar
Strelow, F.W.E., 1980. Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid. Talanta 27, 727732.Google Scholar
Tangalos, G.E., Beard, B.L., Johnson, C.M., et al., 2010. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Geobiology 8, 197208.Google Scholar
Teng, F.-Z., 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry 82, 219287.Google Scholar
Teng, F.-Z., Dauphas, N., Watkins, J.M., 2017. Non-traditional stable isotopes: retrospective and prospective. Reviews in Mineralogy and Geochemistry 82, 126.Google Scholar
Teng, F.-Z., Li, W.-Y., Rudnick, R.L., Gardner, L.R., 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters 300, 6371.Google Scholar
Teutsch, N., Schmid, M., Müller, B., et al., 2009. Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth and Planetary Science Letters 285, 5260.Google Scholar
Teutsch, N., von Gunten, U., Porcelli, D., Cirpka, O.A., Halliday, A.N., 2005. Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochimica et Cosmochimica Acta 69, 41754185.Google Scholar
Tsikos, H., Matthews, A., Erel, Y., Moore, J.M., 2010. Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin. Earth and Planetary Science Letters 298, 125134.Google Scholar
Van Heghe, L., Delanghe, J., Van Vlierberghe, H., Vanhaecke, F., 2013. The relationship between the iron isotopic composition of human whole blood and iron status parameters. Metallomics: Integrated Biometal Science 5, 15031509.Google Scholar
Vanhaecke, F., 2012. Single-collector inductively coupled plasma mass spectrometry, in Vanhaecke, F., Degryse, P. (Eds.), Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany, pp. 3175.Google Scholar
Vanhaecke, F., Degryse, P., 2012. Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany.Google Scholar
Vanhaecke, F., Kyser, K., 2012. The isotopic composition of the elements, in Vanhaecke, F., Degryse, P. (Eds.), Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany, pp. 129.Google Scholar
Walczyk, T., Blanckenburg, F., 2002. Natural iron isotope variations in human blood. Science 295, 20652066.Google Scholar
Wasylenki, L.E., Rolfe, B.A., Weeks, C.L., Spiro, T.G., Anbar, A.D., 2008. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta 72, 59976005.Google Scholar
Wiederhold, J.G., Kraemer, S.M., Teutsch, N., et al., 2006. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science & Technology 40, 37873793.Google Scholar
Wieser, M., Schwieters, J., Douthitt, C., 2012. Multi-collector inductively coupled plasma mass spectrometry, in Vanhaecke, F., Degryse, P. (Eds.), Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley-VCH, Weinheim, Germany, pp. 7791.Google Scholar
Wombacher, F., Eisenhauer, A., Böhm, F., et al., 2011. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochimica et Cosmochimica Acta 75, 57975818.Google Scholar
Wu, L., Beard, B.L., Roden, E.E., Johnson, C.M., 2009. Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite. Geochimica et Cosmochimica Acta 73, 55845599.Google Scholar
Wu, L., Beard, B.L., Roden, E.E., Kennedy, C.B., Johnson, C.M., 2010. Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions. Geochimica et Cosmochimica Acta 74, 42494265.Google Scholar
Wunder, B., Meixner, A., Romer, R.L., et al., 2007. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chemical Geology 238, 277290.Google Scholar
Xie, X., Johnson, T.M., Wang, Y., et al., 2014. Pathways of arsenic from sediments to groundwater in the hyporheic zone: Evidence from an iron isotope study. Journal of Hydrology 511, 509517.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×