Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T04:03:14.667Z Has data issue: false hasContentIssue false

Chapter 18 - Radiculopathy

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Radiculopathy refers to pathology at the nerve root level, manifest as positive symptoms such as pain, paresthesias and dysesthesias, and negative symptoms such as numbness and weakness. While a number of causes for radiculopathy exist, the archetypal etiology is lumbar disc herniation, leading to compression of the traversing or, less commonly, exiting nerve root. Such mechanical bases for radiculopathy were first recognized nearly a century ago, initially in the lumbar region by Mixter and Barr(1934),followed by the cervical spine by Semmes and Murphey in 1943.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, I, Mao, GP, Otani, K, Konno, S, Kikuchi, S, Olmarker, K. Indomethacin blocks the nucleus pulposus-induced effects on nerve root function. An experimental study in dogs with assessment of nerve conduction and blood flow following experimental disc herniation. Eur Spine J 2004;13(8):691–4. https://doi.org/10.1007/s005860100268.CrossRefGoogle ScholarPubMed
Arvidson, B. Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp Neurol 1979;63(2):388410. https://doi.org/10.1016/0014-4886(79)90134-1.CrossRefGoogle ScholarPubMed
Bobechko, WP, Hirsch, C. Auto-immune response to nucleus pulposus in the rabbit. J Bone Joint Surg Br 1965;47:574–80.Google ScholarPubMed
Brinjikji, W, Luetmer, PH, Comstock, B, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. Am J Neuroradiol 2015;36(4):811–6. https://doi.org/10.3174/ajnr.A4173.CrossRefGoogle ScholarPubMed
Brisby, H, Balague, F, Schafer, D, et al. Glycosphingolipid antibodies in serum in patients with sciatica. Spine 2002;27(4):380–6. https://doi.org/10.1097/00007632-200202150-00011.CrossRefGoogle ScholarPubMed
Byröd, G, Otani, K, Brisby, H, Rydevik, B, Olmarker, K. Methylprednisolone reduces the early vascular permeability increase in spinal nerve roots induced by epidural nucleus pulposus application. J Orthop Res 2000;18(6):983–7. https://doi.org/10.1002/jor.1100180619.Google Scholar
Chen, C, Cavanaugh, JM, Ozaktay, AC, Kallakuri, S, King, AI. Effects of phospholipase A2 on lumbar nerve root structure and function. Spine 1997;22(10):1057–64. https://doi.org/10.1097/00007632-199705150-00002.CrossRefGoogle ScholarPubMed
Chen, CC, Akopian, AN, Sivilotti, L, Colquhoun, D, Burnstock, G, Wood, JN. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 1995;377(6548):428–31. https://doi.org/10.1038/377428a0.CrossRefGoogle ScholarPubMed
Cornefjord, M, Olmarker, K, Otani, K, Rydevik, B. Nucleus pulposus-induced nerve root injury: effects of diclofenac and ketoprofen. Eur Spine J 2002;11(1):5761. https://doi.org/10.1007/s005860100299.Google Scholar
Cornefjord, M, Sato, K, Olmarker, K, Rydevik, B, Nordborg, C. A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine 1997;22(9):946–57. https://doi.org/10.1097/00007632-199705010-00003.Google Scholar
Coull, JA, Beggs, S, Boudreau, D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005;438(7070):1017–21. https://doi.org/10.1038/nature04223.Google Scholar
Cuéllar, JM, Borges, PM, Cuéllar, VG, Yoo, A, Scuderi, GJ, Yeomans, DC. Cytokine expression in the epidural space: a model of noncompressive disc herniation-induced inflammation. Spine 2013;38(1):1723. https://doi.org/10.1097/BRS.0b013e3182604baa.Google Scholar
Driscoll, T, Jacklyn, G, Orchard, J, et al. The global burden of occupationally related low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014;73(6):975–81. https://doi.org/10.1136/annrheumdis-2013-204631.CrossRefGoogle ScholarPubMed
