Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:17:22.192Z Has data issue: false hasContentIssue false

5 - Electrophysiological Measures in Research on Social and Emotional Development

from SECTION ONE - CENTRAL SYSTEM: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Peter J. Marshall
Affiliation:
Assistant Professor of Psychology Temple University
Nathan A. Fox
Affiliation:
Professor of Human Development and Psychology Institute for Child Study, University of Maryland, College Park
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

The study of social and emotional development presents multiple complexities to the researcher. For instance, infants and young children cannot provide verbal report of their feeling states or moods, and researchers often rely on questionnaire measures given to parents or caregivers regarding the social or emotional behavior of the child. In addition, stimuli that elicit emotions in infants and young children are often age specific and the potency of these stimuli depends upon the context in which they are presented. The ability to present still pictures or video stimuli designed to elicit emotion (as is often done in adult studies) is compromised by the infant or young child's ability to attend to the stimulus, and more particularly by their ability to interpret or understand the nature of the stimuli. Finally, infants and young children display a good deal of motor behavior in response to events that elicit emotion. Such motor activity is particularly problematic for the recording of physiological responses, which are often subject to motor artifact. These issues are certainly not specific to the study of social and emotional development, and are also faced by researchers interested in cognitive as well as social and emotional development. Lack of verbal report, interpretation of stimulus characteristics, importance of context, variations in state and motor reactivity are all general problems faced in the study of infants and young children.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 127 - 149
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Haim, Y., Marshall, P. J., Fox, N. A., Schorr, E. A., & Gordon-Salant, S. (2003). Mismatch negativity in socially withdrawn children. Biological Psychiatry, 54, 17–24.CrossRefGoogle ScholarPubMed
Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114, 171–183.CrossRefGoogle ScholarPubMed
Baving, L., Laucht, M., & Schmidt, M. H. (2002). Frontal brain activation in anxious school children. Journal of Child Psychology and Psychiatry, 43, 265–274.CrossRefGoogle ScholarPubMed
Bell, M. A. (1998). The ontogeny of the EEG during infancy and childhood: Implications for cognitive development. In Barreau, B. (Ed.), Neuroimaging in child developmental disorders (pp. 97–111). Berlin: Springer.Google Scholar
Bell, M. A. (2002). Power changes in infant EEG frequency bands during a spatial working memory task. Psychophysiology, 39, 450–458.CrossRefGoogle ScholarPubMed
Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90, 229–241.CrossRefGoogle ScholarPubMed
Buss, K. A., Schumacher, J. R., Dolski, I., Kalin, N. H., Goldsmith, H. H., & Davidson, R. J. (2003). Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants. Behavioral Neuroscience, 117, 11–20.CrossRefGoogle ScholarPubMed
Calkins, S. D., Fox, N. A., & Marshall, T. R. (1996). Behavioral and physiological antecedents of inhibited and uninhibited behavior. Child Development, 67, 523–540.CrossRefGoogle ScholarPubMed
Chabot, R. J., Michele, di F., Prichep, L., & John, E. R. (2001). The clinical role of computerized EEG in the evaluation and treatment of learning and attention disorders in children and adolescents. Journal of Neuropsychiatry and Clinical Neuroscience, 13, 171–186.CrossRefGoogle ScholarPubMed
Cheour, M., Alho, K., Ceponiene, R., Reinikainen, K., Sainio, K., Pohjavuori, M., Aaltonen, O., & Naatanen, R. (1998). Maturation of mismatch negativity in infants. International Journal of Psychophysiology, 29, 217–226.CrossRefGoogle ScholarPubMed
Csibra, G., Davis, G., Spratling, M. W., & Johnson, M. H. (2000). Gamma oscillations and object processing in the infant brain. Science, 290, 1582–1585.CrossRefGoogle ScholarPubMed
Cutmore, T. R., & James, D. A. (1999). Identifying and reducing noise in psychophysiological recordings. International Journal of Psychophysiology, 32, 129–150.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1994). Temperament, affective style, and frontal lobe asymmetry. In Dawson, G. & Fischer, K. W. (Eds.), Human behavior and the developing brain (pp. 518–536). New York: Guilford.Google Scholar
Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35, 607–614.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218, 1235–1237.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Fox, N. A. (1989). Frontal brain asymmetry predicts infants' response to maternal separation. Journal of Abnormal Psychology, 98, 127–131.CrossRefGoogle ScholarPubMed
Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In Cacioppo, J. T. & Tassinary, L. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 27–52). New York: Cambridge University Press.Google Scholar
Davis, M. (1997). Neurobiology of fear responses: The role of the amygdala. Journal of Neuropsychiatry and Clinical Neuroscience, 9, 382–402.Google ScholarPubMed
Dawson, G. (1994). Frontal electroencephalographic correlates of individual differences in emotion expression in infants: A brain systems perspective on emotion. Monographs of the Society for Research in Child Development, 59, 135–151.CrossRefGoogle ScholarPubMed
Dawson, G., Frey, K., Self, J., Panagiotides, H., Hessl, D., Yamada, E., & Rinaldi, J. (1999). Frontal brain electrical activity in infants of depressed and nondepressed mothers: Relation to variations in infant behavior. Developmental and Psychopathology, 11, 589–605.CrossRefGoogle ScholarPubMed
Haan, M., & Thomas, K. M. (2002). Applications of ERP and fMRI techniques to developmental science. Developmental Science, 5, 335–343.CrossRefGoogle Scholar
Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain. Neuroreport, 9, 1885–1888.CrossRefGoogle ScholarPubMed
Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum.CrossRefGoogle Scholar
Fabiani, M., Gratton, G., & Coles, M. G. H. (2000). Event-related brain potentials. In Cacioppo, J. T. & Tassinary, L. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 53–84). New York: Cambridge University Press.Google Scholar
Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.CrossRefGoogle ScholarPubMed
Fox, N. A. (1991). If it's not left, it's right: Electroencephalograph asymmetry and the development of emotion. American Psychologist, 46, 863–872.CrossRefGoogle Scholar
Fox, N. A. (1994). Dynamic cerebral processes underlying emotion regulation. Monographs of the Society for Research in Child Development, 59, 152–166.CrossRefGoogle ScholarPubMed
Fox, N. A., Calkins, S. D., & Bell, M. A. (1994). Neural plasticity and development in the first two years of life: Evidence from cognitive and socioemotional domains of research. Development and Psychopathology, 6, 677–696.CrossRefGoogle Scholar
Fox, N. A., & Davidson, R. J. (1984). Hemispheric substates of affect: A developmental approach. In Fox, N. A. & Davidson, R. J. (Eds.), The psychobiology of affective development (pp. 353–381). Hillsdale, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
Fox, N. A., & Davidson, R. J. (1987). Electroencephalogram asymmetry in response to the approach of a stranger and maternal separation in 10-month-old infants. Developmental Psychology, 23, 233–240.CrossRefGoogle Scholar
Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: Psychophysiological and behavioral influences across the first four years of life. Child Development, 72, 1–21.CrossRefGoogle ScholarPubMed
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., Long, J. M., & Stewart, S. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66, 1770–1784.CrossRefGoogle ScholarPubMed
Fox, N. A., Schmidt, L. A., & Henderson, H. A. (2000). Developmental psychophysiology: Conceptual and methodological perspectives. In Cacioppo, J. T. & Tassinary, L. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 665–686). New York: Cambridge University PressGoogle Scholar
Galkina, N. S., & Boravova, A. I. (1996). Formation of electroencephalographic mu- and alpha-rhythms in children during the second to third years of life. Human Physiology, 540–545.Google ScholarPubMed
Gastaut, H., Dongier, M., & Courtois, G. (1954). On the significance of “wicket rhythms” in psychosomatic medicine. Electroencephalography and Clinical Neurophysiology, 6, 687.Google Scholar
Gomot, M., Giard, M. H., Roux, S., Barthelemy, C., & Bruneau, N. (2000). Maturation of frontal and temporal components of mismatch negativity (MMN) in children. Neuroreport, 11, 3109–3112.CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.CrossRefGoogle ScholarPubMed
Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., Haan, M., & Johnson, M. H. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport, 12, 2697–2700.CrossRefGoogle ScholarPubMed
Hagemann, D., & Naumann, E. (2001). The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clinical Neurophysiology, 112, 215–231.CrossRefGoogle ScholarPubMed
Hagemann, D., Naumann, E., & Thayer, J. F. (2001). The quest for the EEG reference revisited: A glance from brain asymmetry research. Psychophysiology, 38, 847–857.CrossRefGoogle ScholarPubMed
