Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T13:56:42.787Z Has data issue: false hasContentIssue false

Part V - Microbiological Techniques

Published online by Cambridge University Press:  06 July 2019

Janice P. L. Kenney
Affiliation:
MacEwan University, Edmonton
Harish Veeramani
Affiliation:
Carleton University, Ottawa
Daniel S. Alessi
Affiliation:
University of Alberta
Get access

Summary

Lipid biomarker analysis is a useful tool for characterizing microbial communities in geomicrobiology. Phospholipid fatty acids (PLFA) are major components of microbial membranes, and analysis of these markers provides insight into microbial biomass, community structure, and metabolic processes. This article reviews the methods for extraction, fractionation, derivatization, and quantification of PLFA, as well as the interpretation of PLFA patterns for microbial community analysis in natural environmental systems. The discussion centers on the development, the subsequent modifications, and the advantages and limitations of the methods. Two case studies are given to illustrate the applications of intact phospholipid profiling (IPP) and PLFA in geomicrobiology. The recent developments and future directions of microbial signature lipid analysis are also discussed.

Type
Chapter
Information
Analytical Geomicrobiology
A Handbook of Instrumental Techniques
, pp. 339 - 404
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

14.6 References

Allwood, J.W., AlRabiah, H., Correa, E., et al., 2015. A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged. Escherichia coli. Metabolomics 11(2), 438453.CrossRefGoogle Scholar
Bligh, E.G. and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8), 911917.CrossRefGoogle ScholarPubMed
Brake, J.M., Daschner, M.K. and Abbott, N.L., 2005. Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals. Langmuir 21(6), 22182228.Google Scholar
Brake, S.S. and Hasiotis, S.T., 2008. Eukaryote-dominated biofilms in extreme environments: overlooked sources of information in the geologic record. Palaios 23(3), 121123.Google Scholar
Brake, S.S. and Hasiotis, S.T., 2010. Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiology Journal 27(6–7), 534558.CrossRefGoogle Scholar
Brake, S.S., Hasiotis, S.T., Dannelly, H.K. and Connors, K.A., 2002. Eukaryotic stromatolite builders in acid mine drainage: implications for Precambrian iron formations and oxygenation of the atmosphere? Geology 30, 599602.Google Scholar
Brondz, I., 2002. Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Analytica Chimica Acta 465(1), 137.Google Scholar
Canfield, D.E., 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Science 33, 136.CrossRefGoogle Scholar
Carvalho, A.P. and Malcata, F.X., 2005. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. Journal of Agricultural and Food Chemistry 53(13), 50495059.CrossRefGoogle ScholarPubMed
Cavigelli, M.A., Robertson, G.P. and Klug, M.J., 1995. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant and Soil 170, 99113.Google Scholar
Ciobanu, D.A., Zawierucha, K., Moglan, I. and Kaczmarek, Ł., 2014. Milnesium berladnicorum sp. (Eutardigrada, Apochela, Milnesiidae), a new species of water bear from Romania. ZooKeys (429), 1.CrossRefGoogle Scholar
Dasgupta, S., Fang, J., Brake, S.S., Hasiotis, S.T. and Zhang, L., 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: implications for eukaryotic evolution and the early Earth. Chemical Geology 306, 139145.Google Scholar
Dasgupta, S., Fang, J., Brake, S.S., Hasiotis, S.T. and Zhang, L., 2013. Stable carbon isotopic composition of lipids in Euglena-dominated biofilms from an acid mine drainage site: implications of carbon limitation, microbial physiology, and biosynthetic pathways. Chemical Geology 354, 1521.Google Scholar
Disch, A., Schwender, J., Muller, C., Lichtenthaler, H.K. and Rohmer, M., 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochemical Journal 333(2), 381388.Google Scholar
Dowling, N.J.E., Widdel, F. and White, D.C., 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. Journal of General Microbiology 132, 18151825.Google Scholar
Dunkleblum, E.S., Tan, E. and Silo, P.J., 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four lepidoptera. Journal of Chemical Ecology 11, 265277.CrossRefGoogle Scholar
Edlund, A., Nichols, P.D., Roffey, R. and White, D.C., 1985. Extractable and lipopolysaccharide fatty acid and hydroxy fatty acid profiles from Desulfovibrio species. Journal of Lipid Research 26(8), 982988.CrossRefGoogle ScholarPubMed
Fang, J. and Barcelona, M.J., 1998. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. Journal of Microbiological Methods 33(1), 2335.CrossRefGoogle Scholar
Fang, J., Barcelona, M.J., Nogi, Y. and Kato, C., 2000a. Biochemical function and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Mariana Trench at 11,000 meters. Deep-Sea Research Part I Oceanographic Research Papers 147, 11731182.Google Scholar
Fang, J., Barcelona, M.J. and Semrau, J.D., 2000b. Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiology Letters 189(1), 6772.CrossRefGoogle ScholarPubMed
Fang, J., Chan, O., Kato, C., et al., 2003. Phospholipid fatty acid profiles of piezophilic bacteria from the deep sea. Lipids 38, 885887.Google Scholar
Fang, J. and Findlay, R.H., 1996. The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. Journal of Microbiological Methods 27(1), 6371.CrossRefGoogle Scholar
Fang, J., Hasiotis, S.T., Das Gupta, S., Brake, S.S. and Bazylinski, D.A., 2007. Microbial biomass and community structure of a stromatolite from an acid mine drainage system as determined by lipid analysis. Chemical Geology 243, 191204.CrossRefGoogle Scholar
Fang, J., Uhle, M., Billmark, K., Bartlett, D.H. and Kato, C., 2006. Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica strain DSK1. Geochimica et Cosmochimica Acta 70(7), 17531760.CrossRefGoogle Scholar
Fang, J., Zhang, L. and Bazylinski, D.A., 2010. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends in Microbiology 18(9), 413422.CrossRefGoogle ScholarPubMed
Findlay, R.H., King, G.M. and Watling, L., 1989. Efficacy of phospholipid analysis in determining microbial biomass in sediments. Applied and Environmental Microbiology 55(11), 28882893.CrossRefGoogle ScholarPubMed
Findlay, R.H. and Watling, L., 1998. Seasonal variation in the structure of a marine benthic microbial community. Microbial Ecology 36(1), 2330.Google Scholar
Folch, J., Lees, M. and Sloane-Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226(1), 497509.Google Scholar
Frostegård, Å., Tunlid, A. and Bååth, E., 1993. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology 59(11), 36053617.Google Scholar
Ginger, M.L., McFadden, G.I. and Michels, P.A., 2010. Rewiring and regulation of cross-compartmentalized metabolism in protists. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365(1541), 831845.CrossRefGoogle ScholarPubMed
