Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T18:03:24.962Z Has data issue: false hasContentIssue false

Part III - Imaging Techniques

Published online by Cambridge University Press:  06 July 2019

Janice P. L. Kenney
Affiliation:
MacEwan University, Edmonton
Harish Veeramani
Affiliation:
Carleton University, Ottawa
Daniel S. Alessi
Affiliation:
University of Alberta
Get access

Summary

Scanning probe microscopy (SPM) is a suite of related imaging methods, in which variations in the interaction force between a probe and a sample surface are used to generate image contrast. These instruments are incredibly sensitive; they can measure forces on the order of those required to break physical and chemical bonds, and under the most optimal conditions, atomic-scale resolution can be achieved. Although SPM is still primarily used for imaging, it is increasingly being used to measure nanoscale properties and interaction forces. This chapter serves as an introduction to the fundamentals of SPM and to the most prevalent methods needed for the investigation of mineral–microbe interactions.

Type
Chapter
Information
Analytical Geomicrobiology
A Handbook of Instrumental Techniques
, pp. 119 - 212
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5.8 References

Abelmann, L., van den Bos, A. and Lodder, C. (2005) ‘Magnetic Force Microscopy – Towards Higher Resolution’, in Hopster, H. and Oepen, H. P. (eds) Magnetic Microscopy of Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 253283. doi:10.1007/3-540-26641-0_12.Google Scholar
Allen, M. J., Hud, N. V, Balooch, M., et al. (1992) ‘Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers’, Ultramicroscopy, 42, pp. 10951100. doi:http://dx.doi.org/10.1016/0304-3991(92)90408-C.CrossRefGoogle ScholarPubMed
Baró, A. M. and Reifenberger, R. G. (eds) (2012) Atomic Force Microscopy in Liquid: Biological Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Bell, G. I. (1978) ‘Models for the Specific Adhesion of Cells to Cells’, Science, 200(4342), pp. 618627.CrossRefGoogle ScholarPubMed
Bhushan, B. and Fuchs, H. (2008) Applied Scanning Probe Methods XIII: Biomimetics and Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg (NanoScience and Technology).CrossRefGoogle Scholar
Binnig, G., Quate, C. F. and Gerber, C. (1986) ‘Atomic force microscope’, Physical Review Letters, 56(9), pp. 930933.CrossRefGoogle ScholarPubMed
Binnig, G., Rohrer, H., Gerber, C. and Weibel, E. (1982a) ‘Surface studies by scanning tunneling microscopy’, Physical Review Letters, 49(1), pp. 5761.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Gerber, C. and Weibel, E. (1982b) ‘Tunneling through a controllable vacuum gap’, Applied Physics Letters, 40(2), pp. 178180. doi:10.1063/1.92999.CrossRefGoogle Scholar
Bracco, J. N., Stack, A. G. and Higgins, S. R. (2014) ‘Magnesite step growth rates as a function of the aqueous magnesium: carbonate ratio’, Crystal Growth & Design, 14(11), pp. 60336040. doi:10.1021/cg501203g.CrossRefGoogle Scholar
Busch, H. (1926) ‘Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde’, Annalen der Physik, 386(25), pp. 974993. doi:10.1002/andp.19263862507.Google Scholar
Calabri, L., Pugno, N., Menozzi, C. and Valeri, S. (2008) ‘AFM nanoindentation: tip shape and tip radius of curvature effect on the hardness measurement’, Journal of Physics: Condensed Matter, 20(47), p. 474208.Google Scholar
Canale, C., Torre, B., Ricci, D. and Braga, P. C. (2011) ‘Recognizing and Avoiding Artifacts in Atomic Force Microscopy Imaging’, in Braga, P. C. and Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research: Methods and Protocols. New York, Dordrecht, Heidelberg, London: Humana Press (Springer Science+Business Media), Methods in Molecular Biology, 736, pp. 3143. doi:10.1007/978-1-61779-105-5_3.Google Scholar
Chen, C.-L., Qi, J., Tao, J., Zuckermann, R. N. and DeYoreo, J. J. (2014) ‘Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics’, Scientific Reports, 4, p. 6266.Google Scholar
