Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-13T04:05:50.111Z Has data issue: false hasContentIssue false

3 - Histology

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The brain weighs between 1100 and 2000 g. It contains an estimated 100 billion neurons. The average neuron has up to 10 000 synapses. Almost one-third of this immensely complex system is dedicated to the function of behavior.

Anatomy and behavioral considerations

Two types of cells make up the nervous system: neurons and neuroglial cells. Neurons are specialized to conduct bioelectrical messages, whereas the glial cells play a supportive role.

The neuron

The neuron is the structural and functional unit of the nervous system. It is made up of four distinctive regions: the soma (nerve cell body), the dendrites, the axon, and the synapse (Figures 3.1 and 3.4). The soma is the metabolic center of the cell and contains the cell nucleus. The nucleus is centrally located in the soma, and the cytoplasm immediately surrounding the nucleus is called the perikaryon. The cytoplasm of the axon is called the axoplasm.

Most neurons have several dendrites. Each neuron has a single axon (Figure 3.2). The axon arises from a specialized region of the cell body called the axon hillock (see Figure 3.1), which is specialized to facilitate the propagation of the all-or-none action potential.

Nissl substance (rough endoplasmic reticulum) and Golgi apparatus are restricted to the perikaryon and to the base of the dendrites. They synthesize proteins for use throughout the neuron. Three classes of proteins are produced. One of these classes produced in the perikaryon includes the neurotransmitters.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 17 - 34
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgarten, H. G., and Grozdanovic, A. 1998. Role of serotonin in obsessive-compulsive disorder. Br. J. Psychiatry 173 (Suppl. 35):13–20.Google Scholar
Bjorntorp, P. 1995. Neuroendocrine abnormalities in human obesity. Metabolism 44 (Suppl. 2):38–41.CrossRefGoogle ScholarPubMed
Blum, K., Cull, J. G., Braverman, E. R., and Comings, D. E. 1996. Reward deficiency syndrome. Am. Sci. 84:132–145.Google Scholar
Bremner, J. D., Vythilingam, M., Ng, C. K., Vermetten, E., Nazeer, A., Oren, D. A., Berman, R. M., and Charney, D. S. 2003. Regional brain metabolic correlates of alpha-methylparatyrosine-induced depressive symptoms; implications for the neural circuitry of depression. J. Am. Med. Assoc. 289(23):3125–3134.CrossRefGoogle Scholar
Brewerton, T. D. 1995. Toward a unified theory of serotonin disturbances in eating and related disorders. Psychoneuroimmunology 20:561–590.Google Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S. 1979. Cognitive defect caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932.CrossRefGoogle Scholar
Carlsson, A., Hansson, L. O., Waters, N., and Carlsson, M. L. 1999. A glutamatergic deficiency model of schizophrenia. Br. J. Psychiatry 174 (Suppl. 37):2–6.Google Scholar
Carlsson, M., and Carlsson, A. 1990. Interactions between glutaminergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson's disease. Trends Neurosci. 13:272–276.CrossRefGoogle Scholar
Cloninger, R. C. 1987. A systematic method for clinical description and classification of personality variants. Arch. Gen. Psychiatry 44:573–588.CrossRefGoogle ScholarPubMed
Cooper, J. R., Bloom, F. E., and Roth, R. H. 1991. The Biochemical Basis of Neuropharmacology, 6th edn. New York: Oxford University Press.Google Scholar
Coyle, J. T., and Puttfarcken, P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695.CrossRefGoogle ScholarPubMed
Daniel, D. G., Weinberger, D. R., Jones, D. W., Zigun, J. R., Coppola, R., Handle, S., Bigelow, L. R., Goldberg, T. E., Berman, K. F., and Kelinman, J. E. 1991. The effect of amphetamine on regional blood flow during cognitive activation in schizophrenia. J. Neurosci. 11:1907–1919.CrossRefGoogle Scholar
Davidson, R. J., Putnam, K. M., and Larson, C. L. 2000. Dysfunction in the neural circuitry of emotion regulation – a possible prelude to violence. Science 289:591–594.CrossRefGoogle ScholarPubMed
Delgado, P. L., and Moreno, F. A. 1998. Different roles for serotonin in anti-obsessional drug action and the pathophysiology of obsessive-compulsive disorder. Br. J. Psychiatry 173 (Suppl. 35):21–25.Google Scholar
Depue, R. A. 1996. A neurobiological framework for the structure of personality and emotion: implications for personality disorders. In: Clarkin, J. F. and Lenzenweger, M. F. (eds.) Major Theories of Personality Disorder. New York: Guilford Press.Google Scholar
