Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-14T12:03:43.121Z Has data issue: false hasContentIssue false

14 - Interhemispheric connections and laterality

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

A hallmark of human brain function is cerebral lateralization and specialization. This specialization necessitates an efficient interhemispheric communication system. No other mammal possesses the degree of localization of function seen in the human. Only the human brain has the intellectual and computational capabilities necessary to study how neural systems both generate and respond to the intense information demands of the environment.

At first glance the anatomical brain appears largely symmetrical. More careful analysis reveals “typical counterclockwise hemispheric torque,” which is reflected in the fact that the left parieto-occipital region is wider and extends further posteriorly than the right. On the right side the frontal lobe is larger than the left and extends further anteriorly (Glicksohn and Myslobodsky, 1993). This difference is called petalia (Hadziselimovic and Cus, 1966). Fiber bundles interconnect the left and right sides. It must be assumed that these bundles play a role in the behavioral specializations that are reflected in the laterality of behavior.

Cerebral blood flow is greater on the right than on the left in infants. Left parietal dominance emerges at about 2½ years concordant with the onset of right-handedness and improved motor skills. Cerebral blood flow dominance shifts from right to left during the third year of life (Chiron et al., 1997).

Speech has long been recognized to be localized in the left (dominant) hemisphere. The right hemisphere has been hypothesized to be specialized in emotional and visuospatial functions that are important in survival of the species (Geschwind and Galaburda, 1985). Norepinephrine and serotonergic pathways project more heavily to the right hemisphere (Robinson, 1985).