Dazzi, A. and Prater, C. B. (2017) ‘AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging’, Chemical Reviews, 117(7), pp. 51465173. doi:10.1021/acs.chemrev.6b00448.Google Scholar
Dudko, O. K., Hummer, G. and Szabo, A. (2006) ‘Intrinsic rates and activation free energies from single-molecule pulling experiments’, Physical Review Letters, 96(10), p. 108101.Google Scholar
Edwards, H., Taylor, L., Duncan, W. and Melmed, A. J. (1997) ‘Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor’, Journal of Applied Physics, 82(3), pp. 980984. doi:10.1063/1.365936.CrossRefGoogle Scholar
Elhadj, S., De Yoreo, J. J., Hoyer, J. R. and Dove, P. M. (2006) ‘Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth’, Proceedings of the National Academy of Sciences, 103(51), pp. 1923719242. doi:10.1073/pnas.0605748103.CrossRefGoogle ScholarPubMed
Engler, A. J., Rehfeldt, F., Sen, S. and Discher, D. E. (2007) ‘Microtissue Elasticity: Measurements by Atomic Force Microscopy and Its Influence on Cell Differentiation’, in Wang, Y.-L. and Discher, D.E. (eds) Cell Mechanics. London, San Diego, CA: Academic Press, Methods in Cell Biology, 83, pp. 521545. doi:https://doi.org/10.1016/S0091-679X(07)83022-6.CrossRefGoogle Scholar
Enoch, J. M. and Lakshminarayanan, V. (2000) ‘Duplication of unique optical effects of ancient Egyptian lenses from the IV/V Dynasties: lenses fabricated ca 2620–2400 BC or roughly 4600 years ago’, Ophthalmic and Physiological Optics, 20(2), pp. 126130. doi:10.1046/j.1475-1313.2000.00496.x.Google Scholar
Evans, E. (2001) ‘Probing the relation between force–lifetime–and chemistry in single molecular bonds’, Annual Review of Biophysics and Biomolecular Structure, 30(1), pp. 105128. doi:10.1146/annurev.biophys.30.1.105.CrossRefGoogle ScholarPubMed
Evans, E. and Ritchie, K. (1997) ‘Dynamic strength of molecular adhesion bonds’, Biophysical Journal, 72(4), pp. 15411555.Google Scholar
Florin, E., Radmacher, M., Fleck, B. and Gaub, H. E. (1994) ‘Atomic force microscope with magnetic force modulation’, Review of Scientific Instruments, 65(3), pp. 639643. doi:10.1063/1.1145130.CrossRefGoogle Scholar
Fortier, H., Vanola, F., Wang, C., and Zou, S. (2016) ‘AFM force indentation analysis on leukemia cells’, Analytical Methods, 8, 44214431. doi:10.1039/C6AY00131A.CrossRefGoogle Scholar
Friddle, R. (2014) ‘Direct Measurement of Interaction Forces and Energies with Proximal Probes’, in Gower, L.B. and DiMasi, E. (eds) Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials. Boca Raton, FL: CRC Press, pp. 307318. doi:10.1201/b16621-24.Google Scholar
Friddle, R. W., Noy, A. and De Yoreo, J. J. (2012) ‘Interpreting the widespread nonlinear force spectra of intermolecular bonds’, Proceedings of the National Academy of Sciences, 109(34), pp. 1357313578. doi:10.1073/pnas.1202946109.Google Scholar
Friddle, R. W., Weaver, M. L., Qiu, S. R., et al. (2010) ‘Subnanometer atomic force microscopy of peptide–mineral interactions links clustering and competition to acceleration and catastrophe’, Proceedings of the National Academy of Sciences, 107(1), pp. 1115. doi:10.1073/pnas.0908205107.CrossRefGoogle ScholarPubMed
Gest, H. (2004) ‘The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society’, Notes and Records of the Royal Society of London, 58(2), p. 187 LP-201.Google Scholar
Girard, P. (2001) ‘Electrostatic force microscopy: principles and some applications to semiconductors’, Nanotechnology, 12(4), p. 485.Google Scholar
Giuffre, A. J., Hamm, L. M., Han, N., De Yoreo, J. J. and Dove, P. M. (2013) ‘Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies’, Proceedings of the National Academy of Sciences, 110(23), pp. 92619266. doi:10.1073/pnas.1222162110.Google Scholar
Habibullah, , Pota, H. R., Petersen, I. R. and Rana, M. S. (2013) ‘Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscope’, IEEE Transactions on Nanotechnology, 12(6), pp. 11251134. doi:10.1109/TNANO.2013.2280793.Google Scholar