Fanous, AA, Tumialán, LM, Wang, MY. Kambin’s triangle: definition and new classification schema. J Neurosurg Spine [published online ahead of print Nov 29, 2019]. https://doi.org/10.3171/2019.8.SPINE181475.CrossRefGoogle Scholar
Foerster, O. The dermatomes in man. Brain 1933;56:139.Google Scholar
Fukuoka, T, Kondo, E, Dai, Y, Hashimoto, N, Noguchi, K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci 2001;21(13):4891–900. https://doi.org/10.1523/JNEUROSCI.21-13-04891.CrossRefGoogle ScholarPubMed
Gelfan, S, Tarlov, IM. Physiology of spinal cord, nerve root and peripheral nerve compression. Am J Physiol 1956;185:217–29. https://doi.org/10.1152/ajplegacy.1956.185.1.217.Google Scholar
Haro, H, Crawford, HC, Fingleton, B, et al. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest 2000;105(2):133–41. https://doi.org/10.1172/JCI7090.Google Scholar
Harrington, JF, Messier, AA, Bereiter, D, Barnes, B, Epstein, MH. Herniated lumbar disc material as a source of free glutamate available to affect pain signals through the dorsal root ganglion. Spine 2000;25(8):929–36. https://doi.org/10.1097/00007632-200004150-00006.CrossRefGoogle ScholarPubMed
Harrison, C, Epton, S, Bojanic, S, Green, AL, Fitzgerald, JJ. The efficacy and safety of dorsal root ganglion stimulation as a treatment for neuropathic pain: a literature review. Neuromodulation 2018;21(3):225–33. https://doi.org/10.1111/ner.12685.CrossRefGoogle ScholarPubMed
Hashizume, H, Deleo, JA, Colburn, RW, Weinstein, JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 2000;25(10):1206–17. https://doi.org/10.1097/00007632-200005150-00003.CrossRefGoogle ScholarPubMed
Hou, SX, Tang, JG, Chen, HS, Chen, J. Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats. Pain 2003;105(1–2):255–64. https://doi.org/10.1016/s0304-3959(03)00222-7.CrossRefGoogle ScholarPubMed
Howe, JF, Loeser, JD, Calvin, WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 1977;3(1):2541. https://doi.org/ 10.1016/0304-3959(77)90033-1.CrossRefGoogle ScholarPubMed
Hu, SJ, Xing, JL. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 1998;77(1):1523. https://doi.org/10.1016/S0304-3959(98)00067-0.CrossRefGoogle ScholarPubMed
International Association for the Study of Pain (IASP). Pain terminology. www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Centralsensitization.Google Scholar
Jancalek, R, Dubovy, P. An experimental animal model of spinal root compression syndrome: an analysis of morphological changes of myelinated axons during compression radiculopathy and after decompression. Exp Brain Res 2007;179(1):111–9. https://doi.org/10.1007/s00221-006-0771-5.CrossRefGoogle ScholarPubMed
Jin, X, Gereau, RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci 2006;26(1):246–55. https://doi.org/10.1523/JNEUROSCI.3858-05.2006.Google Scholar
Kang, JD, Georgescu, HI, McIntyre-Larkin, L, Stefanovic-Racic, M, Donaldson, WF, Evans, CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1996;21(3):271–7. https://doi.org/10.1097/00007632-199602010-00003.Google Scholar
Kang, JD, Georgescu, HI, McIntyre-Larkin, L, Stefanovic-Racic, M, Evans, CH. Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1995;20(22):2373–8. https://doi.org/10.1097/00007632-199511001-00001.CrossRefGoogle ScholarPubMed
Kawakami, M, Hashizume, H, Nishi, H, Matsumoto, T, Tamaki, T, Kuribayashi, K. Comparison of neuropathic pain induced by the application of normal and mechanically compressed nucleus pulposus to lumbar nerve roots in the rat. J Orthop Res 2003;21(3):535–9. https://doi.org/10.1016/S0736-0266(02)00192-4.Google Scholar
