Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T09:30:05.251Z Has data issue: false hasContentIssue false

Chapter 10 - Puzzled Intelligence

Looking for Missing Pieces

Published online by Cambridge University Press:  06 January 2018

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S., Beeri, M., & Haroutunian, V. (2013). Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurology, 70, 711718. doi:10.1001/jamaneurol.2013.1459CrossRefGoogle ScholarPubMed
Allred, C. D., Allred, K. F., Ju, Y. H., Virant, S. M., & Helferich, W. G. (2001). Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res, 61, 50455050.Google ScholarPubMed
Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188.CrossRefGoogle ScholarPubMed
Baccarelli, A., Wright, R. O., Bollati, V., Tarantini, L., Litonjua, A. A., Suh, H. H., & et al. (2009). Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med, 179, 572578. doi:10.1164/rccm.200807-1097OC PMID: 19136372CrossRefGoogle ScholarPubMed
Barres, R., Kirchner, H., Rasmussen, M., Yan, J., Kantor, F. R., Krook, A., & et al. (2013). Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep, 3, 10201027. doi:10.1016/j.celrep.2013.03.018 PMID: 23583180CrossRefGoogle ScholarPubMed
Bayley, N. (1949). Consistency and variability in the growth of intelligence from birth to eighteen years. The Pedagogical Seminary and Journal of Genetic Psychology, 75, 165196. doi:10.1080/08856559.1949.10533516CrossRefGoogle Scholar
Bick, J., Naumova, O. Y., Hunter, S., Barbot, B., Lee, M., Luthar, S. S., ... Grigorenko, E. L. (2012). Childhood adversity and DNA methylation of genes involved in the hypothalamus–pituitary–adrenal axis and immune system: Whole-genome and candidate-gene associations. Development and Psychopathology, 24, 14171425. doi:10.1017/S0954579412000806CrossRefGoogle ScholarPubMed
Bird, A. P. (2007). Perceptions of epigenetics. Nature, 447, 396398.CrossRefGoogle ScholarPubMed
Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PLoS One, 6, e14821. doi:10.1371/journal.pone.0014821CrossRefGoogle ScholarPubMed
Boks, M. P., Mierlo, H. C. v., Rutten, B. P. F., Radstake, T. R. D. J., De Witte, L., Geuze, E., ... Vermetten, E. (2015). Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology, 51, 506512. doi:http://dx.doi.org/10.1016/j.psyneuen.2014.07.011CrossRefGoogle ScholarPubMed
Bollati, V., Baccarelli, A., Hou, L., Bonzini, M., Fustinoni, S., Cavallo, D., & et al. (2007). Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res, 876880. doi:PMID:17283117CrossRefGoogle ScholarPubMed
Christiansen, L., Lenart, A., Tan, Q., Vaupel, J. W., Aviv, A., McGue, M., & Christensen, K. (2016). DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell, 15, 149154. doi:10.1111/acel.12421CrossRefGoogle Scholar
Clark, E. A., & Nelson, S. B. (2015). Synapse and genome: An elusive tête-à-tête. Science Signaling, 8, pe2. doi:10.1126/scisignal.aad2441CrossRefGoogle ScholarPubMed
Coppieters, N., Dieriks, B. V., Lill, C., Faull, R. L. M., Curtis, M. A., & Dragunow, M. (2013). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology of Aging, 35, 13341344.CrossRefGoogle ScholarPubMed
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., & Moulden, J. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.CrossRefGoogle ScholarPubMed
Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13, 1319.CrossRefGoogle ScholarPubMed
Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70, 813829.CrossRefGoogle ScholarPubMed
Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108, 346369. doi:10.1037/0033-295X.108.2.346CrossRefGoogle ScholarPubMed
Dolinoy, D. C., Das, R., Weidman, J. R., & Jirtle, R. L. (2007). Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatric Research, 61, 30R37R.CrossRefGoogle ScholarPubMed
Dominguez-Salas, P., Moore, S. E., Baker, M. S., Bergen, A. W., Cox, S. E., Dyer, R. A., ... Hennig, B. J. (2014). Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nature Communications, 5, 3746. doi:10.1038/ncomms4746 www.nature.com/articles/ncomms4746#supplementary-informationCrossRefGoogle ScholarPubMed
Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 11831186. doi:PMID: 12183631CrossRefGoogle Scholar
Fan, G., Beard, C., Chen, R. Z., Csankovszki, G., Sun, Y., Siniaia, M., ... Jaenisch, R. (2001). DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. Journal of Neuroscience, 21, 788797.CrossRefGoogle ScholarPubMed
Feng, J., Fouse, S. D., & Fan, G. (2007). Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research, 61, 58R63R.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M., & Beedle, A. S. (2009). Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nature Reviews Endocrinology, 5, 401408.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Lillycrop, K. A., Vickers, M. H., Pleasants, A. B., Phillips, E. S., Beedle, A. S., ... Hanson, M. A. (2007). Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proceedings of the National Academy of Sciences of the United States of America, 104, 1279612800. doi:10.1073/pnas.0705667104CrossRefGoogle ScholarPubMed
Grigorenko, E. L., Kornilov, S. A., & Naumova, O. Y. (2016). Epigenetic regulation of cognition: A circumscribed review of the field. Development and Psychopathology. doi:10.1017/S0954579416000857CrossRefGoogle ScholarPubMed
Guénard, F., Deshaies, Y., Cianflone, K., Kral, J. G., Marceau, P., & Vohl, M.-C. (2013). Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proceedings of the National Academy of Sciences, 110, 1143911444. doi:10.1073/pnas.1216959110CrossRefGoogle ScholarPubMed
Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., & Jang, M. H. (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 13451351.CrossRefGoogle ScholarPubMed
Guzman-Karlsson, M. C., Meadows, J. P., Gavin, C. F., Hablitz, J. J., & Sweatt, J. D. (2014). Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology, 80, 317. doi:http://dx.doi.org/10.1016/j.neuropharm.2014.01.001CrossRefGoogle ScholarPubMed
Halder, R., Hennion, M., Vidal, R. O., Shomroni, O., Rahman, R.-U., Rajput, A., ... Bonn, S. (2016). DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nature Neuroscience, 19, 102110. doi:10.1038/nn.4194 www.nature.com/neuro/journal/v19/n1/abs/nn.4194.html#supplementary-informationCrossRefGoogle ScholarPubMed
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., ... Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359367. doi:http://dx.doi.org/10.1016/j.molcel.2012.10.016CrossRefGoogle ScholarPubMed
Heyward, F. D., & Sweatt, J. D. (2015). DNA methylation in memory formation: Emerging insights. The Neuroscientist. doi:10.1177/1073858415579635CrossRefGoogle Scholar
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115. doi:10.1186/gb-2013-14-10-r115CrossRefGoogle ScholarPubMed
Horvath, S., Erhart, W., Brosch, M., Ammerpohl, O., von Schönfels, W., Ahrens, M., ... Hampe, J. (2014). Obesity accelerates epigenetic aging of human liver. Proceedings of the National Academy of Sciences of the United States of America, 111, 1553815543. doi:10.1073/pnas.1412759111CrossRefGoogle ScholarPubMed
Horvath, S., Mah, V., Lu, A. T., Woo, J. S., Choi, O.-W., Jasinska, A. J., ... Coles, L. S. (2015). The cerebellum ages slowly according to the epigenetic clock. Aging, 7, 294306.CrossRefGoogle Scholar
Illingworth, R. S., Gruenewald-Schneider, U., De Sousa, D., Webb, S., Merusi, C., Kerr, A. R. W., ... Bird, A. P. (2015). Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome. Nucleic Acids Research, 43, 732744. doi:10.1093/nar/gku1305CrossRefGoogle ScholarPubMed
Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., ... Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 10861093.CrossRefGoogle ScholarPubMed
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., & et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341. doi:10.1038/nn.3275 PMID: 23201972CrossRefGoogle ScholarPubMed
Larsen, L., Hartmann, P., & Nyborg, H. (2008). The stability of general intelligence from early adulthood to middle-age. Intelligence, 36, 2934. doi:http://dx.doi.org/10.1016/j.intell.2007.01.001CrossRefGoogle Scholar