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 239 - 254
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgardner, T. L., Singer, H. S., Denckla, M. B., Rubin, M. A., Abrams, M. T., Colli, M. J., and Reiss, A. L. 1996. Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder. Neurology 47:477–482.CrossRefGoogle ScholarPubMed
Baxter, L. R., Schwartz, J. M., Guze, B. H., Bergman, K., and Szuba, M. P. 1990. Neuroimaging in obsessive-compulsive disorder: seeking the mediating neuroanatomy. In: Jenike, M. A., Baer, L., and Minichiello, W. E. (eds.) Obsessive-Compulsive Disorders: Theory and Management. Littleton, Mass: Year Book Medical Publishers.Google Scholar
Bear, D. 1986. Hemispheric asymmetries in emotional function: a reflection of lateral specialization in cortical-limbic connections. In: Doane, B. K. and Livingston, K. E. (eds.) The Limbic System: Functional Organization and Clinical Disorders. New York: Raven Press, pp. 29–42.Google Scholar
Berlucchi, G. 2004. Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs. Prog. Brain Res. 144:79–93.Google ScholarPubMed
Blonder, L. X., Bowers, D., and Heilman, K. M. 1991a. The role of the right hemisphere on emotional communication. Brain 114:1115–1127.CrossRefGoogle Scholar
Blonder, L., Burns, A., Bowers, D., Moore, R., and Heilman, K. 1991b. Right hemisphere expressivity during natural conversation (abstract). J. Clin. Exp. Neuropsychol. 13:85.Google Scholar
Bogen, J. E. 1993. The callosal syndromes. In: Heilman, K. M., and Valenstein, E. (eds.) Clinical Neuropsychology, 3rd edn. New York: Oxford University Press, pp. 337–407.Google Scholar
Brion, S., and Jednyak, C. P. 1972. Troubles du transfert interhemispherique. Rev. Neurol. 126:257–266.Google Scholar
Chiron, C., Jambaque, I., Nabbout, R., Lounes, R., Syrota, A., and Dulac, O. 1997. The right brain hemisphere is dominant in human infants. Brain 120:1057–1065.CrossRefGoogle ScholarPubMed
Crow, T. J. 1990. Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr. Bull. 16:433–443.CrossRefGoogle ScholarPubMed
Crow, T. J. 1997. Temporolimbic or transcallosal connections: where is the primary lesion in schizophrenia and what is its nature?Schizophr. Bull. 23:521–523.CrossRefGoogle ScholarPubMed
Davidson, R. J. 1995. Cerebral asymmetry, emotion, and affective style. In: Davidson, R. J., and Hugdahl, K. (eds.) Brain Asymmetry. Cambridge, Mass.: MIT Press, pp. 361–387.Google Scholar
Fox, N. A., and Davidson, R. J. 1986. Taste-elicited changes in facial signs of emotion and the asymmetry of brain electrical activity in human newborns. Neuropsychologia 24:417–422.CrossRefGoogle ScholarPubMed
George, M. S., Ketter, T. A., and Post, R. M. 1993. SPECT and PET imaging in mood disorders. J. Clin. Psychiatry 54 (Suppl. 11):6–13.Google ScholarPubMed
Geschwind, N., and Galaburda, A. M. 1985. Cerebral lateralization. Arch. Neurol. 42:428–459.CrossRefGoogle ScholarPubMed
Geschwind, N., and Levitsky, W. 1968. Human brain: left-right asymmetries in temporal speech region. Science 161:186–187.CrossRefGoogle ScholarPubMed
Glicksohn, J., and Myslobodsky, M. S. 1993. The presentation of patterns of structural brain asymmetry in normal individuals. Neuropsychologia 31:145–159.CrossRefGoogle Scholar
Gloor, P. 1990. Experimental phenomena of temporal lobe epilepsy: facts and hypotheses. Brain 113:1673–1694.CrossRefGoogle Scholar
Gur, R. E., Mozley, P. D., Resnick, S. M., Mozley, L. H., Shtasel, D. L., Gallacher, F., Arnold, S. E., Karp, J. S., Alavi, A., Reivich, M., and Gur, R. C. 1995. Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Arch. Gen. Psychiatry 52:657–667.CrossRefGoogle ScholarPubMed
Hadziselimovic, H., and Cus, M. 1966. The appearance of internal structures of the brain in relation to configuration of the human skull. Acta Anat. (Basel) 63:289–299.CrossRefGoogle ScholarPubMed
Heilman, K. M., and Bowers, D. 1996. Emotional disorders associated with hemispheric dysfunction. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychology. Baltimore, Md.: Williams and Wilkins, pp. 401–406.Google Scholar
Jacobs, G. D., and Snyder, D. 1996. Frontal brain asymmetry predicts affective style in men. Behav. Neurosci. 110:3–6.CrossRefGoogle ScholarPubMed
Johnson, S. H., and Grafton, S. T. 2003. From “acting on” to “acting with”: the functional anatomy of object-oriented action schemata. Prog. Brain Res. 142:127–139.CrossRefGoogle Scholar