Haack, S.K., Garchow, H., Odelson, D.A., Forney, L.J. and Klug, M.J., 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Applied and Environmental Microbiology 60(7), 24832493.Google Scholar
Han, X. and Gross, R.W., 2003. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. Journal of Lipid Research 44(6), 10711079.Google Scholar
Heipieper, H.J., Meinhardt, F. and Segura, A., 2003. The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters 229(1), 17.Google Scholar
Heller, D.N., Cotter, R.J., Fenselau, C. and Uy, O.M., 1987. Profiling of bacteria by fast atom bombardment mass spectrometry. Analytical Chemistry 59(23), 28062809.Google Scholar
Kelly, J.J., Häggblom, M. and Tate, R.L., 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry 31(10), 14551465.CrossRefGoogle Scholar
Kieft, T.L., Ringelberg, D.B. and White, D.C., 1994. Changes in ester-linked phospholipid fatty acid profiles of sub-surface bacteria during starvation and desiccation in a porous-medium. Applied Environmental Microbiology 60, 32923299.Google Scholar
Lanni, E.J., Masyuko, R.N., Driscoll, C.M., et al., 2014. MALDI-guided SIMS: multiscale imaging of metabolites in bacterial biofilms. Analytical Chemistry 86, 91399145.CrossRefGoogle ScholarPubMed
Li, M., Yang, L., Bai, Y. and Liu, H., 2013. Analytical methods in lipidomics and their applications. Analytical Chemistry 86(1), 161175.Google Scholar
Liu, K.S., 1994. Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. Journal of the American Oil Chemists’ Society 71(11), 11791187.Google Scholar
Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., and Schwudke, D., 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research 49, 11371146.Google Scholar
Murphy, R.C. and Harrison, K.A., 1994. Fast atom bombardment mass spectrometry of phospholipids. Mass Spectrometry Reviews 13, 5775.Google Scholar
Nguyen, J. and Russell, S.C., 2010. Targeted proteomics approach to species-level identification of Bacillus thuringiensis spores by AP-MALDI-MS. Journal of American Society of Mass Spectrometry 21, 9931001.Google Scholar
Nichols, P.D., Mancuso, C.A. and White, D.C., 1987. Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Organic Geochemistry 11(6), 451461.Google Scholar
O’Leary, W.M. 1962. The fatty acids of bacteria. Bacteriological Reviews 26, 421447.Google Scholar
Peters, K.E., Walters, C.C. and Moldowan, J.M., 2005. The Biomarker Guide (Vol. 1). Cambridge University Press, Cambridge, 249250.Google Scholar
Ramos, J.L., Duque, E., Gallegos, M.T., et al., 2002. Mechanisms of solvent tolerance in gram‐negative bacteria. Annual Review of Microbiology 56, 743768.CrossRefGoogle ScholarPubMed
Rath, C.M., Yang, J.Y., Alexandrov, T., and Dorrestein, P.C., 2013. Data-independent microbial metabolomics with ambient ionization mass spectrometry. Journal of American Society of Mass Spectrometry 24, 11671176.CrossRefGoogle ScholarPubMed
Sandrin, T.R. and Demirev, P.A., 2017. Characterization of microbial mixtures by mass spectrometry. Mass Spectrometry Reviews 9999, 129.Google Scholar
Schloss, P.D. and Handelsman, J., 2004. Status of the microbial census. Microbiology and Molecular Biology Reviews 68(4), 686691.CrossRefGoogle ScholarPubMed
Smith, G.A., Nichols, P.D. and White, D.C., 1986. Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica. FEMS Microbiology Ecology 2(4), 219231.Google Scholar
Spener, F., Lagarde, M., Géloên, A. and Record, M., 2003. Editorial: What is lipidomics? European Journal of Lipid Science and Technology 105, 481482.Google Scholar
Summons, R.E., Bradley, A.S., Jahnke, L.L. and Waldbauer, J.R., 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B: Biological Sciences 361(1470), 951968.CrossRefGoogle ScholarPubMed
Tunlid, A. and White, C., 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In Bollag, J.M. and Stotzky, G. (Eds) Soil Biochemistry, Marcel Dekker, 229262.Google Scholar
Vestal, J.R. and White, D.C., 1989. Lipid analysis in microbial ecology. Bioscience 39(8), 535541.Google Scholar
White, D.C., 1986. Environmental effects testing with quantitative microbial analysis: Chemical signatures correlated with in situ biofilm analysis by FT/IR. Environmental Toxicology 1(3), 315338.Google Scholar
White, D.C., 1988. Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Advances in Limnology 31(1), 118.Google Scholar
White, D.C., Davis, W.M., Nickels, J.S., King, J.D. and Bobbie, R.J., 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40(1), 5162.Google Scholar
White, D.C. and Frerman, F.E., 1967. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. Journal of Bacteriology 94(6), 18541867.CrossRefGoogle ScholarPubMed
White, D.C., Meadows, P., Eglinton, G., et al., 1993. In situ measurement of microbial biomass. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 344, 5967.Google Scholar
White, D.C., Pinkart, H.C. and Ringelberg, A.B., 1997. Biomass measurements: biochemical approaches. In Hurst, C.J., Knudson, G.R., McInerney, M.J., Stetzenbach, L.D., Walter, M.V. (Eds) Manual of Environmental Microbiology. DC: ASM Press, 91101.Google Scholar
White, D.C. and Ringelberg, D.B., 1997. Utility of the signature lipid biomarker analysis in determining the in situ viable biomass, community structure, and nutritional/physiologic status of deep subsurface microbiota. In Amy, PS and Haldeman, DL (Eds) The Microbiology of the Terrestrial Deep Subsurface. New York: Elsevier Science Ltd; CRC, 119136.Google Scholar
Zelles, L. (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35, 275294.Google Scholar
Zhang, J.I., Costa, A.B., Tao, W.A. and Cooks, R.G., 2011b. Direct detection of fatty acid ethyl esters using low temperature plasma (LTP) ambient ionization mass spectrometry for rapid bacterial differentiation. Analyst 139, 30913097.Google Scholar
Zhang, J.I., Talaty, N., Costa, A.B., et al., 2011a. Rapid direct lipid profiling of bacteria using desorption electroscopy ionization mass spectrometry. International Journal of Mass Spectrometry 301, 3744.CrossRefGoogle Scholar

15.5 References

Akob, D. M., Bohu, T., Beyer, A., et al. (2014). Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine. Applied and Environmental Microbiology 80(16): 50865097, Doi:10.1128/AEM.01296-14.Google Scholar
Akob, D. M., Cozzarelli, I. M., Dunlap, D. S., Rowan, E. L. and Lorah, M. M. (2015). Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells. Applied Geochemistry 60: 116125, Doi:http://dx.doi.org/10.1016/j.apgeochem.2015.04.011.Google Scholar
Akob, D. M., Kerkhof, L., Küsel, K., et al. (2011). Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing. Applied and Environmental Microbiology 77(22): 81978200, Doi:10.1128/AEM.05247-11.CrossRefGoogle ScholarPubMed
Akob, D. M. and Küsel, K. (2011). Where microorganisms meet rocks in the Earth’s Critical Zone. Biogeosciences 8(12): 35313543, Doi:10.5194/Bg-8-3531-2011.Google Scholar
Akob, D. M., Lee, S. H., Sheth, M., et al. (2012). Gene expression correlates with process rates quantified for sulfate- and Fe(III)-reducing bacteria in U(VI)-contaminated sediments. Frontiers in Microbiology 3: 280, Doi:10.3389/fmicb.2012.00280.Google Scholar