Hamm, L. M., Giuffre, A. J., Han, N., et al. (2014) ‘Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies’, Proceedings of the National Academy of Sciences, 111(4), pp. 13041309. doi:10.1073/pnas.1312369111.Google Scholar
Higgins, M. J., Proksch, R., Sader, J. E., et al. (2006) ‘Noninvasive determination of optical lever sensitivity in atomic force microscopy’, Review of Scientific Instruments, 77(1), p. 13701. doi:10.1063/1.2162455.Google Scholar
Hölscher, H. and Schwarz, U. D. (2007) ‘Theory of amplitude modulation atomic force microscopy with and without Q-Control’, International Journal of Non-Linear Mechanics, 42(4), pp. 608625. doi:http://dx.doi.org/10.1016/j.ijnonlinmec.2007.01.018.CrossRefGoogle Scholar
Hooke, R. (1665) Micrographia, or, Some physiological descriptions of minute bodies made by magnifying glasses: with observations and inquiries thereupon. London: Royal Society of London.Google Scholar
Huang, Q., Wu, H., Cai, P., Fein, J. B. and Chen, W. (2015) ‘Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles’, Scientific Reports, 5, p. 16857.Google Scholar
Huckabay, H. A., Armendariz, K. P., Newhart, W. H., Wildgen, S. M. and Dunn, R. C. (2013) ‘Near-field scanning optical microscopy for high-resolution membrane studies’, Methods in Molecular Biology, 950, pp. 373394. doi:10.1007/978-1-62703-137-0_21.Google Scholar
Hutter, J. L. and Bechhoefer, J. (1993) ‘Calibration of atomic‐force microscope tips’, Review of Scientific Instruments, 64(7), pp. 18681873. doi:10.1063/1.1143970.Google Scholar
Jarvis, S. P., Sader, J. E. and Fukuma, T. (2008) ‘Frequency Modulation Atomic Force Microscopy in Liquids’, in Bhushan, B., Fuchs, H., and Tomitori, M. (eds) Applied Scanning Probe Methods VIII: Scanning Probe Microscopy Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 315350. doi:10.1007/978-3-540-74080-3_9.Google Scholar
Knoll, M. and Ruska, E. (1932) ‘Das Elektronenmikroskop’, Zeitschrift für Physik, 78(5), pp. 318339. doi:10.1007/BF01342199.CrossRefGoogle Scholar
Kocun, M., Labuda, A., Gannepalli, A. and Proksch, R. (2015) ‘Contact resonance atomic force microscopy imaging in air and water using photothermal excitation’, Review of Scientific Instruments, 86(8), p. 83706. doi:10.1063/1.4928105.Google Scholar
Kumar, N., Mignuzzi, S., Su, W. and Roy, D. (2015) ‘Tip-enhanced Raman spectroscopy: principles and applications’, EPJ Techniques and Instrumentation, 2(1), p. 9. doi:10.1140/epjti/s40485-015-0019-5.Google Scholar
Labuda, A., Cleveland, J., Geisse, N. A., et al. (2014) ‘Photothermal excitation for improved cantilever drive performance in tapping mode atomic force microscopy’, Microscopy and Analysis, 28(3), pp. S21S25.Google Scholar
Labuda, A., Kobayashi, K., Kiracofe, D., et al. (2011) ‘Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments’, AIP Advances, 1(2), p. 22136. doi:10.1063/1.3601872.Google Scholar
Lekka, M. (2016) ‘Discrimination between normal and cancerous cells using AFM’, Bionanoscience, 6, pp. 6580. doi:10.1007/s12668-016-0191-3.Google Scholar
Lévy, R. and Maaloum, M. (2002) ‘Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods’, Nanotechnology, 13(1), p. 33.CrossRefGoogle Scholar
Malotky, D. L. and Chaudhury, M. K. (2001) ‘Investigation of capillary forces using atomic force microscopy’, Langmuir, 17(25), pp. 78237829. doi:10.1021/la0107796.CrossRefGoogle Scholar
Marsh, G. and Waugh, R. E. (2013) ‘Quantifying the mechanical properties of the endothelial glycocalyx with atomic force microscopy’, Journal of Visualized Experiments, (72), p. e50163. doi:doi:10.3791/50163.Google Scholar
Méndez-Vilas, A., González-Martı́n, M. L. and Nuevo, M. J. (2002) ‘Optical interference artifacts in contact atomic force microscopy images’, Ultramicroscopy, 92(3), pp. 243250. doi:http://dx.doi.org/10.1016/S0304-3991(02)00140-7.Google Scholar
Mohr, P. J., Newell, D. B. and Taylor, B. N. (2014) ‘CODATA recommended values of the fundamental physical constants: 2014’, Journal of Physical and Chemical Reference Data, 45, p. 043102. doi:10.1063/1.4954402.CrossRefGoogle Scholar
