Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T19:02:27.286Z Has data issue: false hasContentIssue false

Chapter 3 - Culture, Sex, and Intelligence

Published online by Cambridge University Press:  06 January 2018

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreescu, T., Gallian, J. A., Kane, J., & Mertz, J. E. (2008). Cross-cultural analysis of students with exceptional talent in mathematical problem solving. Notices of the American Mathematical Society, 55, 12481260.Google Scholar
Antecol, H., Eren, O., & Ozbeklik, S. (2015). The effect of teacher gender on student achievement in primary school. Journal of Labor Economics, 33(1), 6389.CrossRefGoogle Scholar
Auyeung, B., Lombardo, M. V., & Baron-Cohen, S. (2013). Prenatal and postnatal hormone effects on the human brain and cognition. Pflügers Archiv-European Journal of Physiology, 465, 557571. doi:10.1007/s00424-013-1268-2.CrossRefGoogle ScholarPubMed
Beilock, L. S., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2009). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 18601863.CrossRefGoogle Scholar
Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355, 389391.CrossRefGoogle ScholarPubMed
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent. Child Development, 78(1), 246263.CrossRefGoogle ScholarPubMed
Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, http://psi.sagepub.com/content/15/3/75.abstract?patientinform-links=yes&legid=sppsi;15/3/75. doi:10.1177/1529100614541236.CrossRefGoogle Scholar
Ceci, S. J. & Williams, W. M. (2007). Sex differences in cognition: Moving closer and closer apart. In Ceci, S. J. & Williams, W. M. (Eds.). Do women belong in science?: Eminent thinkers weigh the evidence. (pp. 213–236). Washington, DC: American Psychological Association Books.Google Scholar
Ceci, S. J. & Williams, W. M. (2010a). The mathematics of sex: How biology and society conspire to limit talented women and girls. New York: Oxford University Press.Google Scholar
Ceci, S. J. & Williams, W. M. (2010b). Sex differences in math-intensive fields. Current Directions in Psychological Science, 19(5), 275279.CrossRefGoogle ScholarPubMed
Ceci, S. J. & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences, 108, 31573162.CrossRefGoogle ScholarPubMed
Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135, 218261.CrossRefGoogle ScholarPubMed
Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41, 244262. doi:10.1016/j.intell.2013.04.003 Google Scholar CrossRef.CrossRefGoogle Scholar
Cvencek, D., Meltzoff, A. N., & Greenwald, A. (2011). Math-gender stereotypes in elementary schoolchildren. Child Development, 82(3) May/June, 766779.CrossRefGoogle Scholar
Ellison, G. & Swanson, A. (2010). The gender gap in secondary school mathematics at high achievement levels: Evidence from the American Mathematics Competitions. Journal of Economic Perspectives, 24, 109128.CrossRefGoogle Scholar
Else-Quest, N., Hyde, J., & Linn, M. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103127.CrossRefGoogle ScholarPubMed
Fryer, R. G., Jr. & Levitt, S. D.. (2010). An empirical analysis of the gender gap in mathematics. American Economic Journal: Applied Economics, 2(2), April, 210240. www.jstor.org/stable/25760212.Google Scholar
Good, C., Aronson, J., & Harder, J. A. (2008). Problems in the pipeline: Stereotype threat and women’s achievement in high-level math courses. Journal of Applied Developmental Psychology, 29, 1728.CrossRefGoogle Scholar
Grissmer, D. W., Mashburn, A., Cottone, E., Chen, W.-B., Brock, L. L., Murrah, W. M., ... Cameron, C. E. (2013). Effects of a play-based after-school curriculum for high risk K–1 children. In Newcombe, N. (Ed.), Educating spatial skills at varied ages with varied approaches: Are STEM outcomes affected? Seattle, WA: Society for Research in Child Development.Google Scholar
Halpern, D. F. (2012). Sex differences in cognitive abilities (4th edn.). New York: Psychology Press.Google Scholar
Hedges, L. V. & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269, 4145.CrossRefGoogle ScholarPubMed
Hill, C., Corbett, C., & St. Rose, A. (2010). Why so few? Women in science, technology, engineering, and mathematics. Washington, DC: American Association of University Women.Google Scholar
Huguet, P. & Regner, I. (2009). Counter-stereotypic beliefs in math do not protect school girls from stereotype threat. Journal of Experimental Social Psychology, 45, 10241027.CrossRefGoogle Scholar
Hyde, J. S., Fennema, E., & Lamon, S. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139155.CrossRefGoogle ScholarPubMed
Hyde, J. S., Lindberg, S., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494495.CrossRefGoogle ScholarPubMed
Hyde, J. S. & Mertz, J. (2009). Gender, culture, and mathematics performance. Proceedings of the National Academy of Sciences, USA, 106, 88018809.CrossRefGoogle ScholarPubMed
Kahn, S. & Ginther, D. K. (2015). Are recent cohorts of women with engineering bachelors less likely to stay in engineering? Frontiers in Psychology, https://doi.org/10.3389/fpsyg.2015.01144.CrossRefGoogle ScholarPubMed
Lavy, V. & Sand, E. (2015). On the origins of gender human capital gaps: Short and long term consequences of teachers’ stereotypical biases. NBER Working Paper 20909. www.nber.org/papers/w20909.pdf.CrossRefGoogle Scholar