Akob, D. M., Mills, H. J., Gihring, T. M., et al. (2008). Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Applied and Environmental Microbiology 74(10): 31593170, Doi:10.1128/AEM.02881-07.Google Scholar
Akob, D. M., Mills, H. J. and Kostka, J. E. (2007). Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiology Ecology 59(1): 95107, Doi:10.1111/fem.2007.59.issue-1.Google Scholar
Albertsen, M., Hugenholtz, P., Skarshewski, A., et al. (2013). Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnology 31(6): 533538, Doi:10.1038/nbt.2579.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403410.Google Scholar
Amann, R., Ludwig, W. and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59(1): 143169.Google Scholar
Andrews, S. (2010). “FastQC: A quality control tool for high throughput sequence data,” from www.bioinformatics.babraham.ac.uk/projects/fastqc/.Google Scholar
Baker, B. J., Tyson, G. W., Webb, R. I., et al. (2006). Lineages of acidophilic archaea revealed by community genomic analysis. Science 314(5807): 1933–1935, Doi:10.1126/science.1132690.Google Scholar
Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. and Neufeld, J. D. (2011). Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Applied and Environmental Microbiology 77(11): 38463852, Doi:10.1128/aem.02772-10.CrossRefGoogle ScholarPubMed
Begon, M., Harper, J. L. and Townsend, C. R. (1990). Ecology: Individuals, Populations and Communities. Oxford, Blackwell Scientific Publications.Google Scholar
Benndorf, D., Balcke, G. U., Harms, H. and von Bergen, M. (2007). Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME Journal 1(3): 224234, Doi:10.1038/ismej.2007.39.Google Scholar
Bent, S. J. and Forney, L. J. (2008). The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. The ISME Journal 2(7): 689695, Doi:10.1038/ismej.2008.44.Google Scholar
Berger, S. A., Krompass, D. and Stamatakis, A. (2011). Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Systematic Biology 60(3): 291302, Doi:10.1093/sysbio/syr010.CrossRefGoogle ScholarPubMed
Bernard, P., Gabarit, P., Bahassi, E. M. and Couturier, M. (1994). Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148(1): 7174, Doi:http://dx.doi.org/10.1016/0378-1119(94)90235-6.Google Scholar
Beulig, F., Heuer, V. B., Akob, D. M., et al. (2014). Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. The ISME Journal 9(3): 746–759, Doi:10.1038/ismej.2014.148.Google Scholar
Bohannan, B. (2003). New approaches to analyzing microbial biodiversity data. Current Opinion in Microbiology 6(3): 282287, Doi:10.1016/S1369-5274(03)00055-9.Google Scholar
Bokulich, N. A., Subramanian, S., Faith, J. J., et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10(1): 5759, Doi:10.1038/nmeth.2276.Google Scholar
Borcard, D., Gillet, F. and Legendre, P. (2011). Numerical Ecology with R. New York, NY, Springer-Verlag.Google Scholar
Bowman, K. O., Hutcheson, K., Odum, E. P. and Shenton, L. R. (1971). Comment on the distribution of indices of diversity. In Statistical Ecology Patil, G. P., Peilou, E. C. and Waters, W. E.. Philadelphia, PA, USA, Pennsylvania State University Press.Google Scholar
Bragg, L. M., Stone, G., Butler, M. K., Hugenholtz, P. and Tyson, G. W. (2013). Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Computational Biology 9(4): e1003031, Doi:10.1371/journal.pcbi.1003031.Google Scholar
Breitbart, M., Salamon, P., Andresen, B., et al. (2002). Genomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences 99(22): 1425014255, Doi:10.1073/pnas.202488399.Google Scholar
Brock, T. D. and Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. Journal of Bacteriology 98(1): 289297.Google Scholar
Brown, J. W. (2014). Principles of Microbial Diversity. Washington, DC, ASM Press.Google Scholar
Brown, M. V., Schwalbach, M. S., Hewson, I. and Fuhrman, J. A. (2005). Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environmental Microbiology 7(9): 14661479, Doi:10.1111/j.1462-2920.2005.00835.x.Google Scholar
Buermans, H. P. J. and den Dunnen, J. T. (2014). Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1842(10): 19321941, Doi:http://dx.doi.org/10.1016/j.bbadis.2014.06.015.Google Scholar
Burkhardt, E.-M., Akob, D. M., Bischoff, S., et al. (2010). Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area. Environmental Science & Technology 44(1): 177183, Doi:10.1021/es902038e.Google Scholar
Burkhardt, E.-M., Bischoff, S., Akob, D. M., Buechel, G. and Küsel, K. (2011). Heavy metal tolerance of Fe(III)-reducing microbial communities in contaminated creek bank soils. Applied and Environmental Microbiology 77(9): 31323136, Doi:10.1128/AEM.02085-10.CrossRefGoogle ScholarPubMed
Bustin, S. A., Benes, V., Garson, J. A., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55(4): 611622, Doi:10.1373/clinchem.2008.112797.Google Scholar
Buttigieg, P. L. and Ramette, A. (2014). A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology 90(3): 543550, Doi:10.1111/1574-6941.12437.Google Scholar
Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5): 335336, Doi:10.1038/nmeth.f.303.Google Scholar
Caporaso, J. G., Lauber, C. L., Walters, W. A., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108(Supplement 1): 45164522, Doi:10.1073/pnas.1000080107.CrossRefGoogle Scholar
Caporaso, J. G., Lauber, C. L., Walters, W. A., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6(8): 16211624, Doi:www.nature.com/ismej/journal/v6/n8/suppinfo/ismej20128s1.html.Google Scholar
Case, R. J., Boucher, Y., Dahllöf, I., et al. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and Environmental Microbiology 73(1): 278288, Doi:10.1128/aem.01177-06.CrossRefGoogle ScholarPubMed
Castle, D. and Kirchman, D. L. (2004). Composition of estuarine bacterial communities assessed by denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Limnology and Oceanography: Methods 2(9): 303314, Doi:10.4319/lom.2004.2.303.Google Scholar
Castro, H. F., Williams, N. H. and Ogram, A. (2000). Phylogeny of sulfate-reducing bacteria. FEMS Microbiology Ecology 31(1): 19.Google Scholar
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11(4): 265270, Doi:10.2307/4615964.Google Scholar
Chao, A. and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87(417): 210217, Doi:10.2307/2290471.Google Scholar
Chaput, D. L., Hansel, C. M., Burgos, W. D. and Santelli, C. M. (2015). Profiling microbial communities in manganese remediation systems treating coal mine drainage. Applied and Environmental Microbiology 81(6):21892198, Doi:10.1128/AEM.03643-14.Google Scholar
Chun, J., Lee, J. H., Jung, Y., et al. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 57: 22592261, Doi:10.1099/ijs.0.64915-0.Google Scholar
Clement, B. G., Kehl, L. E., DeBord, K. L. and Kitts, C. L. (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods 31(3): 135142, Doi:http://dx.doi.org/10.1016/S0167-7012(97)00105-X.Google Scholar
Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. and Rice, P. M. (2010). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research 38(6): 17671771, Doi:10.1093/nar/gkp1137.Google Scholar
Cole, J. R., Chai, B., Farris, R. J., et al. (2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research 33(Database issue): D294296, Doi:10.1093/nar/gki038.Google Scholar
Cole, J. R., Chai, B., Farris, R. J., et al. (2007). The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35(suppl 1): D169D172, Doi:10.1093/nar/gkl889.Google Scholar
Cole, J. R., Chai, B., Marsh, T. L., et al. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research 31(1): 442443.Google Scholar
Cole, J. R., Wang, Q., Cardenas, E., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37(Database issue): D141145, Doi:10.1093/nar/gkn879.Google Scholar
Cole, J. R., Wang, Q., Fish, J. A., et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research 42(D1): D633D642, Doi:10.1093/nar/gkt1244.Google Scholar
Collavino, M. M., Tripp, H. J., Frank, I. E., et al. (2014). nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N-2-fixing community dynamics. Environmental Microbiology 16(10): 32113223, Doi:10.1111/1462-2920.12423.Google Scholar
Colwell, R. K. (2013). EstimateS: statistical estimation of species richness and shared species from samples. User’s Guide and application published at http://purl.oclc.org/estimates.Google Scholar
Corman, J. R., Poret-Peterson, A. T., Uchitel, A. and Elser, J. J. (2016). Interaction between lithification and resource availability in the microbialites of Río Mesquites, Cuatro Ciénegas, México. Geobiology 14(2): 176189, Doi:10.1111/gbi.12168.Google Scholar
Crosby, L. D. and Criddle, C. S. (2003). Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34(4): 790794, 796, 798 passim.Google Scholar
Culman, S. W., Bukowski, R., Gauch, H. G., Cadillo-Quiroz, H. and Buckley, D. H. (2009). T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10: 171, Doi:10.1186/1471-2105-10-171.Google Scholar
Dahllöf, I., Baillie, H. and Kjelleberg, S. (2000). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and Environmental Microbiology 66(8): 33763380, Doi:10.1128/aem.66.8.3376-3380.2000.Google Scholar
Danovaro, R., Luna, G. M., Dell’Anno, A. and Pietrangeli, B. (2006). Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Applied and Environmental Microbiology 72(9): 59825989, Doi:10.1128/aem.01361-06.Google Scholar
Darby, B. J., Todd, T. C. and Herman, M. A. (2013). High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure. Molecular Ecology 22(21): 54565471, Doi:10.1111/mec.12480.Google Scholar
Darling, A. E., Jospin, G., Lowe, E., et al. (2014). PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2: e243, Doi:10.7717/peerj.243.Google Scholar
Degnan, P. H. and Ochman, H. (2012). Illumina-based analysis of microbial community diversity. The ISME Journal 6(1): 183194, Doi:www.nature.com/ismej/journal/v6/n1/suppinfo/ismej201174s1.html.Google Scholar
DeSantis, T. Z., Jr., Hugenholtz, P., Keller, K., et al. (2006a). NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research 34: W394399, Doi:10.1093/nar/gkl244.Google Scholar
DeSantis, T. Z., Hugenholtz, P., Larsen, N., et al. (2006b). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72(7): 50695072, Doi:10.1128/aem.03006-05.CrossRefGoogle ScholarPubMed
Dupont, C. L., McCrow, J. P., Valas, R., et al. (2015). Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. The ISME Journal 9(5): 10761092, Doi:10.1038/ismej.2014.198.Google Scholar
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 17921797, Doi:10.1093/nar/gkh340.Google Scholar
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10(10): 996998, Doi:10.1038/nmeth.2604.Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 21942200, Doi:10.1093/bioinformatics/btr381.Google Scholar
Eisen, J. A. (2007). Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biology 5(3): e82, Doi:10.1371/journal.pbio.0050082.Google Scholar
Evans, P. N., Parks, D. H., Chadwick, G. L., et al. (2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259): 434438, Doi:10.1126/science.aac7745.Google Scholar
Fabisch, M., Beulig, F., Akob, D. M. and Küsel, K. (2013). Surprising abundance of Gallionella-related iron oxidizers in creek sediments at p. 4.4 or at high heavy metal concentrations. Frontiers in Microbiology 4: 390, Doi:10.3389/fmicb.2013.00390.Google Scholar
Feinstein, L. M., Sul, W. J. and Blackwood, C. B. (2009). Assessment of bias associated with incomplete extraction of microbial DNA from soil. Applied and Environmental Microbiology 75(16): 54285433, Doi:10.1128/AEM.00120-09.Google Scholar
Fennell, D. E., Rhee, S. K., Ahn, Y. B., Haggblom, M. M. and Kerkhof, L. J. (2004). Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Applied and Environmental Microbiology 70(2): 11691175.Google Scholar
Fierer, N., Breitbart, M., Nulton, J., et al. (2007). Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of Bacteria, Archaea, fungi, and viruses in soil. Applied and Environmental Microbiology 73(21): 70597066, Doi:10.1128/aem.00358-07.Google Scholar
Fischer, H. and Pusch, M. (1999). Use of the [C14]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Applied and Environmental Microbiology 65(10): 44114418.Google Scholar
Fisher, M. M. and Triplett, E. W. (1999). Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology 65(10): 46304636.Google Scholar
Fitzjohn, R. and Dickie, I. (2007). TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes 7(4): 583587, Doi:10.1111/men.2007.7.issue-4.CrossRefGoogle Scholar
Frank, J. A., Reich, C. I., Sharma, S., et al. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology 74(8): 24612470, Doi:10.1128/aem.02272-07.CrossRefGoogle ScholarPubMed
Gaby, J. C. and Buckley, D. H. (2012). A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7(7): e42149, Doi:10.1371/journal.pone.0042149.CrossRefGoogle ScholarPubMed
Gantner, S., Andersson, A. F., Alonso-Saez, L. and Bertilsson, S. (2011). Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. Journal of Microbiological Methods 84(1): 1218, Doi:10.1016/j.mimet.2010.10.001.Google Scholar
Gihring, T. M., Green, S. J. and Schadt, C. W. (2012). Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environmental Microbiology 14(2): 285290, Doi:10.1111/j.1462-2920.2011.02550.x [doi].CrossRefGoogle ScholarPubMed
Gilbert, J. A. and Dupont, C. L. (2011). Microbial metagenomics: beyond the genome. Annual Reviews of Marine Science 3: 347371, Doi:10.1146/annurev-marine-120709-142811.Google Scholar
Gilles, A., Meglécz, E., Pech, N., et al. (2011). Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12(1): 111, Doi:10.1186/1471-2164-12-245.Google Scholar
Golenberg, E. M., Bickel, A. and Weihs, P. (1996). Effect of highly fragmented DNA on PCR. Nucleic Acids Research 24(24): 50265033, Doi:10.1093/nar/24.24.5026.Google Scholar
Green, M. R. and Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.Google Scholar