Mokaberi, B. and Requicha, A. A. G. (2008) ‘Compensation of scanner creep and hysteresis for AFM nanomanipulation’, IEEE Transactions on Automation Science and Engineering, 5(2), pp. 197206. doi:10.1109/TASE.2007.895008.Google Scholar
Moreno-Herrero, F. and Gomez-Herrero, J. (2012) ‘AFM: Basic Concepts’, in Baró, A.M. and Reifenberger, R.G. (eds) Atomic Force Microscopy in Liquid: Biological Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 134. doi:10.1002/9783527649808.ch1.Google Scholar
Morita, S. (ed.) (2006) Roadmap of Scanning Probe Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg (NanoScience and Technology).Google Scholar
Niaz, M. (2009) ‘Wave–Particle Duality: De Broglie, Einstein, and Schrödinger’, in Critical Appraisal of Physical Science as a Human Enterprise: Dynamics of Scientific Progress. Dordrecht: Springer Netherlands, pp. 159165. doi:10.1007/978-1-4020-9626-6_12.Google Scholar
Noy, A., and Friddle, R. (2013) ‘Practical single molecule force spectroscopy: How to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope’, Methods, 60, pp. 142150. doi:https://doi.org/10.1016/j.ymeth.2013.03.014.CrossRefGoogle ScholarPubMed
Orme, C. A., Noy, A., Wierzbicki, A., et al. (2001) ‘Formation of chiral morphologies through selective binding of amino acids to calcite surface steps’, Nature, 411(6839), pp. 775779.CrossRefGoogle ScholarPubMed
Passeri, D., Dong, C., Reggente, M., et al. (2014) ‘Magnetic force microscopy’, Biomatter, 4(1), p. e29507. doi:10.4161/biom.29507.Google Scholar
Plantzos, D. (1997) ‘Crystals and lenses in the Graeco-Roman world’, American Journal of Archaeology, 101(3), pp. 451464. doi:10.2307/507106.Google Scholar
Porter, J. R. (1976) ‘Antony van Leeuwenhoek: tercentenary of his discovery of bacteria’, Bacteriological Reviews, 40(2), pp. 260269.Google Scholar
Quercioli, F. (2011) ‘Fundamentals of Optical Microscopy’, in Diaspro, A. (ed.) Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 136. doi:10.1007/978-3-642-15175-0_1.Google Scholar
Rahe, P., Bechstein, R. and Kühnle, A. (2010) ‘Vertical and lateral drift corrections of scanning probe microscopy images’, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(3), pp. C4E31–C4E38. doi:10.1116/1.3360909.Google Scholar
Roa, J. J., Oncins, G., Diaz, J., Sanz, F. and Segarra, M. (2011) ‘Calculation of Young’s Modulus value by means of AFM’, Recent Patents on Nanotechnology, pp. 2736. doi:http://dx.doi.org/10.2174/187221011794474985.Google Scholar
Rogers, B., Manning, L., Sulchek, T. and Adams, J. D. (2004) ‘Improving tapping mode atomic force microscopy with piezoelectric cantilevers’, Ultramicroscopy, 100(3), pp. 267276. doi:http://dx.doi.org/10.1016/j.ultramic.2004.01.016.CrossRefGoogle ScholarPubMed
Rogers, B., York, D., Whisman, N., et al. (2002) ‘Tapping mode atomic force microscopy in liquid with an insulated piezoelectric microactuator’, Review of Scientific Instruments, 73(9), pp. 32423244. doi:10.1063/1.1499532.Google Scholar
Sader, J. E. (1995) ‘Parallel beam approximation for V‐shaped atomic force microscope cantilevers’, Review of Scientific Instruments, 66(9), pp. 45834587. doi:10.1063/1.1145292.CrossRefGoogle Scholar
Sader, J. E., Chon, J. W. M. and Mulvaney, P. (1999) ‘Calibration of rectangular atomic force microscope cantilevers’, Review of Scientific Instruments, 70(10), pp. 39673969. doi:10.1063/1.1150021.Google Scholar
Sader, J. E., Sanelli, J. A., Adamson, B. D., et al. (2012) ‘Spring constant calibration of atomic force microscope cantilevers of arbitrary shape’, Review of Scientific Instruments, 83(10), p. 103705. doi:10.1063/1.4757398.Google Scholar
Schillers, H., Medalsy, I., Hu, S., Slade, A. L. and Shaw, J. E. (2016) ‘PeakForce Tapping resolves individual microvilli on living cells’, Journal of Molecular Recognition, 29(2), pp. 95101. doi:10.1002/jmr.2510.Google Scholar