Desai, P., Roy, M., Roy, A., Brown, S., and Smelson, D. 1997. Impaired color vision in cocaine-withdrawn patients. Arch. Gen. Psychiatry 54:696–699.CrossRefGoogle ScholarPubMed
Ericsson, M., Poston, W. S. C. II, and Foreyt, J. P. 1997. Common biological pathways in eating disorders and obesity. Addict. Behav. 21:733–743.CrossRefGoogle Scholar
Goff, D. C. 2000. Glutamate receptors in schizophrenia and antipsychotic drugs. In: Lidow, M. S. (ed.) Neurotransmitter Receptors in Actions of Antipsychotic Medications. Boca Raton, Fla.: CRC Press, pp. 121–136.CrossRefGoogle Scholar
Goldman-Rakic, P. S., and Selemon, L. D. 1997. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr. Bull. 23:437–458.CrossRefGoogle Scholar
Goldman-Rakic, P. S., Lidow, M. S., and Gallager, D. W. 1990. Overlap of dopaminergic, adrenergic, and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10:2125–2138.CrossRefGoogle ScholarPubMed
Gorman, J. M., Liebowitz, M. R., Fyer, A. J., and Stein, J. 1989. A neuroanatomical hypothesis for panic disorder. Am. J. Psychiatry 146:148–161.Google ScholarPubMed
Gurevich, E. V., and Joyce, J. N. 1997. Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol. Psychiatry 42:529–545.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., Egan, M. F. and Weinberger, D. R. 2002. Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–402.CrossRefGoogle ScholarPubMed
Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D., Zajicek, K., Suomi, S. J., Lesch, K. P., Weinberger, D. R., and Linnoila, M. 1998. In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am. J. Psychiatry 155:1023–1028.CrossRefGoogle ScholarPubMed
Holden, C. 2003. Future brightening for depression treatments. Science 302:810–813.CrossRefGoogle ScholarPubMed
Hubner, H. F. 1993. Endorphins, Eating Disorders, and Other Addictive Behaviors. New York: W. W. Norton.Google Scholar
Hull, E. M., Lorrain, D. S., Du, J., Matuszewich, L., Bitran, D., Nishita, J. K., and Scaletta, L. L. 1998. Organizational and activational effects of dopamine on male sexual behavior. In: Ellis, L. and Ebertz, L. (eds.) Males, Females, and Behavior. Westport, Conn.: Praeger, pp. 79–96.Google Scholar
Jarry, J. L., and Vaccarino, F. J. 1996. Eating disorder and obsessive-compulsive disorder: neurochemical and phenomenological commonalities. J. Psychiatry Neurosci. 21:36–48.Google ScholarPubMed
Kalivas, P. W., Pierce, R. C., Cornish, J., and Sorg., B. A. 1998. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 12:49–53.CrossRefGoogle ScholarPubMed
Knott, V. J., Bakishk, D., and Barkley, J. 1994. Brainstem evoked potentials in panic disorder. J. Psychiatry Neurosci. 19:301–306.Google ScholarPubMed
Landwehrmeyer, B., Mengod, G., and Palacios, J. M. 1993. Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res. Mol. Brain Res. 18:187–192.CrossRefGoogle ScholarPubMed
Lange, K. W., Robbins, T. W., Marsden, C. D., James, M., Owen, A. M., and Paul, G. M. 1992. L-DOPA withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107:395–404.CrossRefGoogle ScholarPubMed
Levant, B. 1996. Distribution of dopamine receptor subtypes in the CNS. In: Stone, T. W. (ed.) CNS Neurotransmitters and Neuromodulators: Dopamine. Boca Raton, Fla: CRC Press, pp. 77–87.Google Scholar
Levitt, P., Harvey, J. A., Friedman, E., Simansky, K., and Murphy, E. H. 1997. New evidence for neurotransmitter influences on brain development. Trends Neurosci. 20:269–274.CrossRefGoogle ScholarPubMed
Majewska, M. D. 1996. Cocaine addiction as a neurological disorder: implications for treatment. In: Majewska, M. D. (ed.) Neurotoxicity and Neuropathology Associated with Cocaine Abuse. NIDA Research Monograph 163. Rockville, Md.: National Institute on Drug Abuse.CrossRefGoogle Scholar
Manschreck, T. C., Laughery, J. A., Weisstein, C. C., Allen, D., Humblestone, B., Neville, M., Podlewski, H., and Mitra, N. 1988. Characteristics of freebase cocaine psychosis. Yale J. Biol. Med. 61:115–122.Google ScholarPubMed
Martial, J., Paris, J., Leyton, M., Zweig-Frank, H., Schwartz, G., Teboul, E., Thavundayil, J., Larue, S., Ng Ying King, N. M. K., and Vasavan Nair, N. P. 1997. Neuroendocrine study of serotonin function in female borderline personality disorder patients: a pilot study. Biol. Psychiatry 42:737–739.CrossRefGoogle ScholarPubMed
McGaugh, J. L., Cahill, L., and Roozendaal, B. 1996. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl. Acad. Sci. U.S.A. 93:13508–13514.CrossRefGoogle ScholarPubMed