Green, S. J., Leigh, M. B. and Neufeld, J. D. (2009). Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In Microbiology of Hydrocarbons, Oils, Lipids, and Derived Compounds. Timmis, K. N.. Heidelberg, Germany, Springer: 41374158.Google Scholar
Greuter, D., Loy, A., Horne, M. and Ratteil, T. (2016). probeBase – an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Research 44(D1): D586D589, Doi:10.1093/nar/gkv1232.Google Scholar
Haas, B. J., Gevers, D., Earl, A. M., et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21(3): 494504, Doi:10.1101/gr.112730.110.Google Scholar
Hall, B. G. (2008). Phylogenetic Trees Made Easy: A How-To Manual. Sunderland, MA, Sinauer Associates.Google Scholar
Hall, B. G. (2011). Phylogenetic Trees Made Easy: A How-To Manual. Sunderland, MA, Sinauer Associates.Google Scholar
Hamady, M., Lozupone, C. and Knight, R. (2010). Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. The ISME Journal 4(1): 1727, Doi:10.1038/ismej.2009.97.Google Scholar
Hammer, O., Harper, D. and Ryan, P. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 19.Google Scholar
Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68(4): 669685, Doi:10.1128/mmbr.68.4.669-685.2004.Google Scholar
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. and Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology 5(10): R245R249, Doi:http://dx.doi.org/10.1016/S1074-5521(98)90108-9.Google Scholar
Hannon, G. J. (2010). “FASTX-Toolkit: FASTQ/A short-reads pre-processing tools,” from http://hannonlab.cshl.edu/fastx_toolkit/.Google Scholar
Hanson, B. T., Hewson, I. and Madsen, E. L. (2014). Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microbial Ecology 67(3): 520539, Doi:10.1007/s00248-013-0346-5.Google Scholar
Hargreaves, S. K., Roberto, A. A. and Hofmockel, K. S. (2013). Reaction- and sample-specific inhibition affect standardization of qPCR assays of soil bacterial communities. Soil Biology and Biochemistry 59: 8997, Doi:http://dx.doi.org/10.1016/j.soilbio.2013.01.007.CrossRefGoogle Scholar
Hartmann, M. and Widmer, F. (2008). Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiology Ecology 63(2): 249260, Doi:10.1111/j.1574-6941.2007.00427.x.Google Scholar
Heck, K. L., Vanbelle, G. and Simberloff, D. (1975). Explicit calculation of rarefaction diversity measurement and determination of sufficient sample size. Ecology 56(6): 14591461.Google Scholar
Herrera, A. and Cockell, C. S. (2007). Exploring microbial diversity in volcanic environments: A review of methods in DNA extraction. Journal of Microbiological Methods 70(1): 112.Google Scholar
Herrmann, M., Rusznyak, A., Akob, D. M., et al. (2015). Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Applied and Environmental Microbiology 81(7): 23842394, Doi:10.1128/AEM.03269-14.Google Scholar
Hewson, I., Poretsky, R. S., Tripp, H. J., Montoya, J. P. and Zehr, J. P. (2010). Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean. Environmental Microbiology 12(7): 19401956, Doi:10.1111/j.1462-2920.2010.02198.x.Google Scholar
Holland, S. M. (2003). “Analytic Rarefaction 1.3 User’s guide and application,” from www.uga.edu/strata/software/anRareReadme.html.Google Scholar
Huber, T., Faulkner, G. and Hugenholtz, P. (2004). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14): 23172319, Doi:10.1093/bioinformatics/bth226.Google Scholar
Hug, L. A., Baker, B. J., Anantharaman, K., et al. (2016). A new view of the tree of life. Nature Microbiology 1: 16048, Doi:10.1038/nmicrobiol.2016.48.Google Scholar
Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180(18): 47654774.Google Scholar
Hugenholtz, P. and Huber, T. (2003). Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. International Journal of Systematic and Evolutionary Microbiology 53(Pt 1): 289293, Doi:10.1099/ijs.0.02441-0.Google Scholar
Hugerth, L. W., Muller, E. E. L., Hu, Y. O. O., et al. (2014). Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE 9(4): e95567, Doi:10.1371/journal.pone.0095567.Google Scholar
Hughes, J. and Bohannan, B. J. M. (2004). Application of ecological diversity statistics in microbial ecology. Molecular Microbial Ecology Manual 7.01: 13211344.Google Scholar
Hughes, J., Hellmann, J., Ricketts, T. and Bohannan, B. (2001). Counting the uncountable: statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology 67(10): 43994406.Google Scholar
Hurt, R., Qiu, X., Wu, L., et al. (2001). Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology 67(10): 44954503.Google Scholar
Huse, S. M., Dethlefsen, L., Huber, J. A., et al. (2008). Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics 4(11): e1000255, Doi:10.1371/journal.pgen.1000255.Google Scholar
Inceoglu, O., Hoogwout, E. F., Hill, P. and van Elsas, J. D. (2010). Effect of DNA extraction method on the apparent microbial diversity of soil. Applied and Environmental Microbiology 76(10): 33783382, Doi:10.1128/AEM.02715-09.Google Scholar
Johnson, J. L. (1994). Similarity analysis of rRNAs. In Methods for General and Molecular Bacteriology. Gerhardt, P. E., Wood, W. W. A. and Krieg, N. R.. Washington, DC, American Society of Microbiology: 683700.Google Scholar
Johnson, M., Zaretskaya, I., Raytselis, Y., et al. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research 36: W5W9, Doi:10.1093/nar/gkn201.Google Scholar
Ju, F. and Zhang, T. (2015). Experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology. Environmental Science & Technology 49(21): 1262812640, Doi:10.1021/acs.est.5b03719.Google Scholar
Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering 96(4): 317323, Doi:http://dx.doi.org/10.1016/S1389-1723(03)90130-7.Google Scholar
Karsch-Mizrachi, I. and Ouellette, B. F. F. (2001). The GenBank Sequence Database. In Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Baxevanis, A. D. and Ouellette, B. F. F., New York, John Wiley & Sons, Inc.: 4563.Google Scholar
Kato, S., Itoh, T. and Yamagishi, A. (2011). Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiology Letters 319(1): 3443, Doi:10.1111/j.1574-6968.2011.02267.x.Google Scholar
Katoh, K. and Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772780, Doi:10.1093/molbev/mst010.Google Scholar
Kearse, M., Moir, R., Wilson, A., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 16471649.Google Scholar
Kembel, S. W., Cowan, P. D., Helmus, M. R., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 14631464.CrossRefGoogle ScholarPubMed
Kembel, S. W., Wu, M., Eisen, J. A. and Green, J. L. (2012). Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLOS Computational Biology 8(10): e1002743, Doi:10.1371/journal.pcbi.1002743.Google Scholar
Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. and Neufeld, J. D. (2014). Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Applied and Environmental Microbiology, Doi:10.1128/aem.01451-14.Google Scholar
Kilianski, A., Haas, J. L., Corriveau, E. J., et al. (2015). Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. GigaScience 4(1): 18, Doi:10.1186/s13742-015-0051-z.Google Scholar