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I.-C., Desai, P., ... Sweatt, J. D. (2006). Evidence that DNA (Cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 1576315773. doi:10.1074/jbc.M511767200CrossRefGoogle ScholarPubMed
Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. The Journal of Nutrition, 135, 13821386.CrossRefGoogle ScholarPubMed
Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., ... Ecker, J. R. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 629. doi:10.1126/science.1237905CrossRefGoogle ScholarPubMed
Ma, D. K., Jang, M.-H., Guo, J. U., Kitabatake, Y., Chang, M.-l., Pow-anpongkul, N., ... Song, H. (2009). Neuronal activity–induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323, 10741077. doi:10.1126/science.1166859CrossRefGoogle ScholarPubMed
Ma, D. K., Marchetto, M. C., Guo, J. U., Ming, G. L., Gage, F. H., & Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience, 13, 13381344.CrossRefGoogle ScholarPubMed
Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., ... Deary, I. J. (2015). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology, 16, 25. doi:10.1186/s13059-015-0584-6CrossRefGoogle ScholarPubMed
Marioni, R. E., Shah, S., McRae, A. F., Ritchie, S. J., Muniz-Terrera, G., Harris, S. E., ... Deary, I. J. (2015). The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. International Journal of Epidemiology, 44, 13881396. doi:10.1093/ije/dyu277CrossRefGoogle ScholarPubMed
McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115142. doi:10.1037/0012-1649.38.1.115CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., ... Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Ferguson-Smith, A. C. (2010). Epigenetic regulation of the neural transcriptome: The meaning of the marks. Nature Neuroscience, 13, 13131318.CrossRefGoogle ScholarPubMed
Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., ... Sweatt, J. D. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664666. doi:10.1038/nn.2560CrossRefGoogle ScholarPubMed
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. doi:http://dx.doi.org/10.1016/j.neuron.2007.02.022CrossRefGoogle ScholarPubMed
Miller, G. E., Yu, T., Chen, E., & Brody, G. H. (2015). Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences, 112, 1032510330. doi:10.1073/pnas.1505063112CrossRefGoogle ScholarPubMed
Morgan, D. K., & Whitelaw, E. (2008). The case for transgenerational epigenetic inheritance in humans. Mammalian Genome, 19, 394397.CrossRefGoogle ScholarPubMed
Naumova, O. Yu, Dozier, M., Dobrynin, P. V., Grigorev, K., Wallin, A., Jeltova, I., Lee, M., Raefski, A., & Grigorenko, E. L. (2017). Developmental Dynamics of the Epigenome: a Longitudinal Study of Three Toddlers. Neurotoxicology and Teratology.Google Scholar
Naumova, O. Y., Hein, S., Suderman, M., Barbot, B., Lee, M., Raefski, A., ... Grigorenko, E. L. (2016). Epigenetic patterns modulate the connection between developmental dynamics of parenting and offspring psychosocial adjustment. Child Development, 87, 98110. doi: 10.1111/cdev.12485CrossRefGoogle ScholarPubMed
Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24, 143155.CrossRefGoogle ScholarPubMed
Naumova, O. Y., Odintsova, V., Arinzina, I., Muhamedrahimov, R., Grigorenko, E. L., & Tsvetkova, L. (2016). Health, development and epigenetic characteristics of institutionalized children: A preliminary study based on a small cohort. Procedia Social and Behavioral Sciences, 233, 225–230. DOI:10.1016/j.sbspro.2016.10.208CrossRefGoogle Scholar
Naumova, O. Y., Rychkov, S., Odintsova, V., , V., , K. T., Shabalina, K., Antziferova, D., ... , L., , G. E. (2016). DNA methylation alterations in Down Syndrome.Google Scholar
Nestor, C. E., Barrenas, F., Wang, H., Lentini, A., Zhang, H., Bruhn, S., & et al. (2014). DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4(+) T-cell population structure. Plos Genetics, 10, e1004059. doi:10.1371/journal.pgen.1004059 PMID: 24391521CrossRefGoogle ScholarPubMed
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 2, 97106.CrossRefGoogle Scholar
Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell, 135, 216226. doi:10.1016/j.cell.2008.09.050 PMID: 18957198CrossRefGoogle ScholarPubMed
Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I., & Whitelaw, E. (2002). Metastable epialleles in mammals. Trends in Genetics, 18, 348351. doi:http://dx.doi.org/10.1016/S0168-9525(02)02709-9CrossRefGoogle ScholarPubMed
Riccio, A. (2010). Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature Neuroscience, 13, 13301337.CrossRefGoogle ScholarPubMed
Richards, E. J. (2006). Inherited epigenetic variation – revisiting soft inheritance. Nature Review Genetics, 7, 395401.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137, 753784.CrossRefGoogle ScholarPubMed
Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 8097. doi:10.2307/1131438CrossRefGoogle ScholarPubMed
Sanchez-Mut, J. V., Aso, E., Panayotis, N., Lott, I., & Dierssen, M. (2013). DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain: A Journal of Neurology, 136, 30183027.CrossRefGoogle ScholarPubMed
Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., & et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences, 104, 1935119356. doi:18042717CrossRefGoogle ScholarPubMed
Singer, Z. S., Yong, J., Tischler, J., Hackett, J. A., Altinok, A., Surani, M. A., & al., e. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell., 55, 319331. doi:10.1016/j.molcel.2014.06.029 PMID: 25038413CrossRefGoogle ScholarPubMed
Slatkin, M. (2009). Epigenetic inheritance and the missing heritability problem. Genetics, 182, 845850. doi:10.1534/genetics.109.102798CrossRefGoogle ScholarPubMed
Smith, A. K., Conneely, K. N., Newport, D. J., Kilaru, V., Schroeder, J. W., Pennell, P. B., et al. (2012). Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics, 7, 458463. doi:10.4161/epi.19617 PMID: 22419127CrossRefGoogle ScholarPubMed
Sweatt, J. D. (2016). Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. Journal of Neurochemistry, 137, 312330. doi:10.1111/jnc.13564CrossRefGoogle ScholarPubMed
Thompson, T. M., Sharfi, D., Lee, M., Yrigollen, C. M., Naumova, O. Y., & Grigorenko, E. L. (2013). Comparison of whole-genome DNA methylation patterns in whole blood, saliva, and lymphoblastoid cell lines. Behavior Genetics, 43, 168176. doi:10.1007/s10519-012-9579-1CrossRefGoogle ScholarPubMed
Tong, Z., Han, C., Qiang, M., Wang, W., Lv, J., Zhang, S., ... He, R. (2015). Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiology of Aging, 36, 100110. doi:http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.018CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140, 949979.CrossRefGoogle ScholarPubMed
Verkerk, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y.-H., Kuhl, D. P. A., Pizzuti, A., ... Warren, S. T. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905914. doi:http://dx.doi.org/10.1016/0092-8674(91)90397-HCrossRefGoogle ScholarPubMed
Vickers, M. H., Gluckman, P. D., Coveny, A. H., Hofman, P. L., Cutfield, W. S., Gertler, A., ... Harris, M. (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology, 146, 42114216. doi:doi:10.1210/en.2005-0581CrossRefGoogle ScholarPubMed
Von Stumm, S., & Ackerman, P. L. (2013). Investment and intellect: A review and meta-analysis. Psychological Bulletin, 139, 841869.CrossRefGoogle ScholarPubMed
Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23, 52935300.CrossRefGoogle ScholarPubMed
Waterland, R. A., & Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20, 6368.CrossRefGoogle ScholarPubMed
Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genetics, 9, 233257.CrossRefGoogle ScholarPubMed
Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J. U., Weng, Y.-L., ... Song, H. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 18, 836843. doi:10.1038/nn.4008CrossRefGoogle ScholarPubMed
Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Röh, S., Ressler, K. J., ... Mehta, D. (2015). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16(1), 266. doi:10.1186/s13059-015-0828-5CrossRefGoogle Scholar
Zannas, A. S., & West, A. E. (2014). Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience, 264(0), 157170. doi:http://dx.doi.org/10.1016/j.neuroscience.2013.12.003CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×