Kawakami, M, Matsumoto, T, Hashizume, H, Kuribayashi, K, Tamaki, T. Epidural injection of cyclooxygenase-2 inhibitor attenuates pain-related behavior following application of nucleus pulposus to the nerve root in the rat. J Orthop Res 2002;20(2):376–81. https://doi.org/10.1016/S0736-0266(01)00114-0.CrossRefGoogle Scholar
Kayama, S, Konno, S, Olmarker, K, Yabuki, S, Kikuchi, S. Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine 1996;21(22):2539–43. https://doi.org/10.1097/00007632-199611150-00002.CrossRefGoogle ScholarPubMed
Kayama, S, Olmarker, K, Larsson, K, Sjögren-jansson, E, Lindahl, A, Rydevik, B. Cultured, autologous nucleus pulposus cells induce functional changes in spinal nerve roots. Spine 1998;23(20):2155–8. https://doi.org/10.1097/00007632-199810150-00002.Google Scholar
Keegan, JJ, Garrett, FD. The segmental distribution of the cutaneous nerves in the limbs of man. Anat Rec 1948;102(4):409–37. https://doi.org/10.1002/ar.1091020403.CrossRefGoogle ScholarPubMed
Kobayashi, S, Shizu, N, Suzuki, Y, Asai, T, Yoshizawa, H. Changes in nerve root motion and intraradicular blood flow during an intraoperative straight-leg-raising test. Spine 2003;28(13):1427–34. https://doi.org/10.1097/01.BRS.0000067087.94398.35Google Scholar
Kobayashi, S, Takeno, K, Yayama, T, et al. Pathomechanisms of sciatica in lumbar disc herniation: effect of periradicular adhesive tissue on electrophysiological values by an intraoperative straight leg raising test. Spine 2010;35(22):2004–14. https://doi.org/10.1097/BRS.0b013e3181d4164d.CrossRefGoogle ScholarPubMed
Komori, H, Okawa, A, Haro, H, Muneta, T, Yamamoto, H, Shinomiya, K. Contrast-enhanced magnetic resonance imaging in conservative management of lumbar disc herniation. Spine 1998;23(1):6773. https://doi.org/10.1097/00007632-199801010-00015.CrossRefGoogle ScholarPubMed
Komori, H, Shinomiya, K, Nakai, O, Yamaura, I, Takeda, S, Furuya, K. The natural history of herniated nucleus pulposus with radiculopathy. Spine 1996;21(2):225–9. https://doi.org/10.1097/00007632-199601150-00013.Google Scholar
Krames, ES. The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med 2014;15(10):1669–85. https://doi.org/10.1111/pme.12413.Google Scholar
Kuslich, SD, Ulstrom, CL, Michael, CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 1991;22(2):181–7.Google ScholarPubMed
Latremoliere, A, Woolf, CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009;10(9):895926. https://doi.org/10.1016/j.jpain.2009.06.012.Google Scholar
Lee, HM, Weinstein, JN, Meller, ST, Hayashi, N, Spratt, KF, Gebhart, GF. The role of steroids and their effects on phospholipase A2. An animal model of radiculopathy. Spine 1998;23(11):1191–6. https://doi.org/10.1097/00007632-199806010-00001.Google Scholar
Lejeune, JP, Hladky, JP, Cotten, A, Vinchon, M, Christiaens, JL. Foraminal lumbar disc herniation. Experience with 83 patients.Spine 1994;19(17):1905–08. https://doi.org/10.1097/00007632-199409000-00007.Google Scholar
Lindahl, O, Rexed, B. Histologic changes in spinal nerve roots of operated cases of sciatica. Acta Orthop Scand 1951;20(3):215–25. https://doi.orgGoogle Scholar
Mahn, F, Hüllemann, P, Gockel, U, et al. Sensory symptom profiles and co-morbidities in painful radiculopathy. PLoS One 2011;6(5):e18018. https://doi.org/10.1371/journal.pone.0018018.CrossRefGoogle ScholarPubMed
Marshall, LL, Trethewie, ER. Chemical irritation of nerve-root in disc prolapse. Lancet 1973;2(7824):320. https://doi.org/10.1016/s0140-6736(73)90818-0.Google Scholar
Marshall, LL, Trethewie, ER, Curtain, CC. Chemical radiculitis. A clinical, physiological and immunological study. Clin Orthop Relat Res 1977;129:61–7.CrossRefGoogle ScholarPubMed
