Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T13:56:59.258Z Has data issue: false hasContentIssue false

3 - Refraction seismics

Published online by Cambridge University Press:  22 August 2009

C. Hauck
Affiliation:
Université de Fribourg, Switzerland
C. Kneisel
Affiliation:
University of Würzburg, Germany
Get access

Summary

Introduction

The use of shallow seismic refraction in periglacial studies in the Alps dates back to the early 1970s (Barsch 1973). At that time one-channel seismographs with a limited number of source–receiver combinations were generally used and interpretations were limited to simple subsurface models assuming layers of a more or less homogeneous and horizontal structure. The physical properties of frozen ground or ice and their contrast with the unfrozen sediment (up to an order of magnitude) stimulated many researchers to apply seismic refraction. In the 1980s, permafrost investigations – especially the determination of active layer thicknesses – were based on simple one-channel seismic refraction using a sledgehammer as an impact source (e.g. Haeberli 1985, Barsch and King 1989, Van Tantenhoven and Dikau 1990, King et al. 1992). These geophysical surveys provided useful information regarding permafrost occurrence, and in particular about the active layer thickness. With respect to seismic refraction, the interpretation was still usually restricted to the intercept method (see below). In many cases, complex or more heterogeneous subsurface structures were not adequately modelled, because of less powerful computer facilities and time-consuming calculations.