Shen, J., Zhang, D., Zhang, F.-H. and Gan, Y. (2017) ‘AFM tip-sample convolution effects for cylinder protrusions’, Applied Surface Science, 422, pp. 482491. doi:https://doi.org/10.1016/j.apsusc.2017.06.053.Google Scholar
Tao, J., Battle, K. C., Pan, H., et al. (2015) ‘Energetic basis for the molecular-scale organization of bone’, Proceedings of the National Academy of Sciences, 112(2), pp. 326331. doi:10.1073/pnas.1404481112.CrossRefGoogle ScholarPubMed
Terán Arce, P. F. M., Riera, G. A., Gorostiza, P. and Sanz, F. (2000) ‘Atomic-layer expulsion in nanoindentations on an ionic single crystal’, Applied Physics Letters, 77(6), pp. 839841. doi:10.1063/1.1306909.Google Scholar
Thomas, G., Burnham, N. A., Camesano, T. A. and Wen, Q. (2013) ‘Measuring the mechanical properties of living cells using atomic force microscopy’, Journal of Visualized Experiments, (76), p. 50497. doi:10.3791/50497.Google Scholar
Thomson, J. J. (1897) ‘XL. Cathode rays’, Philosophical Magazine Series 5, 44(269), pp. 293316. doi:10.1080/14786449708621070.CrossRefGoogle Scholar
Umeda, K-i., Oyabu, N., Kobayashi, K., et al. (2010) ‘High-resolution frequency-modulation atomic force microscopy in liquids using electrostatic excitation method’, Applied Physics Express, 3(6), p. 65205.Google Scholar
Voigtländer, B. (2015) ‘Static Atomic Force Microscopy’, in Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 177186. doi:10.1007/978-3-662-45240-0_13.Google Scholar
Wallace, A. F., DeYoreo, J. J. and Dove, P. M. (2009) ‘Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: insights for biomineralization’, Journal of the American Chemical Society, 131(14), pp. 52445250. doi:10.1021/ja809486b.Google Scholar
Zhu, Y., Inada, H., Nakamura, K. and Wall, J. (2009) ‘Imaging single atoms using secondary electrons with an aberration-corrected electron microscope’, Nature Materials, 8(10), pp. 808812.Google Scholar

6.8 References

Australian Microscopy & Microanalysis Research Facility (AMMRF), MyScopeTM http://ammrf.org.au/myscope/Google Scholar
Beveridge, T.J., 1981. Ultrastructure, chemistry, and function of the bacterial wall. International Review of Cytology. 72, 229317.Google Scholar
Bray, D.F., Bagu, J. and Koegler, P., 1994, Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical point drying methods for scanning electron microscopy of biological specimens. Microscopy Research and Technique. 26, 489495.CrossRefGoogle Scholar
Burne, R.V., Moore, L.S., Christy, A.G., et al., 2014, Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralisation? Geology. 42, 575587.Google Scholar
Campbell, S.G., Reith, F., Etschmann, B., et al., 2015, Surface transformation of platinum grains from Fifield, New South Wales, Australia. American Mineralogist. 100, 12361243.Google Scholar
Dohnalkova, A.C., Marshall, M.J., Arey, B.W., et al., 2011, Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy. Applied and Environmental Microbiology. 77, 12541262.Google Scholar
Giammara, B.L. 1993. Microwave embedment for light and electron microscopy using epoxy resins, LR White and other polymers. Scanning. 15, 8387.CrossRefGoogle Scholar
Hayat, M.A. 1959. Principles and Techniques of Electron Microscopy: Biological Applications. New York, Van Nostrand Reinhold Company.Google Scholar
Karnovsky, M.J., 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology. 27, 137A138A.Google Scholar
Krember, A., Lippens, S., Bartunkova, S., et al., 2015, Developing 3D SEM in a broad biological context. Journal of Microscopy. 259, 8096.Google Scholar
Levett, A., Gagen, E., Shuster, J., et al., 2016, Evidence of biogeochemical processes in iron duricrust formation. Journal of South American Earth Sciences. 71, 131142.Google Scholar
Migneault, I., Dartiguenave, C., Bertrand, M.J. and Waldron, K.C., 2004, Glutaraldehyde: Behaviour in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques. 37, 790802.Google Scholar
