Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T21:53:40.934Z Has data issue: false hasContentIssue false

2 - Electromagnetic methods

Published online by Cambridge University Press:  22 August 2009

C. Hauck
Affiliation:
Université de Fribourg, Switzerland
C. Kneisel
Affiliation:
University of Würzburg, Germany
Get access

Summary

Introduction

Electromagnetic (EM) methods have been widely used in studies of lowland arctic permafrost (e.g. Hoekstra and McNeill 1973, Sartorelli and French 1982, Rozenberg et al. 1985, Harada et al. 2000) and studies of sea ice thickness determination (Haas 2004), including airborne applications (Fraser 1978, Pfaffling et al. 2004). Applications of EM methods in mountainous regions are less frequent (Schmöller and Frühwirth 1996, Hauck et al. 2001, Beylich et al. 2003, Bucki et al. 2004, Maurer and Hauck 2007), but have been increasing in recent years. Electromagnetic techniques include frequency-domain EM systems (FEM), time-domain electromagnetic systems (TDEM), systems using very low frequencies (VLF) and the so-called radiomagnetotelluric method (RMT).

Similar to the electrical methods (see Chapter 1) the physical parameter allowing a differentiation between ice and water or frozen and unfrozen substratum is the electrical resistivity (in ohm metres, Ω m) or more commonly its reciprocal, the electrical conductivity (in siemens/metre or usually millisiemens/metre, mS/m). A marked increase in resistivity (or decrease in conductivity) with decreasing temperature near the freezing point has been shown in many previous field studies (e.g. Hoekstra et al. 1975, Seguin 1978, Rozenberg et al. 1985) and laboratory studies (e.g. Olhoeft 1978, Pandit and King 1978, King et al. 1988, see also Chapter 7). For the major part of the commonly used frequency range, this characteristic physical property is independent of the measurement electromagnetic frequency; however, the absolute conductivity values are frequency dependent and differ strongly for different materials and unfrozen pore water contents (Hoekstra and McNeill 1973, Olhoeft 1978).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becken, M. and Pedersen, L. B. (2003). Transformation of VLF anomaly maps into apparent resistivity and phases. Geophysics, 68, 497–505.CrossRef
Berdichevsky, M. N., Dmitriev, V. I., and Pozdnjakova, E. E. (1998). On two-dimensional interpretation of magnetotelluric soundings. Geophysical Journal International, 133, 585–606.CrossRef
Beylich, A., Kolstrup, E., Linde, N., Pedersen, L., Thyrsted, T., Gintz, D. and Dynesius, L. (2003). Assessment of chemical denudation rates using hydrological measurements, water chemistry analysis and electromagnetic geophysical data. Permafrost and Periglacial Processes, 14, 387–397.CrossRef
Bucki, A. K., Echelmeyer, K. A. and MacInnes, S. (2004). The thickness and internal structure of Fireweed rock glacier, Alaska, U.S.A., as determined by geophysical methods. Journal of Glaciology, 50(168), 67–75.CrossRefGoogle Scholar
Cannone, N., Guglielmin, M., Hauck, C. and VonderMühll, D. Mühll, D. (2003). The impact of recent glacier fluctuation and human activities on the permafrost distribution: a case study from Stelvio Pass (Italian Central-Eastern Alps). Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 125–130.
Cockx, L., Ghysels, G., Meirvenne, M. and Heyse, I. (2006). Prospecting frost-wedge pseudomorphs and their polygonal network using the electromagnetic induction sensor EM38DD. Permafrost and Periglacial Processes, 17, 163–168.CrossRefGoogle Scholar
Fraser, D. C. (1969). Contouring of VLF-EM data. Geophysics, 34, 958–967.CrossRefGoogle Scholar
Fraser, D. C. (1978). Resistivity mapping with an airborne multicoil electromagnetic system. Geophysics, 43(1), 144–172.CrossRefGoogle Scholar
Frischknecht, F. C., Labson, V. F., Spies, B. R. and Anderson, W. L. (1991). Profiling methods using small sources. In Electromagnetic Methods in Applied Geophysics, ed. Nabighian, M. N., Vol. 2, Society of Exploration Geophysics, Tulsa, pp. 5–45.CrossRef
Geonics (undated). Application of Dipole–Dipole Electromagnetic Systems for Geological Depth Sounding. Technical Note TN-31, Geonics Ltd.
Greinwald, S., Illich, B., and Schaumann, G. (1997). Transientelektromagnetik. In Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Band 3 – Geophysik, eds. Knödel, K., Krummel, H. and Lange, G., Springer.