McAnany, SJ, Rhee, JM, Baird, EO, et al. Observed patterns of cervical radiculopathy: how often do they differ from a standard, “Netter diagram” distribution? Spine J 2019;19(7):1137–42. https://doi.org/10.1016/j.spinee.2018.08.002Google Scholar
Mixter, WJ, Barr, JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 1934;211:210–4. https://doi.org/10.1056/NEJM193408022110506.CrossRefGoogle Scholar
Mulleman, D, Mammou, S, Griffoul, I, Watier, H, Goupille, P. Pathophysiology of disk-related sciatica. I – Evidence supporting a chemical component. Joint Bone Spine 2006;73(2):151–8. https://doi.org/10.1016/j.jbspin.2005.03.003.Google Scholar
Naito, M, Owen, JH, Bridwell, KH, Oakley, DM. Blood flow direction in the lumbar nerve root. Spine 1990;15(9):966–8. https://doi.org/10.1097/00007632-199009000-00023.CrossRefGoogle ScholarPubMed
Nygaard, OP, Mellgren, SI, Osterud, B. The inflammatory properties of contained and noncontained lumbar disc herniation. Spine 1997;22(21):2484–8. https://doi.org/10.1097/00007632-199711010-00004.Google Scholar
Obata, K, Tsujino, H, Yamanaka, H, et al. Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain 2002;99(1–2):121–32. https://doi.org/10.1016/s0304-3959(02)00068-4.Google Scholar
Ohtori, S, Miyagi, M, Eguchi, Y, et al. Epidural administration of spinal nerves with the tumor necrosis factor-alpha inhibitor, etanercept, compared with dexamethasone for treatment of sciatica in patients with lumbar spinal stenosis: a prospective randomized study. Spine 2012;37(6):439–44. https://doi.org/10.1097/BRS.0b013e318238af83.CrossRefGoogle ScholarPubMed
Ohtori, S, Suzuki, M, Koshi, T, et al. Proinflammatory cytokines in the cerebrospinal fluid of patients with lumbar radiculopathy. Eur Spine J 2011;20(6):942–6. https://doi.org/10.1007/s00586-010-1595-3.Google Scholar
Olmarker, K. Spinal nerve root compression. Nutrition and function of the porcine cauda equina compressed in vivo. Acta Orthop Scand Suppl 1991;242:127.CrossRefGoogle ScholarPubMed
Olmarker, K, Brisby, H, Yabuki, S, Nordborg, C, Rydevik, B. The effects of normal, frozen, and hyaluronidase-digested nucleus pulposus on nerve root structure and function. Spine. 1997;22(5):471–5. https://doi.org/10.1097/00007632-199703010-00001.Google Scholar
Olmarker, K, Byröd, G, Cornefjord, M, Nordborg, C, Rydevik, B. Effects of methylprednisolone on nucleus pulposus-induced nerve root injury. Spine 1994;19(16):1803–8. https://doi.org/10.1097/00007632-199408150-00003.CrossRefGoogle ScholarPubMed
Olmarker, K, Holm, S, Rydevik, B. Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine 1990a;15(5):416–9. https://doi.org/10.1097/00007632-199005000-00013.Google Scholar
Olmarker, K, Larsson, K. Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine 1998;23(23):2538–44. https://doi.org/10.1097/00007632-199812010-00008.CrossRefGoogle ScholarPubMed
Olmarker, K, Rydevik, B, Hansson, T, Holm, S. Compression-induced changes of the nutritional supply to the porcine cauda equina. J Spinal Disord 1990b;3(1):25–9.CrossRefGoogle Scholar
Olmarker, K, Rydevik, B, Holm, S. Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine 1989a;14(6):569–73.Google Scholar
Olmarker, K, Rydevik, B, Holm, S, Bagge, U. Effects of experimental graded compression on blood flow in spinal nerve roots. A vital microscopic study on the porcine cauda equina. J Orthop Res 1989b;7(6):817–23. https://doi.org/10.1002/jor.1100070607.Google Scholar
Olmarker, K, Rydevik, B, Nordborg, C. Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine 1993;18(11):1425–32.Google Scholar
Olmarker, K, Størkson, R, Berge, OG. Pathogenesis of sciatic pain: a study of spontaneous behavior in rats exposed to experimental disc herniation. Spine 2002;27(12):1312–7. https://doi.org/10.1097/00007632-200206150-00013.Google Scholar