Rasmussen, K.E. and Albrechtsen, J., 1974, Glutaraldehyde: The influence of pH, temperature and buffering on the polymerisation rate. Histochemistry. 38, 1926.Google Scholar
Reith, F., Fairbrother, L., Nolze, G., et al., 2010, Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology. 38, 843846.CrossRefGoogle Scholar
Sabatini, D.D., Bensch, K. and Barrnett, R.J., 1962, Cytochemistry and electron microscopy: The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Journal of Cell Biology. 17, 1958.Google Scholar
Shuster, J., Lengke, M., Márquez-Zavalía, M.F. and Southam, G., 2016, Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Economic Geology. 111, 14851494.Google Scholar
Walther, P. and Müller, M., 1999, Biological ultrastructure as revealed by high resolution cryo-SEM of block faces after cryo-sectioning. Journal of Microscopy. 196, 279287.Google Scholar
Westall, F., 1999, The nature of fossil bacteria: A guide to the search for extra-terrestrial life. Journal of Geophysical Research. 104, 1643716451.Google Scholar

7.9 References

Bozzola, J.J. and Russel, L.D. 1992. Electron microscopy: Principles and techniques for biologists. Boston, Jones and Bartlett Publishers.Google Scholar
Giammara, B.L. 1993. Microwave embedment for light and electron microscopy using epoxy resins, LR white and other polymers. Scanning, 15, 8287.CrossRefGoogle Scholar
Glauert, A. 1974. Fixation, dehydration and embedding of biological specimens. Amsterdam, North-Holland Publishing Company.Google Scholar
Graham, L.L. and Beveridge, T.J. 1990. Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of Eubacteria. Journal of Bacteriology, 172, 21412149.Google Scholar
Hayat, M.A. 1959. Principles and techniques of electron microscopy: Biological applications. New York, Van Nostrand Reinhold Company.Google Scholar
Johnston, C.W., Wyatt, M.A., Ibrahim, A., et al. 2013. Gold biomineralisation by a metallophore from a gold-associated microbe. Nature Chemical Biology, 9, 241243.Google Scholar
McCutcheon, J. and Southam, G. 2018. Advanced biofilm staining techniques for TEM and SEM in geomicrobiology: Implications for visualizing EPS architecture, mineral nucleation, and microfossil generation. Chemical Geology, 498, 115127.CrossRefGoogle Scholar
Mollenhauer, H.H. 1963. Plastic embedding mixtures for use in electron microscopy. Stain Technology, 39, 111114.Google Scholar
Peachy, L.D. 1958. Thin sections: I. A study of section thickness and physical distortion produced during microtomy. Journal of Biophysical and Biochemical Cytology, 4, 233242.Google Scholar
Shuster, J., Reith, F., Cornelis, G., et al. 2017a. Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450, 154164.Google Scholar
Shuster, J., Reith, F., Izawa, M.R.M., et al. 2017b. Biogeochemical cycling of silver in acidic weathering environments. Minerals, 7(11), 218.Google Scholar

8.10 References

Alm, E, Oerther, D, Larsen, N, Stahl, D, Raskin, L (1996). The Oligonucleotide Probe Database. Appl. Environ. Microbiol. 62: 35573559.Google Scholar
Amann, RI (1995). In situ identification of microorganisms by whole cell hybridization with rRNA targeted nucleic acid probes, pp. 331345. In Molecular Microbial Ecology Manual.Google Scholar
Amann, RI, Fuchs, BM (2008). Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 6(5): 339348. doi:10.1038/nrmicro1888.Google Scholar
Amann, R, Schleifer, KH (2001). Nucleic acid probes and their application in environmental microbiology, pp. 6782. In Garrity, GM (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd Edition.Google Scholar
Antón, JLlobet-Brossa, ERodríguez-Valera, FAmann, R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol1(6): 517523.Google Scholar
Asheldford, KE, Weightman, AJ, Fry, JC (2002). PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16 rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30: 34813489.Google Scholar
Becking, LB (2015). Baas Becking’s Geobiology. Canfield, DE (ed.). Wiley-Blackwell. 152 pp. ISBN: 978–0-470–67381-2, http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470673818,subjectCd-EN64.html#Google Scholar