Hagemann, D., Naumann, E., Thayer, J. F., & Bartussek, D. (2002). Does resting electroencephalograph asymmetry reflect a trait? An application of latent state-trait theory. Journal of Personality and Social Psychology, 82, 619–641.CrossRefGoogle ScholarPubMed
Harmony, T., Alvarez, A., Pascual, R., Ramos, A., Marosi, E., Leon, Diaz A. E., Valdes, P., & Becker, J. (1988). EEG maturation on children with different economic and psychosocial characteristics. International Journal of Neuroscience, 41, 103–113.CrossRefGoogle ScholarPubMed
Henderson, H. A. (2003). Temperamental contributions to problem solving: Affective and cognitive processes. Paper presented at the Biennial Meeting of the Society for Research in Child Development, Tampa, FL.Google Scholar
Henderson, H. A., Marshall, P. J., Fox, N. A., & Rubin, K. H. (2004). Psychophysiological and behavioral evidence for varying forms and functions of nonsocial behavior in preschoolers. Child Development, 75, 251–263.CrossRefGoogle ScholarPubMed
Henry, J. R. (1944). Electroencephalograms of normal children. Monographs of the Society for Research in Child Development, 9.CrossRefGoogle Scholar
John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210, 1255–1258.CrossRefGoogle ScholarPubMed
Johnson, M. H., Haan, M., Oliver, A., Smith, W., Hatzakis, H., Tucker, L. A., et al. (2001). Recording and analyzing high–density event-related potentials with infants. Using the Geodesic sensor net. Developmental Neuropsychology, 19, 295–323.CrossRefGoogle ScholarPubMed
Junghofer, M., Elbert, T., Tucker, D. M., & Rockstroh, B. (2000). Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology, 37, 523–532.CrossRefGoogle ScholarPubMed
Kapp, B. S. S., William, F. & Whalen, P. J. (1994). Effects of electrical stimulation of the amygdaloid central nucleus on neocortical arousal in the rabbit. Behavioral Neuroscience, 108, 81–93.CrossRefGoogle ScholarPubMed
Kopp, C. B., & Neufeld, S. J. (2003). Emotional development during infancy. In Davidson, R. J., Scherer, K. R. & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 347–374). New York: Oxford University Press.Google Scholar
Kuhlman, W. N. (1978). Functional topography of the human mu rhythm. Electroencephalography and Clinical Neurophysiology, 44, 83–93.CrossRefGoogle ScholarPubMed
Lawson, J. S., Galin, H., Adams, S. J., Brunet, D. G., Criollo, M., & MacCrimmon, D. J. (2003). Artifacting reliability in QEEG topographic maps. Clinical Neurophysiology, 114, 883–888.CrossRefGoogle Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefGoogle Scholar
Lindsley, D. B. (1938). Electrical potentials of the brain in children and adults. Journal of Genetic Psychology, 19, 285–306.CrossRefGoogle Scholar
Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129, 43–60.CrossRefGoogle ScholarPubMed
Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94, 10979–10984.CrossRefGoogle ScholarPubMed
Marshall, D. H., & Fox, N. A. (2001). Electroencephalographic assessment and human brain maturation: A window into emotional and cognitive development in infancy. In Singer, L. T. & Zeskind, P. S. (Eds.), Biobehavioral assessment of the infant (pp. 341–360). New York: Guilford Press.Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113, 1199–1208.CrossRefGoogle ScholarPubMed
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2004). The development of P50 gating in the auditory event-related potential. International Journal of Psychophysiology, 51, 135–141.CrossRefGoogle Scholar
Marshall, P. J., Fox, N. A., & The BEIP Core Group. (2004). A comparison of the electroencephalogram (EEG) between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16, 1327–1338. See also erratum in Journal of Cognitive Neuroscience, 19, 173–174.CrossRefGoogle ScholarPubMed
Marshall, P. J., & Stevenson-Hinde, J. (2001). Behavioral inhibition: Physiological correlates. In Crozier, W. R. & Alden, L. E., (Eds.), International Handbook of Social Anxiety (pp. 53–76). Chicester: John Wiley.Google Scholar
Matousek, M., & Petersen, I. (1973). Automatic evaluation of EEG background activity by means of age-dependent EEG quotients. Electroencephalography and Clinical Neurophysiology, 35, 603–612.CrossRefGoogle ScholarPubMed
Matsuura, M., Okubo, Y., Toru, M., Kojima, T., He, Y., Hou, Y., Shen, Y., & Lee, C. K. (1993). A cross-national EEG study of children with emotional and behavioral problems: A WHO collaborative study in the Western Pacific Region. Biological Psychiatry, 34, 59–65.CrossRefGoogle ScholarPubMed
Maurer, U., Bucher, K., Brem, S., & Brandeis, D. (2003). Development of the automatic mismatch response: From frontal positivity in kindergarten children to the mismatch negativity. Clinical Neurophysiology, 114, 808–817.CrossRefGoogle ScholarPubMed