Kim, M., Morrison, M. and Yu, Z. (2011). Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. Journal of Microbiological Methods 84(1): 8187, Doi:http://dx.doi.org/10.1016/j.mimet.2010.10.020.Google Scholar
Kitts, C. L. (2001). Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Current Issues in Intestinal Microbiology 2(1): 1725.Google Scholar
Klindworth, A., Pruesse, E., Schweer, T., et al. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1): 111, Doi:10.1093/nar/gks808.CrossRefGoogle ScholarPubMed
Knight, R., Jansson, J., Field, D., et al. (2012). Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 30(6): 513520, Doi:10.1038/nbt.2235.Google Scholar
Koeppel, A. F. and Wu, M. (2013). Surprisingly extensive mixed phylogenetic and ecological signals among bacterial Operational Taxonomic Units. Nucleic Acids Research 41(10): 51755188, Doi:10.1093/nar/gkt241.Google Scholar
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. and Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology 79(17): 51125120, Doi:10.1128/AEM.01043-13.Google Scholar
Kunin, V., Engelbrektson, A., Ochman, H. and Hugenholtz, P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12(1): 118123, Doi:10.1111/j.1462-2920.2009.02051.x.Google Scholar
Lafontaine, D. L. J. and Tollervey, D. (2001). The function and synthesis of ribosomes. Nature Reviews Molecular Cell Biology 2: 514520, Doi:10.1038/35080045.Google Scholar
Lane, D. J. (1991). 16S/23S rRNA sequencing in E. coli. In Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E. and Goodfellow, M.. New York, NY, John Wiley & Sons: 115175.Google Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 29472948, Doi:10.1093/bioinformatics/btm404.Google Scholar
Lecompte, O., Ripp, R., Thierry, J. C., Moras, D. and Poch, O. (2002). Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Research 30(24): 53825390, Doi:10.1093/nar/gkf693.Google Scholar
Leigh, M. B., Taylor, L. and Neufeld, J. D. (2010). Clone libraries of ribosomal RNA gene sequences for characterization of bacterial and fungal communities. In Handbook of Hydrocarbon and Lipid Microbiology. Timmis, K., Berlin, Springer Berlin Heidelberg: 39693993.Google Scholar
Lever, M. A., Torti, A., Eickenbusch, P., et al. (2015). A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology 6: 476, Doi:10.3389/fmicb.2015.00476.Google Scholar
Liu, L., Li, Y., Li, S., et al. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology 2012: 11, Doi:10.1155/2012/251364.Google Scholar
Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63(11): 45164522.Google Scholar
Love, M. I., Huber, W. and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12): 550, Doi:10.1186/s13059-014-0550-8.Google Scholar
Lozupone, C. and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71(12): 82288235, Doi:10.1128/aem.71.12.8228-8235.2005.Google Scholar
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. and Knight, R. (2011). UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5(2): 169172, Doi:10.1038/ismej.2010.133.Google Scholar
Ludwig, W., Strunk, O., Westram, R., et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Research 32(4): 13631371.Google Scholar
Luke, C. and Frenzel, P. (2011). Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Applied and Environmental Microbiology 77(17): 63056309, Doi:10.1128/Aem.05355-11.Google Scholar
Lynch, M. D. J. and Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology 13(4): 217229, Doi:10.1038/nrmicro3400.Google Scholar
Madsen, E. L. (2005). Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nature Reviews Microbiology 3(5): 439446.Google Scholar
Magurran, A. E. (2004). Measuring Biological Diversity. Malden, MA, Blackwell Publishing.Google Scholar
Mahé, F., Mayor, J., Bunge, J., et al. (2015). Comparing high-throughput platforms for sequencing the V4 region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. Journal of Eukaryotic Microbiology 62(3): 338345, Doi:10.1111/jeu.12187.Google Scholar
Mahmoudi, N., Slater, G. F. and Fulthorpe, R. R. (2011). Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Canadian Journal of Microbiology 57(8): 623628, Doi:10.1139/w11-049.Google Scholar
Mao, D. P., Zhou, Q., Chen, C. Y. and Quan, Z. X. (2012). Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology 12: 66, Doi:10.1186/1471-2180-12-66.Google Scholar
Marchesi, J. R., Sato, T., Weightman, A. J., et al. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology 64(2): 795799.Google Scholar
Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics 24(3): 133141, Doi:10.1016/j.tig.2007.12.007.Google Scholar
Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry 6(1): 287303, Doi:doi:10.1146/annurev-anchem-062012-092628.Google Scholar
Marsh, T. (1999). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Current Opinion in Microbiology 2(3): 323327.CrossRefGoogle ScholarPubMed
Martin-Laurent, F., Philippot, L., Hallet, S., et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67(5): 23542359, Doi:10.1128/aem.67.5.2354-2359.2001.Google Scholar
Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. and Neufeld, J. D. (2012). PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13(1): 31, Doi:10.1186/1471-2105-13-31.Google Scholar
Matsen, F. A., Kodner, R. B. and Armbrust, E. V. (2010). pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11(1): 538, Doi:10.1186/1471-2105-11-538.Google Scholar
McMurdie, P. J. and Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8(4): e61217, Doi:10.1371/journal.pone.0061217.Google Scholar
McMurdie, P. J. and Holmes, S. (2014). Waste not, want not: Why rarefying microbiome data is inadmissible. PLOS Computational Biology 10(4): e1003531, Doi:10.1371/journal.pcbi.1003531.Google Scholar
Messing, J. (2015). Microbiology spurred massively parallel genomic sequencing and biotechnology. Microbe (Washington, D.C.) 9: 271277.Google Scholar
Meyer, B. and Kuever, J. (2007). Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Applied and Environmental Microbiology 73(23): 76647679, Doi:10.1128/AEM.01272-07.Google Scholar
Mikheyev, A. S. and Tin, M. M. Y. (2014). A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources 14(6): 10971102, Doi:10.1111/1755-0998.12324.Google Scholar
Miller, D. N., Bryant, J. E., Madsen, E. L. and Ghiorse, W. C. (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology 65(11): 47154724.Google Scholar
Mollet, C., Drancourt, M. and Raoult, D. (1997). rpoB sequence analysis as a novel basis for bacterial identification. Molecular Microbiology 26(5): 10051011, Doi:10.1046/j.1365-2958.1997.6382009.x.Google Scholar
Moran, M. A. (2009). Metatranscriptomics: eavesdropping on complex microbial communities. Microbe (Washington, D.C.) 4: 329335.Google Scholar
Moran, M. A., Satinsky, B., Gifford, S. M., et al. (2013). Sizing up metatranscriptomics. The ISME Journal 7(2): 237243, Doi:10.1038/ismej.2012.94.Google Scholar