Behnam, F, Vilcinskas, A, Wagner, M, Stoecker, K (2012). A straightforward DOPE-FISH method for simultaneous multicolor detection of six microbial populations. Appl. Environ. Microbiol. 78: 51385142.Google Scholar
Boas, V, Almeida, C, Sillankorva, S, et al. (2016). Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling. 32(2): 179190. doi:10.1080/08927014.2015.1131821.Google Scholar
Caracciolo, AB, Grenni, P, Cupo, C, Rossetti, S (2005). In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiol. Lett. 253: 5558.Google Scholar
Chou, YY, Heaton, NS, Gao, Q, et al. (2013). Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog. 9(5): e1003358. doi:10.1371/journal.ppat.1003358.Google Scholar
Cole, JR, Wang, Q, Fish, JA, et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue): D633D642.Google Scholar
Cutler, NA, Oliver, AO, Viles, HA, Whiteley, AS (2012). Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape. J. Microbiol Methods. 91: 391398.Google Scholar
Daims, H (2009). Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. Cold Spring Harbor Protocols website, http://cshprotocols.cshlp.org/content/2009/7/pdb.prot5253.full.Google Scholar
Dang, VT, Sullivan, MB (2014). Emerging methods to study bacteriophage infection at the single-cell level. Front. Microbiol. 2014; 5: 724.Google Scholar
Dekas, AE, Connon, SA, Chadwick, GL, Trembath-Reichert, E, Orphan, VJ (2016). Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 10(3): 678692.Google Scholar
Eichorst, SA, Strasser, F, Woyke, T, et al. (2015). Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. 91(10) pii: fiv106.Google Scholar
Foissner, W (1992). Preparation of samples for scanning electron microscopy. In Lee, JJ and Soldo, AT (eds), Protocols for Protozoology. Society of Protozoologists, Lawrence, Kansas, USA. Section C. Fixation, staining, light and electron microscopical techniques, chapter 20.Google Scholar
Fuchs, BM, Glöckner, FO, Wulf, J, Amann, R (2000). Unlabelled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labelled oligonucleotide probes. Appl. Environ. Microbiol. 66: 36033607.Google Scholar
Gérard, E, Guyot, F, Philippot, P, López-García, P (2005). Fluorescence in situ hybridisation coupled to ultra small immunogold detection to identify prokaryotic cells using transmission and scanning electron microscopy. J. Microbiol. Methods. 63(1): 2028.Google Scholar
Giovannoni, SJ, Delong, E, Olsen, GJ, Pace, NR (1988). Phylogenetic group-specific oligodeoxynucleotide probes for in situ microbial identification. J. Bacteriol. 170: 720.Google Scholar
Glöckner, FO, Yilmaz, P, Quast, C, et al. (2017). 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261: 169176.Google Scholar
Greuter, D, Loy, A, Horn, M, Rattei, T. (2016). probeBase – an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res. 44(D1): D586589.Google Scholar
Juretschko, S, Loy, A, Lehner, A, Wagner, M (2002). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25(1): 8499.Google Scholar
Kubota, K (2013). CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ. 28: 312.Google Scholar
Lee, NM, Meisinger, DB, Schmid, M, Rothballer, M, Löffler, FE (2011). Fluorescence in situ hybridization in geomicrobiology, pp. 854880. In Reitner, HJ and Thiel, V (eds), Encyclopedia in Geobiology. Springer Verlag.Google Scholar
Ludwig, L, Strunk, OWestram, R, et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32: 13631371.Google Scholar
Manz, W, Amann, R, Ludwig, W, Wagner, M, Schleifer, KH (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15: 593600.Google Scholar
Meier, H, Amann, R, Ludwig, W, Schleifer, KH (1999). Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22: 186196.Google Scholar
Moraru, C, Lam, P, Fuchs, BM, Kuypers, MM, Amann, R (2010). GeneFISH – an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ. Microbiol. 12(11): 30573073. doi:10.1111/j.1462-2920.2010.02281.x.Google Scholar