Onda, A, Murata, Y, Rydevik, B, Larsson, K, Kikuchi, S, Olmarker, K. Nerve growth factor content in dorsal root ganglion as related to changes in pain behavior in a rat model of experimental lumbar disc herniation. Spine 2005;30(2):188–93. https://doi.org/10.1097/01.brs.0000150830.12518.26.CrossRefGoogle Scholar
Osgood, DP, Kenney, EV, Harrington, WF, Harrington, JF. Excrescence of neurotransmitter glutamate from disc material has nociceptive qualities: evidence from a rat model. Spine J 2010;10(11):9991006. https://doi.org/10.1016/j.spinee.2010.07.390.Google Scholar
Peng, B, Wu, W, Li, Z, Guo, J, Wang, X. Chemical radiculitis. Pain 2007;127(1–2):11–6. https://doi.org/10.1016/j.pain.2006.06.034.Google Scholar
Ramer, MS, Kawaja, MD, Henderson, JT, Roder, JC, Bisby, MA. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neurosci Lett 1998;251(1):53–6. https://doi.org/10.1016/s0304-3940(98)00493-5.Google Scholar
Rose, MA, Kam, PC. Gabapentin: pharmacology and its use in pain management. Anaesthesia 2002;57(5):451–62. https://doi.org/10.1046/j.0003-2409.2001.02399.x.Google Scholar
Rydevik, B, Brown, MD, Lundborg, G. Pathoanatomy and pathophysiology of nerve root compression. Spine 1984;9(1):715. https://doi.org/10.1097/00007632-198401000-00004.CrossRefGoogle ScholarPubMed
Saal, JS, Franson, RC, Dobrow, R, Saal, JA, White, AH, Goldthwaite, N. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 1990;15(7):674–8. https://doi.org/10.1097/00007632-199007000-00011.Google Scholar
Sato, KT, Satoh, K, Sekiguchi, M, et al. Local application of nucleus pulposus induces expression of P2X3 in rat dorsal root ganglion cells. Fukushima J Med Sci 2012;58(1):1721. https://doi.org/10.5387/fms.58.17.CrossRefGoogle Scholar
Sawin, PD, Traynelis, VC, Rich, G, et al. Chymopapain-induced reduction of proinflammatory phospholipase A2 activity and amelioration of neuropathic behavioral changes in an in vivo model of acute sciatica. J Neurosurg 1997;86(6):9981006. https://doi.org/10.3171/jns.1997.86.6.0998.CrossRefGoogle Scholar
Scholz, J, Finnerup, NB, Attal, N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 2019;160(1):5359. https://doi.org/10.1097/j.pain.0000000000001365.Google Scholar
Scuderi, GJ, Brusovanik, GV, Brusovamik v, G, et al. Cytokine assay of the epidural space lavage in patients with lumbar intervertebral disk herniation and radiculopathy. J Spinal Disord Tech 2006;19(4):266–9. https://doi.org/10.1097/01.bsd.0000204501.22343.99.Google Scholar
Semmes, RE, Murphey, MF. The syndrome of unilateral rupture of the sixth cervical intervertebral disk with compression of the seventh cervical nerve root: a report of four cases with symptoms simulating coronary disease. JAMA 1943;121:1209–14. https://doi.org/10.1001/jama.1943.02840150023006.Google Scholar
Shubayev, VI, Myers, RR. Anterograde TNF alpha transport from rat dorsal root ganglion to spinal cord and injured sciatic nerve. Neurosci Lett 2002;320(1–2):99101. https://doi.org/10.1016/s0304-3940(02)00010-1.CrossRefGoogle ScholarPubMed
Smith, SA, Massie, JB, Chesnut, R, Garfin, SR. Straight leg raising. Anatomical effects on the spinal nerve root without and with fusion. Spine 1993;18(8):992–9.Google Scholar
Smyth, MJ, Wright, V. Sciatica and the intervertebral disc; an experimental study. J Bone Joint Surg Am 1958;40-A(6):1401–18.Google Scholar
Stafford, MA, Peng, P, Hill, DA. Sciatica: a review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management. Br J Anaesth 2007;99(4):461–73. https://doi.org/10.1093/bja/aem238.Google Scholar