Morris, R. M., Nunn, B. L., Frazar, C., et al. (2010). Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. The ISME Journal 4(5): 673685, Doi:10.1038/ismej.2010.4.Google Scholar
Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology 2(3): 317322.Google Scholar
Nagai, M., Yoshida, A. and Sato, N. (1998). Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. Biochemistry and Molecular Biology International 44(1): 157163.Google Scholar
Narihiro, T. and Sekiguchi, Y. (2011). Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microbial Biotechnology 4(5): 585602, Doi:10.1111/j.1751-7915.2010.00239.x.Google Scholar
Nawrocki, E. P., Kolbe, D. L. and Eddy, S. R. (2009). Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10): 13351337, Doi:10.1093/bioinformatics/btp157.Google Scholar
Norton, J. M., Alzerreca, J. J., Suwa, Y. and Klotz, M. G. (2002). Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177(2): 139149, Doi:10.1007/s00203-001-0369-z.Google Scholar
Okansen, J., Blanchet, F.G., Kindt, R., et al. (2014). vegan: Community Ecology Package. R package version 2.2–1.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., et al. (2015). vegan: Community Ecology Package.Google Scholar
Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. and Stahl, D. A. (1986). Microbial ecology and evolution: A ribosomal RNA approach. Annual Review of Microbiology 40(1): 337365, Doi:doi:10.1146/annurev.mi.40.100186.002005.Google Scholar
Orcutt, B., Bailey, B., Staudigel, H., Tebo, B. M. and Edwards, K. J. (2009). An interlaboratory comparison of 16S rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts. Environmental Microbiology 11(7): 17281735, Doi:10.1111/j.1462-2920.2009.01899.x.Google Scholar
Orcutt, B. N., Sylvan, J. B., Knab, N. J. and Edwards, K. J. (2011). Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiology and Molecular Biology Reviews 75(2): 361422, Doi:10.1128/mmbr.00039-10.Google Scholar
Osborn, A. M., Moore, E. R. B. and Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology 2(1): 3950, Doi:10.1046/j.1462-2920.2000.00081.x.Google Scholar
Paulson, J. N., Stine, O. C., Bravo, H. C. and Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods 10(12): 12001202, Doi:10.1038/nmeth.2658.CrossRefGoogle ScholarPubMed
Polz, M. F. and Cavanaugh, C. M. (1998). Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology 64(10): 37243730.Google Scholar
Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D. and Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9(4): e93827, Doi:10.1371/journal.pone.0093827.Google Scholar
Poretsky, R. S., Hewson, I., Sun, S., et al. (2009). Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environmental Microbiology 11(6): 13581375, Doi:10.1111/j.1462-2920.2008.01863.x.Google Scholar
Price, M. N., Dehal, P. S. and Arkin, A. P. (2010). FastTree 2 – approximately maximum-likelihood trees for large alignments. PLOS ONE 5(3): e9490, Doi:10.1371/journal.pone.0009490.Google Scholar
Priscu, J. C., Adams, E. E., Lyons, W. B., et al. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286(5447): 21412144, Doi:10.1126/science.286.5447.2141.Google Scholar
Pruesse, E., Peplies, J. and Glockner, F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14): 18231829, Doi:10.1093/bioinformatics/bts252.Google Scholar
Pruesse, E., Quast, C., Knittel, K., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35(21): 71887196, Doi:10.1093/nar/gkm864.Google Scholar
Purdy, K. J. (2005). Nucleic acid recovery from complex environmental samples. Methods in Enzymology 397: 271292, Doi:10.1016/S0076-6879(05)97016-X.Google Scholar
Quail, M., Smith, M., Coupland, P., et al. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1): 341.Google Scholar
Quast, C., Pruesse, E., Yilmaz, P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41(D1): D590D596, Doi:10.1093/nar/gks1219.Google Scholar
R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Ralser, M., Querfurth, R., Warnatz, H. J., et al. (2006). An efficient and economic enhancer mix for PCR. Biochemical and Biophysical Research Communication 347(3): 747751, Doi:10.1016/j.bbrc.2006.06.151.Google Scholar
Ram, R. J., VerBerkmoes, N. C., Thelen, M. P., et al. (2005). Community proteomics of a natural microbial biofilm. Science 308(5730): 19151920, Doi:10.1126/science. 1109070.Google Scholar
Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62(2): 142160, Doi:10.1111/j.1574-6941.2007.00375.x.Google Scholar
Reis-Filho, J. S. (2009). Next-generation sequencing. Breast Cancer Research 11 (Suppl 3): S12, Doi:10.1186/Bcr2431.Google Scholar
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1): 139140, Doi:10.1093/bioinformatics/btp616.Google Scholar
Rodriguez-R, L. M. and Konstantinidis, K. T. (2014). Bypassing cultivation to identify bacterial species. Microbe (Washington, D.C.) 9: 111118.Google Scholar
Rognes, T., Mahé, F., Flouri, T., McDonald, D. and Schloss, P. (2015). vsearch: VSEARCH 1.4.0 [Data set]. Zenodo, Doi:10.5281/zenodo.31443.Google Scholar
Ronaghi, M., Uhlén, M. and Nyrén, P. (1998). A sequencing method based on real-time pyrophosphate. Science 281: 363365.Google Scholar
Rosselló-Mora, R. and Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews 25(1): 3967.Google Scholar
Rusznyak, A., Akob, D. M., Nietzsche, S., et al. (2012). Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave. Applied and Environmental Microbiology 78(4): 11571167, Doi:10.1128/Aem.06568–11.Google Scholar
Salipante, S. J., Kawashima, T., Rosenthal, C., et al. (2014). Performance comparison of Illumina and Ion Torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Applied and Environmental Microbiology 80(24): 75837591, Doi:10.1128/aem.02206-14.Google Scholar
Salter, S. J., Cox, M. J., Turek, E. M., et al. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12(1): 112, Doi:10.1186/s12915-014-0087-z.Google Scholar
Sambrook, J. and Russell, D. W. (2001). Molecular Cloning – A Laboratory Manual. New York, Cold Spring Harbor Laboratory.Google Scholar
Sanger, F. and Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology 94(3): 441448, Doi:http://dx.doi.org/10.1016/0022-2836(75)90213-2.Google Scholar
Santos, S. R. and Ochman, H. (2004). Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environmental Microbiology 6(7): 754759, Doi:10.1111/j.1462-2920.2004.00617.x.Google Scholar
Schirmer, M., Ijaz, U. Z., D’Amore, R., et al. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research 43(6): e37, Doi:10.1093/nar/gku1341.Google Scholar
Schloss, P. D., Gevers, D. and Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12): e27310.Google Scholar
Schloss, P. D. and Handelsman, J. (2004). Status of the microbial census. Microbiology and Molecular Biology Reviews 68(4): 686691, Doi:10.1128/MMBR.68.4.686-691.2004.Google Scholar
Schloss, P. D., Westcott, S., Ryabin, T., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23): 75377541.Google Scholar
Schloss, P. D. and Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology 77(10): 32193226, Doi:10.1128/AEM.02810-10.Google Scholar
