Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T01:08:48.060Z Has data issue: false hasContentIssue false

6 - Scattering systems

Published online by Cambridge University Press:  19 October 2009

Hans-Jürgen Stöckmann
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

It is impossible to study a system without disturbing it by the measuring process. To determine the spectrum of a microwave billiard, for example, we have to drill a hole into its wall, introduce a wire, and radiate a microwave field. We learnt in Section 3.2.2 that the spectrum obtained for a rectangular microwave cavity is no longer integrable, but has become pseudointegrable by the presence of the antenna. The measurement thus unavoidably yields an unwanted combination of the system's own properties and those of the measuring apparatus. The mathematical tool to treat the coupling between the system and the environment is provided by scattering theory, which was originally developed in nuclear physics [Mah69, Lew91]. This theory has been successfully applied to mesoscopic systems and microwave billiards as well.

In this chapter scattering theory will be introduced with special emphasis on billiard systems. We shall also discuss the amplitude distributions of wave functions in chaotic systems, since they enter into the calculation of the distribution of scattering matrix elements. The perturbing bead method, used to get information on field distributions in microwave resonators, can also be described by scattering theory. In the last section we shall touch on the discussion of mesoscopic systems, which can be linked to scattering theory via the Landauer formula [Lan57] expressing conduction through mesoscopic devices in terms of transmission probabilities.

Type
Chapter
Information
Quantum Chaos
An Introduction
, pp. 210 - 245
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×