Grimm, R. E. (2002). Low-frequency electromagnetic exploration for groundwater on Mars. Journal of Geophysical Research, 107, 2001JE001504.CrossRefGoogle Scholar
Haas, C. (2004). Late-summer sea ice thickness variability in the arctic transpolar drift 1991–2001 derived from ground-based electromagnetic sounding. Geophysical Research Letters, 31, L09402.CrossRefGoogle Scholar
Harada, K., Wada, K. and Fukuda, M. (2000). Permafrost mapping by transient electromagnetic method. Permafrost and Periglacial Processes, 11, 71–84.3.0.CO;2-#>CrossRefGoogle Scholar
Harada, K., Wada, K., Sueyoshi, T., Fukuda, M. (2006). Resistivity structures in alas areas in Central Yakutia, Siberia, and the interpretation of permafrost history. Permafrost and Periglacial Processes, 17(2), 105–118.CrossRefGoogle Scholar
Hauck, C. and Kneisel, C. (2006). Application of capacitively-coupled and DC electrical resistivity imaging for mountain permafrost studies. Permafrost and Periglacial Processes, 17(2), 169–177.CrossRefGoogle Scholar
Hauck, C. and Vonder Mühll, D. (1999). Detecting alpine permafrost using electromagnetic methods. In Advances in Cold Regions Thermal Engineering and Sciences, eds. Hutter, K., Wang, Y. and Beer, H., Springer, pp. 475–482.Google Scholar
Hauck, C. and Vonder Mühll, D. (2003). Evaluation of geophysical techniques for application in mountain permafrost studies. Zeitschrift für Geomorphologie, Supplement, 132, 161–190.Google Scholar
Hauck, C., Guglielmin, M., Isaksen, K. and Vonder Mühll, D. (2001). Applicability of frequency- and time-domain electromagnetic methods for mountain permafrost studies. Permafrost and Periglacial Processes, 12(1), 39–52.CrossRefGoogle Scholar
Hauck, C., Vonder Mühll, D. and Maurer, H. (2003). Using DC resistivity tomography to detect and characterise mountain permafrost. Geophysical Prospecting, 51, 273–284.CrossRefGoogle Scholar
Hauck, C., Isaksen, K., Vonder Mühll, D. and Sollid, J. L. (2004). Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafrost and Periglacial Processes, 15(3), 191–205.CrossRefGoogle Scholar
Hoekstra, P. and McNeill, D. (1973). Electromagnetic probing of permafrost. Proceedings of the 2nd International Conference on Permafrost, Yakutsk, Siberia, 517–526.Google Scholar
Hoekstra, P., Sellmann, P. V., Delaney, A. (1975). Ground and airborne resistivity surveys of permafrost near Fairbanks, Alaska. Geophysics, 40, 641–656.CrossRefGoogle Scholar
Hördt, A. and Zacher, G. (2003). The radiomagnetotellurics method and its potential application in geomorphology. Zeitschrift für Geomorphologie, Supplement, 132, 123–143.Google Scholar
Hördt, A., Greinwald, S., Schaumann, S., Tezkan, B. and Hoheisel, A. (2000). Joint 3D interpretation of radiomagnetotelluric (RMT) and transient electromagnetic (TEM) data from an industrial waste deposit in Mellendorf, Germany. European Journal of Environmental and Engineering Geophysics, 4, 151–170.Google Scholar
Ingeman-Nielsen, T. (2005). Geophysical Techniques Applied to Permafrost Investigations in Greenland. Arctic Technology Centre, BYG·DTU, Technical University of Denmark, 177pp.Google Scholar
Isaksen, K., Hauck, C., Gudevang, E., Ødegård, R. S. and Sollid, J. L. (2002). Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Norwegian Journal of Geography, 56, 122–136.Google Scholar
Kaikkonen, P. and Sharma, S. P. (2001). A comparison of performances of linearized and global nonlinear 2-D inversions of VLF and VLF-R electromagnetic data. Geophysics, 66, 462–475.CrossRefGoogle Scholar
Karous, M. and Hjelt, S. E. (1983). Linear filtering of very-low-frequency (VLF) dip angle measurements. Geophysical Prospecting, 31, 782–794.CrossRefGoogle Scholar
King, M. S., Zimmerman, R. W. and Corwin, R. F. (1988). Seismic and electrical properties of unconsolidated permafrost. Geophysical Prospecting, 36, 349–364.CrossRefGoogle Scholar
Kneisel, C. and Hauck, C. (2003). Multi-method geophysical investigation of a sporadic permafrost occurrence. Zeitschrift für Geomorphologie, Supplement, 132, 145–159.Google Scholar
McNeill, J. D. (1980). Electromagnetic Terrain Conductivity Measurements at Low Induction Numbers. Technical Note TN-6, Geonics Ltd.Google Scholar
McNeill, J. D. (1990). Use of electromagnetic methods for groundwater studies. In Geotechnical and Environmental Geophysics, ed. Ward, S. H., Society of Exploration Geophysics, Tulsa, Vol. I, pp. 191–218.
