Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T05:07:52.682Z Has data issue: false hasContentIssue false

2 - Billiard experiments

Published online by Cambridge University Press:  19 October 2009

Hans-Jürgen Stöckmann
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

Until about 1990 only a very small number of experiments on the quantum mechanics of chaotic systems existed, apart from the early studies of nuclear spectra [Por65]. In this context the experiments on hydrogen atoms in strong microwave fields by Bayfield and Koch [Bay74], and in strong magnetic fields by Welge and his group [Hol86, Mai86] have to be mentioned in particular. The studies of irregularly shaped microwave cavities by Stöckmann and Stein [Stö90] have introduced a new type of quantum chaos research. The microwave billiards and a number of variants to be discussed in this chapter are analogue systems, as they use the equivalence of the Helmholtz equation and the time independent Schrödinger equation. Whether there is a complete correspondence with quantum mechanics or not depends on the respective boundary conditions. As most of the phenomena discussed in the following are common to all types of waves, this does not reduce the conclusiveness of the analogue experiments.

Starting with a historical review, the state of the art in billiard experiments is presented with emphasis on a general survey and the technical background. The results and their quantum mechanical implications will be presented later. The hydrogen experiments, too, will be described in the proper context. The discussion of mesoscopic systems is restricted to billiard-like structures such as antidot lattices [Wei91], quantum dots [Mar92], and tunnelling devices [Fro94].

Type
Chapter
Information
Quantum Chaos
An Introduction
, pp. 14 - 58
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×