Takahashi, H, Suguro, T, Okazima, Y, Motegi, M, Okada, Y, Kakiuchi, T. Inflammatory cytokines in the herniated disc of the lumbar spine. Spine 1996;21(2):218–24. https://doi.org/10.1097/00007632-199601150-00011.Google Scholar
Takahashi, K, Shima, I, Porter, RW. Nerve root pressure in lumbar disc herniation. Spine 1999;24(19):2003–06. https://doi.org/10.1097/00007632-199910010-00007.CrossRefGoogle ScholarPubMed
Takahashi, N, Yabuki, S, Aoki, Y, Kikuchi, S. Pathomechanisms of nerve root injury caused by disc herniation: an experimental study of mechanical compression and chemical irritation. Spine 2003;28(5):435–41. https://doi.org/10.1097/01.BRS.0000048645.33118.02.Google Scholar
Takenaka, S, Aono, H. Prediction of postoperative clinical recovery of drop foot attributable to lumbar degenerative diseases, via a Bayesian network. Clin Orthop Relat Res 2017;475(3):872–80. https://doi.org/10.1007/s11999-016-5180.Google Scholar
Tanaka, Y, Kokubun, S, Sato, T, Ozawa, H. Cervical roots as origin of pain in the neck or scapular regions. Spine 2006;31(17):E568–73. https://doi.org/10.1097/01.brs.0000229261.02816.48.CrossRefGoogle ScholarPubMed
Tinazzi, M, Fiaschi, A, Rosso, T, Faccioli, F, Grosslercher, J, Aglioti, SM. Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: a somatosensory-evoked potentials study in patients with cervical radicular pain. J Neurosci 2000;20(24):9277–83. https://doi.org/10.1523/JNEUROSCI.20-24-09277.2000.CrossRefGoogle ScholarPubMed
Tumialán, LM, Madhavan, K, Godzik, J, Wang, MY. The history of and controversy over Kambin’s triangle: a historical analysis of the lumbar transforaminal corridor for endoscopic and surgical approaches. World Neurosurg 2019;123:402–08. https://doi.org/10.1016/j.wneu.2018.10.221.Google Scholar
Van Zundert, J, Patijn, J, Kessels, A, Lamé, I, Van Suijlekom, H, Van Kleef, M. Pulsed radiofrequency adjacent to the cervical dorsal root ganglion in chronic cervical radicular pain: a double blind sham controlled randomized clinical trial. Pain 2007;127(1–2):173–82. https://doi.org/10.1016/j.pain.2006.09.002.Google Scholar
Wadhwani, S, Loughenbury, P, Soames, R. The anterior dural (Hofmann) ligaments. Spine 2004;29(6):623–7. https://doi.org/10.1097/01.brs.0000115129.59484.24.Google Scholar
Wall, PD, Devor, M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 1983;17(4):321–39. https://doi.org/10.1016/0304-3959(83)90164-1.Google Scholar
Wang, MY, Levi, AD. Ganglionectomy of C-2 for the treatment of medically refractory occipital neuralgia. Neurosurg Focus 2002;12(1):E14. https://doi.org/10.3171/foc.2002.12.1.15.Google Scholar
Weinstein, JN, Tosteson, TD, Lurie, JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA 2006;296(20):2441–50. https://doi.org/10.1001/jama.296.20.2441.Google Scholar
Winkelstein, BA, Rutkowski, MD, Weinstein, JN, Deleo, JA. Quantification of neural tissue injury in a rat radiculopathy model: comparison of local deformation, behavioral outcomes, and spinal cytokine mRNA for two surgeons. J Neurosci Methds 2001;111(1):4957. https://doi.org/10.1016/s0165-0270(01)00445-9.Google Scholar
Winkelstein, BA, Weinstein, JN, Deleo, JA. The role of mechanical deformation in lumbar radiculopathy: an in vivo model. Spine 2002;27(1):2733. https://doi.org/10.1097/00007632-200201010-00009.Google Scholar
Woolf, CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011;152(3 Suppl):S215. https://doi.org/10.1016/j.pain.2010.09.030.CrossRefGoogle ScholarPubMed
Yeung, AT, Tsou, PM. Posterolateral endoscopic excision for lumbar disc herniation: Surgical technique, outcome, and complications in 307 consecutive cases. Spine 2002;27(7):722–31. https://doi.org/10.1097/00007632-200204010-00009.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×