McNeill, J. D. and Labson, V. F. (1991). Geological mapping using VLF radio fields. In Electromagnetic Methods in Applied Geophysics, Vol. 2: Application, Part B, ed. Nabighian, M., Society of Exploration Geophysics, Tulsa, pp. 521–640.CrossRef
Maurer, H. and Hauck, C. (2007). Geophysical imaging of alpine rock glaciers. Journal of Glaciology, 53(180), 110–120.CrossRefGoogle Scholar
Militzer, H. and Weber, F. (1985). Angewandte Geophysik, vol. 32, Springer.Google Scholar
Nabighian, M. N. (ed.) (1991). Electromagnetic Methods in Applied Geophysics, Vol. 2, Society of Exploration Geophysics, Tulsa.CrossRefGoogle Scholar
Olhoeft, G. R. (1978). Electrical properties of permafrost. Proceedings of the 3rd International Conference on Permafrost, Edmonton, Canada, 127–131.Google Scholar
Onsager, L. and Runnels, L. K. (1969). Diffusion and relaxation phenomena in ice. The Journal of Chemical Physics, 50(3), 1089–1103.CrossRefGoogle Scholar
Pandit, B. I. and King, M. S. (1978). Influence of pore fluid salinity on seismic and electrical properties of rocks at permafrost temperatures. Proceedings of the 3rd International Conference on Permafrost, Edmonton, Canada, 553–566.Google Scholar
Paterson, N. R. and Rönkä, R. K. (1971). Five years of surveying with the Very Low Frequency Electromagnetics method. Geoexploration, 9, 7–26.CrossRefGoogle Scholar
Pedersen, L. B. and Becken, M. (2005). Equivalent images derived from very-low-frequency (VLF) profile data. Geophysics, 70(3), 43–50.CrossRefGoogle Scholar
Pedersen, L. B., Bastani, M. and Dynesius, L. (2005). Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques. Geophysics, 70, 8–15.CrossRefGoogle Scholar
Pellerin, L. and Alumbaugh, D. (1997). Tools for electromagnetic investigation of the shallow subsurface. The Leading Edge, 16, 1631–1638.CrossRefGoogle Scholar
Persson, L. and Pedersen, L. B. (2002). The importance of displacement currents in RMT measurements in high resistivity environments. Journal of Applied Geophysics, 51(1), 11–20.CrossRefGoogle Scholar
Pfaffling, A., Haas, C. and Reid, J. E. (2004). Empirical inversion of HEM data for sea ice thickness mapping. In 10th European Meeting of Environmental and Engineering Geophysics (EAGE's Near Surface 2004), Extended Abstracts, Utrecht, A037.
Rozenberg, G., Henderson, J. D. and Sartorelli, A. N. (1985). Some aspects of transient electromagnetic soundings for permafrost delineation. In CRREL Special Report, 85–5, 74–90.
Sartorelli, A. N. and French, R. B. (1982). Electromagnetic induction methods for mapping permafrost along northern pipeline corridors. Proceedings of the 4th Canadian Permafrost Conference, Canada, 283–298.Google Scholar
Schmöller, R. and Frühwirth, R. (1996). Komplexgeophysikalische Untersuchungen auf dem Dösener Blockgletscher (Hohe Tauern, Österreich). Beiträge zur Permafrostforschung in Österreich. Arbeiten aus dem Institut für Geographie der Karl-Franzens-Universität Graz, 33, 165–190.Google Scholar
Scott, W., Sellmann, P. and Hunter, J. (1990). Geophysics in the study of permafrost. In Geotechnical and Environmental Geophysics, ed. Ward, S., Society of Exploration Geophysics, Tulsa, pp. 355–384.Google Scholar
Seguin, M. K. (1978). Temperature-electrical resistivity relationship in continuous permafrost at Purtuniq, Ungava Peninsula. Proceedings of the 3rd International Conference on Permafrost, Edmonton, Canada, 137–144.Google Scholar
Spies, B. R. and Frischknecht, F. C. (1991). Electromagnetic sounding. In Electromagnetic Methods in Applied Geophysics, ed. Nabighian, M. N., Vol. 2, Society of Exploration Geophysics, Tulsa, pp. 5–45.Google Scholar
Tezkan, B. (1999). A review of environmental applications of quasi-stationary electromagnetic techniques. Surveys in Geophysics, 20, 279–308.CrossRefGoogle Scholar
Todd, B. J. and Dallimore, S. R. (1998). Electromagnetic and geological transect across permafrost terrain, Mackenzie River delta, Canada. Geophysics 63(6), 1914–1924.CrossRefGoogle Scholar
Yoshikawa, K., Leuschen, C., Ikeda, A., Harada, K., Gogineni, P., Hoekstra, P., Hinzman, L., Sawada, Y. and Matsuoka, N. (2006). Comparison of geophysical investigations for detection of massive ground ice (pingo ice). Journal of Geophysical Research, 111, E6, CiteID E06S19.CrossRefGoogle Scholar
Zacher, G., Tezkan, G., Neubauer, F. M., Hördt, A. and Müller, I. (1996). Radiomagnetotellurics: a powerful tool for waste-site exploration. European Journal of Environmental and Engineering Geophysics, 1, 139–159.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×