In the 1990s, the use of multi-channel seismographs and new interpretation software led to the application of sophisticated interpretation tools including the Hagedoorn plus-minus method, the generalised reciprocal method (GRM), the wavefront inversion method (WFI), network-raytracing and refraction tomography (Palmer 1981, Vonder Mühll 1993, Knödel et al. 1997, Reynolds 1997). These methods allow the interpretation of structured refractors and layers with varying P-wave velocities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsch, D. (1973). Refraktionsseismische Bestimmungen der Obergrenze des gefrorenen Schuttkörpers in verschiedenen Schüttkörpern Graubündens. Zeitschrift für Gletscherkunde und Glazialgeologie, 9, 143–167.Google Scholar
Barsch, D. and King, L. (1989). Origin and geoelectrical resistivity of rock glaciers in semi-arid subtropical mountains (Andes of Mendoza, Argentina). Zeitschrift für Geomorphologie, 33, 151–163.Google Scholar
Benjumea, B., Macheret, Y. Y., Navarro, F. J. and Teixido, T. (2003). Estimation of water content in a temperate glacier from radar and seismic sounding data. Annals of Glaciology, 37, 317–324.CrossRefGoogle Scholar
Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T. and Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1, 29–40.CrossRefGoogle Scholar
Haeberli, W. (1985). Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 77, 143pp.
Hauck, C. (2001). Geophysical Methods for Detecting Permafrost in High Mountains. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 171, 204pp.
Hauck, C. and VonderMühll, D. Mühll, D. (2003). Evaluation of geophysical techniques for application in mountain permafrost studies. Zeitschrift für Geomorphologie, Supplement, 132, 161–190.Google Scholar
Hauck, C., Isaksen, K., VonderMühll, D. Mühll, D. and Sollid, J. L. (2004). Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafrost and Periglacial Processes, 15(3), 191–205.CrossRefGoogle Scholar
Hecht, S. (2000). Fallbeispiele zur Anwendung refraktionsseismischer Methoden bei der Erkundung des oberflächennahen Untergrundes. Zeitschrift für Geomorphologie, Supplement, 123, 111–123.Google Scholar
Hoffmann, T. and Schrott, L. (2002). Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D-seismic refraction (Reintal, Bavarian Alps). Zeitschrift für Geomorphologie, Supplement, 127, 175–196.Google Scholar
Hoffmann, T. and Schrott, L. (2003). Determining sediment thickness of talus slopes and valley fill deposits using seismic refraction – a comparison of 2D interpretation tools. Zeitschrift für Geomorphologie, Supplement, 132, 71–87.Google Scholar
Isaksen, K., Hauck, C., Gudevang, E., Oedegaard, R. S. and Sollid, J. L. (2002). Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS measurements and 2D tomography data. Norsk Geografisk Tidsskrift, 56, 122–136.CrossRefGoogle Scholar
Kearey, P., Brooks, M. and Hill, L. (2002). An Introduction to Geophysical Exploration. Blackwell.
King, L., Gorbunov, A. P. and Evin, M. (1992). Prospecting and mapping of mountain permafrost and associated phenomena. Permafrost and Periglacial Processes, 3(2), 73–81.CrossRefGoogle Scholar
King, M. S., Zimmerman, R. W. and Corwin, R. F. (1988). Seismic and electrical properties of unconsolidated permafrost. Geophysical Prospecting, 36, 349–364.CrossRefGoogle Scholar
Kneisel, C. and Hauck, C. (2003). Multi-method geophysical investigation of a sporadic permafrost occurrence. Zeitschrift für Geomorphologie, Supplement, 132, 145–159.Google Scholar
Knödel, K., Krummel, H. and Lange, G. (1997). Geophysik. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten. Springer.CrossRef
Lanz, E., Maurer, H. R., and Green, A. G. (1998). Refraction tomography over a buried waste disposal site. Geophysics, 63(4), 1414–1433.CrossRefGoogle Scholar
Maurer, H. and Hauck, C. (2007). Geophysical imaging of alpine rock glaciers. Journal of Glaciology, 53(180), 110–120.CrossRefGoogle Scholar
Milana, J.-P. and Maturano, A. (1999). Application of radio echo sounding at the arid Andes of Argentina: the Agua Negra Glacier. Gobal and Planetary Change, 22, 179–191.CrossRefGoogle Scholar
Musil, M., Maurer, H., Green, A. G., Horstmeyer, H., Nitsche, F., VonderMühll, D. Mühll, D. and Springman, S. (2002). Shallow seismic surveying of an Alpine rock glacier. Geophysics, 67(6), 1701–1710.CrossRefGoogle Scholar
Otto, J. C. and Sass, O. (2006). Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps). Geomorphology, 76, 257–272.CrossRefGoogle Scholar
Palmer, D. (1981). An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics, 46(11), 1508–1518.CrossRefGoogle Scholar
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons.
Sandmeier, K. (2002). Reflex-W, version 2.5.9. Sandmeier Scientific Software, Karlsruhe, Germany.
Schrott, L. and Sass, O. (2008). Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93, 55–73.CrossRefGoogle Scholar
Schrott, L., Pfeffer, G. and Möseler, B. M. (2000). Geophysikalische Untersuchungen an einer Blockhalde im Mittelgebirge (Hundsbachtal, Eifel). Acta Universitatis Purkynianae Ústi nad Labem, studia biologica 4, 19–31.Google Scholar
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T. and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an upper Alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 45–63.CrossRefGoogle Scholar
Scott, W., Sellmann, P. and Hunter, J. (1990). Geophysics in the study of permafrost. In Geotechnical and Environmental Geophysics, ed. Ward, S., Society of Exploration Geophysics, Tulsa, pp. 355–384.Google Scholar
Tavkhelidse, T., Schulte, A., Stumböck, M. and Schuhkraft, G. (2000). Aufbau und Entwicklung der Schuttkegel im Finkenbachtal, Südlicher Odenwald. Jenaer Geographische Schriften, 9, 95–110.Google Scholar
Timur, A. (1968). Velocity of compressional waves in porous media at permafrost temperatures. Geophysics, 33(4), 584–595.CrossRefGoogle Scholar
Tantenhoven, F. and Dikau, R. (1990). Past and present permafrost distribution in the Turtmanntal, Wallis, Swiss Alps. Arctic and Alpine Research, 22(3), 302–316.Google Scholar
Vonder Mühll, D. (1993). Geophysikalische Untersuchungen im Permafrost des Oberengadins. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 122, 222pp.
Vonder Mühll, D., Hauck, C., Gubler, H., McDonald, R. and Russill, N. (2001). New geophysical methods of investigating the nature and distribution of mountain permafrost. Permafrost and Periglacial Processes, 12(1), 27–38.CrossRefGoogle Scholar
Vonder Mühll, D., Hauck, C. and Gubler, H. (2002). Mapping of mountain permafrost using geophysical methods. Progress in Physical Geography, 26(4), 640–657.Google Scholar
Zimmerman, R. W. and King, M. S. (1986). The effect of freezing on seismic velocities in unconsolidated permafrost. Geophysics, 51, 1285–1290.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×