Jones, H. E., Ruscio, M. A., Keyser, L. A., Gonzalez, C., Billack, B., Rowe, R., Hancock, C., Lambert, K. G., and Kinsley, C. H. 1997. Prenatal stress alters the size of the rostral anterior commissure in rats. Brain Res. Bull. 42:341–346.CrossRefGoogle ScholarPubMed
Joseph, R. 1993. The Naked Neuron: Evolution and the Languages of the Body and Brain. New York: Plenum Press.CrossRefGoogle Scholar
Knight, R. T. 1984. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol. 59:9.CrossRefGoogle ScholarPubMed
Kokkoroyannis, T., Scudder, C. A., Balaban, C. D., Highstein, S. M., and Moschovakis, A. K. 1996. Anatomy and physiology of the primate interstitial nucleus of Cajal. I. Efferent projections. J. Neurophysiol. 75:725–739.CrossRefGoogle Scholar
Kulynych, J. J., Vladar, K., Jones, D. W., and Weinberger, D. R. 1994. Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl's gyrus and the planum temporale. Cerebr. Cortex 4:107–118.CrossRefGoogle ScholarPubMed
Liederman, J. 1995. A reinterpretation of the split-brain syndrome: implications for the function of corticocortical fibers. In: Davidson, R. J., and Hugdahl, K. (eds.) Brain Asymmetry. Cambridge, Mass.: MIT Press, pp. 451–490.Google Scholar
Livy, D. J., Schalomon, P. M., Roy, M., Zacharias, M. C., Pimenta, J., Lent, R., and Wahlsten, D. 1997. Increased axon number in the anterior commissure of mice lacking a corpus callosum. Exp. Neurol. 146:491–501.CrossRefGoogle ScholarPubMed
Mandal, M. K., and Ambady, N. 2004. Laterality of facial expressions of emotion: universal and culture-specific influences. Behav. Neurol. 15:23–34.CrossRefGoogle ScholarPubMed
Mayberg, H. S. 1992 Neuroimaging studies of depression in neurological disease. In: Starkstein, S. E., and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins University Press.Google Scholar
Mendez, M. F., 1995. The neuropsychiatry of multiple sclerosis. Int. J. Psychiatry Med. 25:123–135.CrossRefGoogle ScholarPubMed
Mendez, M. F., and Cherrier, M. M. 2003. Agnosia for scenes in topogragnosia. Neuropsychologia 10:1387–1395.CrossRefGoogle Scholar
Nasrallah, H. A. 1985. The unintegrated right cerebral hemispheric consciousness as alien intruder: a possible mechanism for Schneiderian delusions in schizophrenia. Compr. Psychiatry 26:273–282.CrossRefGoogle Scholar
Nowell, M. A., Hacknery, D. B., Muraki, A. S., and Coleman, M. 1990. Varied MR appearance of autism: fifty three pediatric patients having full autistic syndrome. Magn. Reson. Imaging 8:811–816.CrossRefGoogle ScholarPubMed
Ojima, E., Abiru, H., and Fukui, Y. 1996. Effects of cocaine on the rat cerebral commissure. Int. J. Dev. Neurosci. 14:649–654.CrossRefGoogle ScholarPubMed
Papez, J. W. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:725–743.CrossRefGoogle Scholar
Pascual-Leone, A., Gates, J. R., and Dhuna, A. 1991. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41:697–702.CrossRefGoogle ScholarPubMed
Peru, A., Beltramello, A., Moro, V., Sattibaldi, L., and Berlucchi, G. 2003. Temporal and permanent signs of interhemispheric disconnection after traumatic brain injury. Neuropsychologia 41:634–643.CrossRefGoogle Scholar
Peterson, B. S., Leckman, J. F., and Duncan, J. 1994. Corpus callosum morphology from MR images in Tourette's syndrome. Psychiatry Res. 55:85–99.CrossRefGoogle ScholarPubMed
Piven, J., Bailey, J., Ranson, B. J., and Arndt, S. 1997. An MRI study of the corpus callosum in autism. Am. J. Psychiatry 154:1051–1056.Google ScholarPubMed
Rauch, S. L., Kolk, B. A., Fisler, R. E., Alpert, N. M., Orr, S. P., Savage, C. R., Fischman, A. J., Jenike, M. A., and Pitman, R. K. 1996. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53:380–387.CrossRefGoogle ScholarPubMed
Reite, M., Sheeder, J., Teale, P., Adams, M., Richardson, D., Simon, J., Jones, R. H., and Rojas, D. C. 1997. Magnetic source imaging evidence of sex differences in cerebral lateralization in schizophrenia. Arch. Gen. Psychiatry 54:433–440.CrossRefGoogle Scholar
Robinson, R. G. 1985. Lateralized behavioral and neurochemical consequences of unilateral brain injury in rats. In: Glick, S. D. (ed.) Cerebral Lateralization in Nonhuman Species. New York: Academic Press, pp. 135–156.Google Scholar