Legewie, J. & DiPrete, T. A. (2012). High school environments, STEM orientations, and the gender gap in science and engineering degrees. http://ssrn.com/abstract=2008733.Google Scholar
Lindberg, S. M. et al. (2010). New trends in gender and mathematics performance: a meta-analysis. Psychological Bulletin, 136, 11231135.CrossRefGoogle ScholarPubMed
Linn, M. C. & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 14791498.CrossRefGoogle ScholarPubMed
Lippa, R. (1998). Gender-related individual differences and the structure of vocational interests: The importance of the people-things dimension. Journal of Personality and Social Psychology, 74, 9961009.CrossRefGoogle ScholarPubMed
Lippa, R. A. (2001). On deconstructing and reconstructing masculinity-femininity. Journal of Research in Personality, 35, 168207.CrossRefGoogle Scholar
Lippa, R. A. (2010). Sex differences in personality traits and gender-related occupational preferences across 53 nations: Testing evolutionary and social-environmental theories. Archives of Sexual Behavior, 39, 619636.CrossRefGoogle ScholarPubMed
Lohman, D. F. & Lakin, J. M. (2009). Consistencies in sex differences on the cognitive abilities test across countries, grades, test forms, and cohorts. British Journal of Educational Psychology, 79, 89407.CrossRefGoogle ScholarPubMed
Miller, D. I. & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18, 3745.CrossRefGoogle ScholarPubMed
Miller, D. I. & Wai, J. (2015). The bachelor’s to Ph.D. STEM pipeline no longer leaks more women than men: A 30-year analysis. Frontiers in Psychology, https://doi.org/10.3389/fpsyg.2015.00037.CrossRefGoogle Scholar
Moore, D. S. & Johnson, S. P. (2011). Mental rotation of dynamic, three-dimensional stimuli by 3-month-old infants. Infancy, 16, 435445.CrossRefGoogle ScholarPubMed
Mullis, I., M., Fierros, M., Goldberg, E., & Stemler, A. S. (2000a). Gender differences in achievement. http://timssandpirls.bc.edu/timss1995i/gender.htmlGoogle Scholar
Mullis, I., Martin, M. O., Fierros, E. G., & Goldberg, A. L. (2000b). Gender differences in achievement: IEA’s Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. International Study Center. Retrieved May 1, 2008, from timss.bc.edu/timss1995i/TIMSSPDF/T95_GChapter%201.pdf.Google Scholar
Nix, S., Perez-Felkner, L., & Thomas, K. (2014). Perceived mathematical ability under challenge: A longitudinal perspective on sex segregation among STEM degree fields. Frontiers in Psychology.Google Scholar
Penner, A. M. (2008). Gender differences in extreme mathematical achievement: An international perspective on biological and social factors. American Journal of Sociology, 114, 138170.CrossRefGoogle ScholarPubMed
Penner, A. M. & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37, 239253.CrossRefGoogle Scholar
Pope, D. G. & Sydnor, J. R. (2010). Geographic variation in the gender differences in test scores. Journal of Economic Perspectives, 24, 95108.CrossRefGoogle Scholar
Quinn, P. C. & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19, 1067–1070.CrossRefGoogle Scholar
Schwarzer, G., Freitag, C., & Schum, N. (2013). How crawling and manual object exploration are related to the mental rotation abilities of 9-month-old infants. Frontiers in Psychology, 4, 97110. doi:10.3389/fpsyg.2013.00097.CrossRefGoogle Scholar
Shepard, R. N. & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701703.CrossRefGoogle ScholarPubMed
Stoet, G. & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within-nation assessment of ten years of PISA data. PLoS One, 8(3): e57988. doi:10.1371/journal.pone.0057988.CrossRefGoogle Scholar
Strand, S., Deary, I. J., & Smith, P. (2006). Sex differences in cognitive abilities test scores: A UK national picture. British Journal of Educational Psychology, 76, 463480.CrossRefGoogle ScholarPubMed
Su, R. & Rounds, J. (2015). All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields. Frontiers in Psychology, doi: 10.3389/fpsyg.2015.00189.CrossRefGoogle ScholarPubMed
Su, R., Rounds, J., & Armstrong, P. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859884.CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1911). Individuality. New York: Houghton & Mifflin.Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P., 1995. Magnitude of sex differences in spatial abilities: A metaanalysis and consideration of critical variables. Psychological Bulletin, 117, 250270.CrossRefGoogle ScholarPubMed
Wai, J., Cacchio, M., Putallaz, M., & Makel, M. (2010). Sex differences in the right tail of cognitive abilities: A 30 year examination. Intelligence, 38, 412423. doi:10.1016/j.intell.2010.04.006.CrossRefGoogle Scholar
Wai, J., & Putallaz, M. (2011). The Flynn effect puzzle: A 30-year examination from the right tail of the ability distribution provides some missing pieces. Intelligence, 39, 443455.CrossRefGoogle Scholar
Williams, W. M. & Ceci, S. J. (2015). National hiring experiments reveals 2-to-1 preference for women faculty on STEM tenure-track. Proceedings of the National Academy of Sciences, 112(17), 53605365. www.pnas.org/content/early/2015/04/08/1418878112.abstract. doi:10.1073/pnas.1418878112.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×