Skip to main content
×
×
Home
  • Print publication year: 2018
  • Online publication date: January 2018

Chapter 10 - Puzzled Intelligence

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

The Nature of Human Intelligence
  • Online ISBN: 9781316817049
  • Book DOI: https://doi.org/10.1017/9781316817049
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
Akbarian, S., Beeri, M., & Haroutunian, V. (2013). Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurology, 70, 711718. doi:10.1001/jamaneurol.2013.1459
Allred, C. D., Allred, K. F., Ju, Y. H., Virant, S. M., & Helferich, W. G. (2001). Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res, 61, 50455050.
Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188.
Baccarelli, A., Wright, R. O., Bollati, V., Tarantini, L., Litonjua, A. A., Suh, H. H., & et al. (2009). Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med, 179, 572578. doi:10.1164/rccm.200807-1097OC PMID: 19136372
Barres, R., Kirchner, H., Rasmussen, M., Yan, J., Kantor, F. R., Krook, A., & et al. (2013). Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep, 3, 10201027. doi:10.1016/j.celrep.2013.03.018 PMID: 23583180
Bayley, N. (1949). Consistency and variability in the growth of intelligence from birth to eighteen years. The Pedagogical Seminary and Journal of Genetic Psychology, 75, 165196. doi:10.1080/08856559.1949.10533516
Bick, J., Naumova, O. Y., Hunter, S., Barbot, B., Lee, M., Luthar, S. S., ... Grigorenko, E. L. (2012). Childhood adversity and DNA methylation of genes involved in the hypothalamus–pituitary–adrenal axis and immune system: Whole-genome and candidate-gene associations. Development and Psychopathology, 24, 14171425. doi:10.1017/S0954579412000806
Bird, A. P. (2007). Perceptions of epigenetics. Nature, 447, 396398.
Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PLoS One, 6, e14821. doi:10.1371/journal.pone.0014821
Boks, M. P., Mierlo, H. C. v., Rutten, B. P. F., Radstake, T. R. D. J., De Witte, L., Geuze, E., ... Vermetten, E. (2015). Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology, 51, 506512. doi:http://dx.doi.org/10.1016/j.psyneuen.2014.07.011
Bollati, V., Baccarelli, A., Hou, L., Bonzini, M., Fustinoni, S., Cavallo, D., & et al. (2007). Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res, 876880. doi:PMID:17283117
Christiansen, L., Lenart, A., Tan, Q., Vaupel, J. W., Aviv, A., McGue, M., & Christensen, K. (2016). DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell, 15, 149154. doi:10.1111/acel.12421
Clark, E. A., & Nelson, S. B. (2015). Synapse and genome: An elusive tête-à-tête. Science Signaling, 8, pe2. doi:10.1126/scisignal.aad2441
Coppieters, N., Dieriks, B. V., Lill, C., Faull, R. L. M., Curtis, M. A., & Dragunow, M. (2013). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology of Aging, 35, 13341344.
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., & Moulden, J. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.
Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13, 1319.
Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70, 813829.
Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108, 346369. doi:10.1037/0033-295X.108.2.346
Dolinoy, D. C., Das, R., Weidman, J. R., & Jirtle, R. L. (2007). Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatric Research, 61, 30R37R.
Dominguez-Salas, P., Moore, S. E., Baker, M. S., Bergen, A. W., Cox, S. E., Dyer, R. A., ... Hennig, B. J. (2014). Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nature Communications, 5, 3746. doi:10.1038/ncomms4746 www.nature.com/articles/ncomms4746#supplementary-information
Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 11831186. doi:PMID: 12183631
Fan, G., Beard, C., Chen, R. Z., Csankovszki, G., Sun, Y., Siniaia, M., ... Jaenisch, R. (2001). DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. Journal of Neuroscience, 21, 788797.
Feng, J., Fouse, S. D., & Fan, G. (2007). Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research, 61, 58R63R.
Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M., & Beedle, A. S. (2009). Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nature Reviews Endocrinology, 5, 401408.
Gluckman, P. D., Lillycrop, K. A., Vickers, M. H., Pleasants, A. B., Phillips, E. S., Beedle, A. S., ... Hanson, M. A. (2007). Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proceedings of the National Academy of Sciences of the United States of America, 104, 1279612800. doi:10.1073/pnas.0705667104
Grigorenko, E. L., Kornilov, S. A., & Naumova, O. Y. (2016). Epigenetic regulation of cognition: A circumscribed review of the field. Development and Psychopathology. doi:10.1017/S0954579416000857
Guénard, F., Deshaies, Y., Cianflone, K., Kral, J. G., Marceau, P., & Vohl, M.-C. (2013). Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proceedings of the National Academy of Sciences, 110, 1143911444. doi:10.1073/pnas.1216959110
Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., & Jang, M. H. (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 13451351.