Rubin, P., Karle, A., Moller-Madsen, S., Hertel, C., Povlsen, U. J., Noring, U., and Hemingsen, R. 1993. Computerised tomography in newly diagnosed schizophrenia and schizophreniform disorder: a controlled blind study. Br. J. Psychiatry 163:604–612.CrossRefGoogle ScholarPubMed
Sergent, J. 1995. Hemispheric contribution to face processing: patterns of convergence and divergence. In: Davidson, R. J., and Hugdahl, K. (eds.) Brain Asymmetry. Cambridge, Mass.: MIT Press, pp. 157–181.Google Scholar
Sherwin, I. 1982. The effect of the location of an epileptogenic lesion on the occurrence of psychosis in epilepsy. In: Koella, W., and Trimble, M. R. (eds.) Temporal Lobe Epilepsy, Mania, and Schizophrenia and the Limbic System. Basel: Karger, pp. 81–97.Google Scholar
Sherwin, I., Peron-Magnan, P., Bancaud, J., Bonis, A., and Talairach, J. 1982. Prevalence of psychosis in epilepsy as a function of the laterality of the epileptogenic lesion. Arch. Neurol. 39:621–625.CrossRefGoogle ScholarPubMed
Simonds, R. J., and Scheibel, A. B. 1989. The postnatal development of the motor speech area: a preliminary study. Brain Lang. 37:42–58.CrossRefGoogle ScholarPubMed
Sperry, R. 1962. Some general aspects of interhemispheric integration. In: Mountcastle, V. B. (ed.) Interhemispheric Relations and Cerebral Dominance. Baltimore, Md.: Johns Hopkins Press, pp. 43–49.Google Scholar
Starkstein, S. E., Cohen, B. S., Fedoroff, P., Parikh, R. M., Price, T. R., and Robinson, R. G. 1990. Relationship between anxiety disorders and depressive disorders in patients with cerebrovascular injury. Arch. Gen. Psychiatry 47:246–251.CrossRefGoogle ScholarPubMed
Stoléru, S., Grégoire, M.-C., Gérard, D., Decety, J., Lafarge, E., Cinotti, L., Lavenne, F., LeBars, D., Vernet-Maury, E., Rada, H., Collet, C., Mazoyer, B., Forest, M. G., Magnin, F., Spira, A., and Comar, D. 1999. Neuroanatomical correlates of visually evoked sexual arousal in human males. Arch. Sex. Behav. 28(1):1–21.CrossRefGoogle ScholarPubMed
Trevarthen, C. 1990. Growth and eduction in the hemispheres. In: Trevarthen, C. (ed.) Brain Circuits and Functions of the Mind. Cambridge, England: Cambridge University Press, pp. 334–363.Google Scholar
Turetsky, B. I., Cowell, P. E., Gur, R. C., Grossman, R. I., and Gur, R. E. 1994. Frontal and temporal lobe brain volumes in schizophrenia: relationship to symptomatology and clinical subtype. Presented at the 49th Annual Meeting for the Society for Biological Psychiatry, 21 May, 1994, Philadelphia, Pa.
Velek, M., White, L. E., Williams, J. P., Stafford, R. L., and Marco, L. A. 1988. Psychosis in a case of corpus callosum agenesis. Alabama Med. 58:27–29.Google Scholar
Wheeler, R. E., Davidson, R. J., and Tomarken, A. J. 1993. Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style. Psychophysiology 30:82–89.CrossRefGoogle ScholarPubMed
Wiedemann, G., Pauli, P., Dengler, W., Lutzenberger, W., Birbaumer, N., and Buchkremer, G. 1999. Frontal brain asymmetry as a biological substrate of emotions in patients with panic disorders. Arch. Gen. Psychiatry 56:78–84.CrossRefGoogle ScholarPubMed
Yank, M., Yazgan, B. P., Wexler, B. E., and Leckman, J. F. 1995. Behavioral laterality in individuals with Gilles de la Tourette Syndrome and basal ganglia alterations: a preliminary report. Biol. Psychiatry 38:386–390.Google Scholar
Yun, S., Shoumura, K., Ichinohe, N., Hirama, H., and Amayasu, H. 1995. Functional and anatomical fiber analysis of the posterior commissure (PC) in the cat: evidence for PC fibers of which stimulation elicits non-oculosympathetic pupillary dilation. J. Hirnforsch 36:29–50.Google ScholarPubMed
Zaidel, E. 1995. Interhemispheric transfer in the split brain: long-term status following complete cerebral commissurotomy. In: Davidson, R. J. and Hugdahl, K. (eds.) Brain Asymmetry. Cambridge, Mass.: MIT Press, pp. 491–532.Google Scholar
Zaidel, E., Clarke, J. and Suyenobu, B., 1990. Hemispheric independence: a paradigm case for cognitive neuroscience. In: Scheibel, A. B., and Wechsler, A. F. (eds.) Neurobiology of Higher Cognitive Function. New York: Guilford Press, pp. 297–362.Google Scholar
Zaidel, D. W., Esiri, M. M., and Oxbury, J. M. 1994. Sex-related asymmetries in the morphology of the left and right hippocampi?J. Neurol. 241:620–623.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×