Schmieder, R. and Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6): 863864, Doi:10.1093/bioinformatics/btr026.Google Scholar
Sinclair, L., Osman, O. A., Bertilsson, S. and Eiler, A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the Illumina platform. PLoS ONE 10(2): e0116955, Doi:10.1371/journal.pone.0116955.Google Scholar
Smith, C. J. and Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (qPCR)-based approaches in microbial ecology. FEMS Microbiology Ecology 67(1): 620, Doi:10.1111/j.1574-6941.2008.00629.x.Google Scholar
Smith, K. (2013). A Brief History of NCBI’s Formation and Growth. The NCBI Handbook [Internet]. Bethesda, MD, National Center for Biotechnology Information.Google Scholar
Soetaert, K. and Heip, C. (1990). Sample-size dependence of diversity indexes and the determination of sufficient sample-size in a high-diversity deep-sea environment. Marine Ecology Progress Series 59(3): 305307, Doi:10.3354/Meps059305.Google Scholar
Stackebrandt, E., Frederiksen, W., Garrity, G. M., et al. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology 52(3): 10431047, Doi:10.1099/ijs.0.02360-0.Google Scholar
Stackebrandt, E. and Goebel, B. M. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44(4): 846849, Doi:10.1099/00207713-44-4-846.Google Scholar
Staley, J. T. and Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology 39(1): 321346, Doi:doi:10.1146/annurev.mi.39.100185.001541.Google Scholar
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 26882690, Doi:10.1093/bioinformatics/btl446.Google Scholar
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 13121313, Doi:10.1093/bioinformatics/btu033.Google Scholar
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. and Schmidt, T. M. (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research 43(Database issue): D593D598, Doi:10.1093/nar/gku1201.Google Scholar
Sudek, S., Everroad, R. C., Gehman, A. L., et al. (2015). Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean. Environmental Microbiology 17(10): 36923707, Doi:10.1111/1462-2920.12742.Google Scholar
Suzuki, M. T. and Giovannoni, S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62(2): 625630.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 27252729, Doi:10.1093/molbev/mst197.Google Scholar
Tavormina, P. L., Ussler, W., III, Joye, S. B., Harrison, B. K. and Orphan, V. J. (2010). Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. The ISME Journal 4(5): 717–717.Google Scholar
Terpe, K. (2013). Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology 97(24): 1024310254, Doi:10.1007/s00253-013-5290-2.Google Scholar
Tindall, B. J., Rosselló-Móra, R., Busse, H.-J., Ludwig, W. and Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology 60(1): 249266, Doi:10.1099/ijs.0.016949-0.Google Scholar
Van de Peer, Y., Chapelle, S. and De Wachter, R. (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Research 24(17): 33813391, Doi:10.1093/nar/24.17.3381.Google Scholar
van Dorst, J., Bissett, A., Palmer, A. S., et al. (2014). Community fingerprinting in a sequencing world. FEMS Microbiology Ecology 89(2): 316330, Doi:10.1111/1574-6941.12308.Google Scholar
Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science 291(5507): 13041351, Doi:10.1126/Science.1058040.Google Scholar
Venter, J. C., Remington, K., Heidelberg, J. F., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667): 6674, Doi:10.1126/science.1093857.Google Scholar
Vishnivetskaya, T. A., Layton, A. C., Lau, M. C. Y., et al. (2014). Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiology Ecology 87(1): 217230, Doi:10.1111/1574-6941.12219.Google Scholar
Wade, B. D. and Garcia-Pichel, F. (2003). Evaluation of DNA extraction methods for molecular analyses of microbial communities in modern calcareous microbialites. Geomicrobiology Journal 20(6): 549561, Doi:10.1080/713851168.Google Scholar
Wang, L.-T., Lee, F.-L., Tai, C.-J. and Kasai, H. (2007a). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology 57(8): 18461850, Doi:10.1099/ijs.0.64685-0.Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. (2007b). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73(16): 52615267, Doi:10.1128/aem.00062-07.Google Scholar
Webb, C. O., Ackerly, D. D. and Kembel, S. W. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24(18): 20982100, Doi:10.1093/bioinformatics/btn358.Google Scholar
Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2): 697703.Google Scholar
Whitaker, R. J. and Banfield, J. F. (2006). Population genomics in natural microbial communities. Trends in Ecology & Evolution 21(9): 508516, Doi:http://dx.doi.org/10.1016/j.tree.2006.07.001.Google Scholar
Whitman, W., Coleman, D. and Wiebe, W. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95(12): 65786583.Google Scholar
Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology 63(10): 37413751.Google Scholar
Winsley, T., van Dorst, J. M., Brown, M. V. and Ferrari, B. C. (2012). Capturing greater 16S rRNA gene sequence diversity within the domain Bacteria. Applied and Environmental Microbiology 78(16): 59385941, Doi:10.1128/aem.01299-12.Google Scholar
Wintzingerode, F. V., Gobel, U. and Stackebrandt, E. (1997). Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews 21(3): 213229.Google Scholar
Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews 51(2): 221271.Google Scholar
Woese, C. R. and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences 74(11): 50885090, Doi:10.1073/pnas.74.11.5088.Google Scholar
Woyke, T. and Rubin, E. M. (2014). Searching for new branches on the tree of life. Science 346(6210): 698699, Doi:10.1126/science.1258871.Google Scholar
Wright, E. S., Yilmaz, L. S. and Noguera, D. R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology 78(3): 717725, Doi:10.1128/aem.06516-11.Google Scholar
Wrighton, K. C., Thomas, B. C., Sharon, I., et al. (2012). Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337(6102): 16611665, Doi:10.1126/science.1224041.Google Scholar
Yilmaz, P., Parfrey, L. W., Yarza, P., et al. (2014). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research 42(D1): D643D648, Doi:10.1093/nar/gkt1209.Google Scholar
Zhang, J., Kobert, K., Flouri, T. and Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5): 614620, Doi:10.1093/bioinformatics/btt593.Google Scholar
Zhang, R., Thiyagarajan, V. and Qian, P. (2008). Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments. FEMS Microbiology Ecology 65(1): 169178, Doi:10.1111/fem.2008.65.issue-1.Google Scholar
Zhang, T. and Fang, H. H. (2006). Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology 70(3): 281289, Doi:10.1007/s00253-006-0333-6.Google Scholar
Zhou, J., He, Z., Yang, Y., et al. (2015). High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6(1): pii: e02288-14, Doi:10.1128/mBio.02288-14.Google Scholar
Zhou, J. Z., Bruns, M. A. and Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology 62(2): 316322.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×