Meader-Woodruff, J. H., Mansour, A., Grandy, D., Damask, S. P., Civelli, O., and Watson, S. J. Jr. 1992. Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci. Lett. 145:209–212.CrossRefGoogle Scholar
Meltzer, C. C., Smith, G., DeKosky, S. T., Pollock, B. G., Mathis, C. A., Moore, R. Y., Kupfer, D. J., and Reynolds, C. F. 3rd. 1998. Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging. Neuropsychopharmacology 18:407–430.CrossRefGoogle ScholarPubMed
Menza, M. A., Golve, L. I., Cody, R. A., and Forman, N. E. 1993. Dopamine-related personality traits in Parkinson's disease. Neurology 43:505–508.CrossRefGoogle ScholarPubMed
Nestler, E. J. 1997. An emerging pathophysiology. Nature 385:578–589.CrossRefGoogle Scholar
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., and Toru, M. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636.CrossRefGoogle ScholarPubMed
Olney, J. W., and Farber, N. B. 1995. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 52:998–1007.CrossRefGoogle Scholar
Partonen, T. 1996. Dopamine and circadian rhythms in seasonal affective disorder. Med. Hypotheses 47:191–192.CrossRefGoogle ScholarPubMed
Pliszka, S. R., McCracken, J. T., and Maas, J. W. 1996. Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J. Am. Acad. Child Adolesc. Psychiatry 35:264–272.CrossRefGoogle ScholarPubMed
Posner, M., and Petersen, S. E. 1990. The attention system of the brain. Annu. Rev. Neurosci. 13:25–42.CrossRefGoogle Scholar
Pouwels, P. J., Brockmann, K., Kruse, B., Wilken, B., Wick, M., Hanefeld, F., and Frahm, J. 1999. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr. Res. 46:474–485.CrossRefGoogle ScholarPubMed
Sawa, A., and Snyder, S. H. 2002. Schizophrenia: diverse approaches to a complex disease. Science 296:692–695.CrossRefGoogle ScholarPubMed
Schildkraut, J. J. 1965. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry 122:509–522.CrossRefGoogle ScholarPubMed
Schubert, F., Gallinat, J., Seifert, F., and Rinnebberg, H. 2004. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. Neuroimage 21:1762–1771.CrossRefGoogle ScholarPubMed
Seeman, P. H. 1992. Dopamine receptor sequences: therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7:261–284.Google ScholarPubMed
Segal, M., and Bloom, F. E. 1976. The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Res. 107:513–525.CrossRefGoogle ScholarPubMed
Snyder, S. H., Bannerjee, S., Yamamura, H., and Greenberg, D. 1974. Drugs, neurotransmitters and schizophrenia: phenothiazines, amphetamine and enzymes synthesizing psychotomimetic drugs and schizophrenia research. Science 243:398–400.Google Scholar
Struble, R. G., Lehmann, J., Mitchell, S. J., McKinney, M., Price, D. L., Coyle, J. T., and DeLong, M. R. 1986. Basal forebrain neurons provide major cholinergic innervation of primate neocortex. Neurosci. Lett. 66:215–220.CrossRefGoogle ScholarPubMed
Tamminga, C. A. 1998. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol. 12:21–36.CrossRefGoogle ScholarPubMed
Tamminga, C. A. 1999. Glutamatergic aspects of schizophrenia. Br. J. Psychiatry 174 (Suppl. 37):12–15.Google Scholar
Tandon, R. 1999. Cholinergic aspects of schizophrenia. Br. J. Psychiatry 174 (Suppl. 37):7–11.Google Scholar
Thierry, A. M., Mantz, J., and Glowinski, J. 1992. Influence of dopaminergic and noradrenergic afferents on their target cells in the rat medial prefrontal cortex. Adv. Neurol. 57:545–554.Google ScholarPubMed
Trestman, R. L., deVegvar, M., and Siever, L. J. 1995. Treatment of personality disorders. In: Schatzberg, A. F. and Nemeroff, C. B. (eds.) The American Psychiatric Press Textbook of Psychopharmacology. Washington, D.C.: American Psychiatric Press.Google Scholar
Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E., and Coyle, J. T. 1995. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch. Gen. Psychiatry 52:829–836.CrossRefGoogle ScholarPubMed
Tucker, D. M., and Williamson, P. A. 1989. Asymmetric neural control systems in human self regulation. Psychol. Rev. 91:185–215.CrossRefGoogle Scholar
Unis, A. S., Cook, E. H., Vincent, J. G., Gjerde, D. K., Perry, B. D., Mason, C., and Mitchell, J. 1997. Platelet serotonin measures in adolescents with conduct disorder. Biol. Psychiatry 42:553–559.CrossRefGoogle ScholarPubMed
White, B. D., Dean, R. G., Edwards, G. L., and Martin, R. J. 1994. Type II corticosteroid receptor stimulation increases NPY gene expression in basomedial hypothalamus of rats. Am. J. Physiol. 266:R1523–R1529.Google ScholarPubMed
Wolf, M. E. 1998. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54(6):679–720.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×