Guzman-Karlsson, M. C., Meadows, J. P., Gavin, C. F., Hablitz, J. J., & Sweatt, J. D. (2014). Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology, 80, 317. doi:http://dx.doi.org/10.1016/j.neuropharm.2014.01.001
Halder, R., Hennion, M., Vidal, R. O., Shomroni, O., Rahman, R.-U., Rajput, A., ... Bonn, S. (2016). DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nature Neuroscience, 19, 102110. doi:10.1038/nn.4194 www.nature.com/neuro/journal/v19/n1/abs/nn.4194.html#supplementary-information
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., ... Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359367. doi:http://dx.doi.org/10.1016/j.molcel.2012.10.016
Heyward, F. D., & Sweatt, J. D. (2015). DNA methylation in memory formation: Emerging insights. The Neuroscientist. doi:10.1177/1073858415579635
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115. doi:10.1186/gb-2013-14-10-r115
Horvath, S., Erhart, W., Brosch, M., Ammerpohl, O., von Schönfels, W., Ahrens, M., ... Hampe, J. (2014). Obesity accelerates epigenetic aging of human liver. Proceedings of the National Academy of Sciences of the United States of America, 111, 1553815543. doi:10.1073/pnas.1412759111
Horvath, S., Mah, V., Lu, A. T., Woo, J. S., Choi, O.-W., Jasinska, A. J., ... Coles, L. S. (2015). The cerebellum ages slowly according to the epigenetic clock. Aging, 7, 294306.
Illingworth, R. S., Gruenewald-Schneider, U., De Sousa, D., Webb, S., Merusi, C., Kerr, A. R. W., ... Bird, A. P. (2015). Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome. Nucleic Acids Research, 43, 732744. doi:10.1093/nar/gku1305
Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., ... Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 10861093.
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., & et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341. doi:10.1038/nn.3275 PMID: 23201972
Larsen, L., Hartmann, P., & Nyborg, H. (2008). The stability of general intelligence from early adulthood to middle-age. Intelligence, 36, 2934. doi:http://dx.doi.org/10.1016/j.intell.2007.01.001
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I.-C., Desai, P., ... Sweatt, J. D. (2006). Evidence that DNA (Cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 1576315773. doi:10.1074/jbc.M511767200
Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. The Journal of Nutrition, 135, 13821386.
Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., ... Ecker, J. R. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 629. doi:10.1126/science.1237905
Ma, D. K., Jang, M.-H., Guo, J. U., Kitabatake, Y., Chang, M.-l., Pow-anpongkul, N., ... Song, H. (2009). Neuronal activity–induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323, 10741077. doi:10.1126/science.1166859
Ma, D. K., Marchetto, M. C., Guo, J. U., Ming, G. L., Gage, F. H., & Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience, 13, 13381344.
Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., ... Deary, I. J. (2015). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology, 16, 25. doi:10.1186/s13059-015-0584-6
Marioni, R. E., Shah, S., McRae, A. F., Ritchie, S. J., Muniz-Terrera, G., Harris, S. E., ... Deary, I. J. (2015). The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. International Journal of Epidemiology, 44, 13881396. doi:10.1093/ije/dyu277
McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115142. doi:10.1037/0012-1649.38.1.115
McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., ... Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.
Meaney, M. J., & Ferguson-Smith, A. C. (2010). Epigenetic regulation of the neural transcriptome: The meaning of the marks. Nature Neuroscience, 13, 13131318.
Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., ... Sweatt, J. D. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664666. doi:10.1038/nn.2560
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. doi:http://dx.doi.org/10.1016/j.neuron.2007.02.022
Miller, G. E., Yu, T., Chen, E., & Brody, G. H. (2015). Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences, 112, 1032510330. doi:10.1073/pnas.1505063112
Morgan, D. K., & Whitelaw, E. (2008). The case for transgenerational epigenetic inheritance in humans. Mammalian Genome, 19, 394397.
Naumova, O. Yu, Dozier, M., Dobrynin, P. V., Grigorev, K., Wallin, A., Jeltova, I., Lee, M., Raefski, A., & Grigorenko, E. L. (2017). Developmental Dynamics of the Epigenome: a Longitudinal Study of Three Toddlers. Neurotoxicology and Teratology.