McManis, M. H., Kagan, J., Snidman, N. C., & Woodward, S. A. (2002). EEG asymmetry, power, and temperament in children. Developmental Psychobiology, 41, 169–177.CrossRefGoogle ScholarPubMed
Molfese, D. L., Molfese, V. J., & Kelly, S. (2001). The use of brain electrophysiology techniques to study language: A basic guide for the beginning consumer of electrophysiology information. Learning Disability Quarterly, 24, 177–188.CrossRefGoogle Scholar
Moretti, D. V., Babiloni, F., Carducci, F., Cincotti, F., Remondini, E., Rossini, P. M., Salinari, S., & Babiloni, C. (2003). Computerized processing of EEG-EOG-EMG artifacts for multi-centric studies in EEG oscillations and event-related potentials. International Journal of Psychophysiology, 47, 199–216.CrossRefGoogle ScholarPubMed
Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23, 118–136.CrossRefGoogle ScholarPubMed
Mundy, P., Card, J., & Fox, N. (2000). EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36, 325–338.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J. M., Hinrichs, H., et al. (1998). IFCN standards for digital recording of clinical EEG: International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology, 106, 259–261.CrossRefGoogle ScholarPubMed
Orekhova, E. V., Stroganova, T. A., & Posikera, I. N. (1999). Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. International Journal of Psychophysiology, 32, 151–172.CrossRefGoogle ScholarPubMed
Orekhova, E. V., Stroganova, T. A., & Posikera, I. N. (2001). Alpha activity as an index of cortical inhibition during sustained internally controlled attention in infants. Clinical Neurophysiology, 112, 740–749.CrossRefGoogle ScholarPubMed
Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Malykh, S. B. (2003). Heritability and “environmentability” of electroencephalogram in infants: The twin study. Psychophysiology, 40, 727–741.CrossRefGoogle ScholarPubMed
Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl C, 91–95.Google ScholarPubMed
Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000a). Mismatch negativity: Different water in the same river. Audiology and Neurootology, 5, 111–139.CrossRefGoogle Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000b). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.CrossRefGoogle Scholar
Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30, 547–558.CrossRefGoogle ScholarPubMed
Pizzagalli, D., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., Schaefer, S. M., Koger, J. V., Benca, R. M., & Davidson, R. J. (2001). Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. American Journal of Psychiatry, 158, 405–415.CrossRefGoogle ScholarPubMed
Pollak, S. D., Klorman, R., Thatcher, J. E., & Cicchetti, D. (2001). P3b reflects maltreated children's reactions to facial displays of emotion. Psychophysiology, 38, 267–274.CrossRefGoogle ScholarPubMed
Satterfield, J. H., Cantwell, D. P., & Satterfield, B. T. (1974). Pathophysiology of the hyperactive child syndrome. Archives of General Psychiatry, 31, 839–844.CrossRefGoogle ScholarPubMed
Scherg, M., & Berg, P. (1996). New concepts of brain source imaging and localization. Electroencephalography and Clinical Neurophysiology, 46, 127–137.Google ScholarPubMed
Scherg, M., & Picton, T. W. (1991). Separation and identification of event-related potential components by brain electric source analysis. Electroencephalography and Clinical Neurophysiology, 42, 24–37.Google ScholarPubMed
Schmidt, L. A., & Fox, N. A. (1998). Electrophysiological studies I: Quantitative electroencephalography. In Coffey, C. E. & Brumback, R. A. (Eds.), Textbook of pediatric neuropsychiatry: Section II. Neuropsychiatric assessment of the child and adolescent (pp. 315–329). Washington, DC: American Psychiatric Press.Google Scholar
Shafer, V. L., Morr, M. L., Kreuzer, J. A., & Kurtzberg, D. (2000). Maturation of mismatch negativity in school-age children. Ear and Hearing, 21, 242–251.CrossRefGoogle ScholarPubMed
Smith, J. R. (1938). The electroencephalogram during normal infancy and childhood: The nature and growth of the alpha waves. Electroencephalography and Clinical Neurophysiology, 53, 455–469.Google Scholar
Somsen, R. J., & Beek, B. (1998). Ocular artifacts in children's EEG: Selection is better than correction. Biological Psychology, 48, 281–300.CrossRefGoogle ScholarPubMed
Stern, R. M., Ray, W. J., & Quigley, K. S. (2003). Psychophysiological recording. New York: Oxford University Press.Google Scholar
Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110, 997–1012.CrossRefGoogle ScholarPubMed
Tenke, C. E., & Kayser, J. (2001). A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings. Clinical Neurophysiology, 112, 545–550.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×