Nakamura, K, Terada, T, Sekiguchi, Y, et al. (2006). Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl. Environ. Microbiol. 72: 69076913.Google Scholar
Neuenschwander, SM, Salcher, MM, Pernthaler, J (2015). Fluorescence in situ hybridization and sequential catalyzed reporter deposition (2C-FISH) for the flow cytometric sorting of freshwater ultramicrobacteria. Front. Microbiol. 6(247): 18.CrossRefGoogle ScholarPubMed
Nikolaki, S, Tsiamis, G (2013). Microbial diversity in the era of omic technologies. Biomed. Res. Int. 2013; 2013: 958719. doi:10.1155/2013/958719. Epub October 24, 2013.Google Scholar
Pavlekovic, M, Schmid, MC, Schmider-Poignee, N, et al. (2009). Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. J. Microbiol. Methods. 78: 119126.Google Scholar
Pernthaler, A, Amann, R (2004). Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70: 54265433.Google Scholar
Richter, H, Lanthier, M, Nevin, KP, Lovley, DR (2007). Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl. Environ. Microbiol. 73: 53475353.Google Scholar
Rossetti, S, Tomei, MC, Blackall, LL, Tandoi, V (2007). Bacterial growth kinetics estimation by fluorescence in situ hybridization and spectrofluorometric quantification. Lett. Appl. Microbiol. 44: 643648.Google Scholar
Schimak, MP, Kleiner, M, Wetzel, S, et al. (2016). MiL-FISH: multilabelled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells. Appl. Environ. Microbiol. 82: 6270.Google Scholar
Schmidt, S, Eickhorst, T, Tippkötter, R (2012). Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. J. Microbiol. Methods. 91: 399.Google Scholar
Schönhuber, W, Fuchs, B, Juretschko, S, Amann, R (1997). Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labelled oligonucleotides and tyramide signal amplification. Appl. Environ Microbiol. 63: 3268.Google Scholar
Shiraishi, F, Zippel, B, Neu, TR, Arp, G (2008). In situ detection of bacteria in calcified biofilms using FISH and CARD-FISH. J. Microbiol Methods. 75:103108.Google Scholar
Stoecker, K, Dorninger, C, Daims, H, Wagner, M (2010). Double labelling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ Microbiol. 76(3): 922.Google Scholar
Teira, E, Reinthaler, T, Pernthaler, A, Pernthaler, J, Herndl, GJ (2004). Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol. 70(7): 4411.Google Scholar
Valm, AM, Welch, JLM, Borisy, GG (2013). CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35: 496502.Google Scholar
Volpi, EV, Bridger, JM (2008). FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques 45: 385409.Google Scholar
Wagner, M, Haider, S (2012). New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr. Opin. Biotechnol. 23: 96102.Google Scholar
Wagner, M, Rath, G, Amann, R, Koops, H-P, Schleifer, KH (1995). In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251264.CrossRefGoogle Scholar
Wang, YY, Huang, WE, Cui, L, Wagner, M (2016). Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41: 3442.Google Scholar
Weerasekara, ML, Ryuda, N, Miyamoto, H, et al. (2013). Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. J. Microbiol Methods. 93(3): 177184. doi:10.1016/j.mimet.2013.03.007.Google Scholar
Wendeberg, A (2010). Fluorescence in situ hybridization for the identification of environmental microbes. Cold Spring Harbor Protocols, http://cshprotocols.cshlp.org/content/2010/1/pdb.prot5366.fullCrossRefGoogle Scholar
Yilmaz, LS, Okten, HE, Noguera, DR (2006). Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl. Environ. Microbiol. 72: 733744.Google Scholar
Yilmaz, LS, Parnekar, S, Noguera, DR (2010). mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77: 11181122.Google Scholar
Yilmaz, S, Haroon, M, Rabkin, B, Tyson, G, Hugenholtz, P (2010) Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J. 4(10): 13521356.Google Scholar
Zwirglmaier, K (2005). Fluorescence in situ hybridisation (FISH) – the next generation. FEMS Microbiol. Lett. 246(2): 151.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×