Naumova, O. Y., Hein, S., Suderman, M., Barbot, B., Lee, M., Raefski, A., ... Grigorenko, E. L. (2016). Epigenetic patterns modulate the connection between developmental dynamics of parenting and offspring psychosocial adjustment. Child Development, 87, 98110. doi: 10.1111/cdev.12485
Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24, 143155.
Naumova, O. Y., Odintsova, V., Arinzina, I., Muhamedrahimov, R., Grigorenko, E. L., & Tsvetkova, L. (2016). Health, development and epigenetic characteristics of institutionalized children: A preliminary study based on a small cohort. Procedia Social and Behavioral Sciences, 233, 225–230. DOI:10.1016/j.sbspro.2016.10.208
Naumova, O. Y., Rychkov, S., Odintsova, V., , V., , K. T., Shabalina, K., Antziferova, D., ... , L., , G. E. (2016). DNA methylation alterations in Down Syndrome.
Nestor, C. E., Barrenas, F., Wang, H., Lentini, A., Zhang, H., Bruhn, S., & et al. (2014). DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4(+) T-cell population structure. Plos Genetics, 10, e1004059. doi:10.1371/journal.pgen.1004059 PMID: 24391521
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 2, 97106.
Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell, 135, 216226. doi:10.1016/j.cell.2008.09.050 PMID: 18957198
Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I., & Whitelaw, E. (2002). Metastable epialleles in mammals. Trends in Genetics, 18, 348351. doi:http://dx.doi.org/10.1016/S0168-9525(02)02709-9
Riccio, A. (2010). Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature Neuroscience, 13, 13301337.
Richards, E. J. (2006). Inherited epigenetic variation – revisiting soft inheritance. Nature Review Genetics, 7, 395401.
Salthouse, T. A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137, 753784.
Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 8097. doi:10.2307/1131438
Sanchez-Mut, J. V., Aso, E., Panayotis, N., Lott, I., & Dierssen, M. (2013). DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain: A Journal of Neurology, 136, 30183027.
Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., & et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences, 104, 1935119356. doi:18042717
Singer, Z. S., Yong, J., Tischler, J., Hackett, J. A., Altinok, A., Surani, M. A., & al., e. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell., 55, 319331. doi:10.1016/j.molcel.2014.06.029 PMID: 25038413
Slatkin, M. (2009). Epigenetic inheritance and the missing heritability problem. Genetics, 182, 845850. doi:10.1534/genetics.109.102798
Smith, A. K., Conneely, K. N., Newport, D. J., Kilaru, V., Schroeder, J. W., Pennell, P. B., et al. (2012). Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics, 7, 458463. doi:10.4161/epi.19617 PMID: 22419127
Sweatt, J. D. (2016). Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. Journal of Neurochemistry, 137, 312330. doi:10.1111/jnc.13564
Thompson, T. M., Sharfi, D., Lee, M., Yrigollen, C. M., Naumova, O. Y., & Grigorenko, E. L. (2013). Comparison of whole-genome DNA methylation patterns in whole blood, saliva, and lymphoblastoid cell lines. Behavior Genetics, 43, 168176. doi:10.1007/s10519-012-9579-1
Tong, Z., Han, C., Qiang, M., Wang, W., Lv, J., Zhang, S., ... He, R. (2015). Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiology of Aging, 36, 100110. doi:http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.018
Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140, 949979.
Verkerk, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y.-H., Kuhl, D. P. A., Pizzuti, A., ... Warren, S. T. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905914. doi:http://dx.doi.org/10.1016/0092-8674(91)90397-H
Vickers, M. H., Gluckman, P. D., Coveny, A. H., Hofman, P. L., Cutfield, W. S., Gertler, A., ... Harris, M. (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology, 146, 42114216. doi:doi:10.1210/en.2005-0581
Von Stumm, S., & Ackerman, P. L. (2013). Investment and intellect: A review and meta-analysis. Psychological Bulletin, 139, 841869.
Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23, 52935300.
Waterland, R. A., & Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20, 6368.
Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genetics, 9, 233257.
Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J. U., Weng, Y.-L., ... Song, H. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 18, 836843. doi:10.1038/nn.4008
Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Röh, S., Ressler, K. J., ... Mehta, D. (2015). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16(1), 266. doi:10.1186/s13059-015-0828-5
Zannas, A. S., & West, A. E. (2014). Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience, 264(0), 157170. doi:http://dx.doi.org/10.1016/j.neuroscience.2013.12.003