Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-13T13:50:17.674Z Has data issue: false hasContentIssue false

13 - Limbic system: overview

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The term limbic lobe was used by the French physician, Paul Broca, to designate the structures on the limbus or margin of the neocortex. These structures lie in a C-shaped arch on the medial and basilar surfaces of the cerebral hemispheres that surround the lateral ventricles (Figure 13.1). Broca defined the limbic lobe as the parahippocampal and cingulate gyri (le grand lobe limbique). In addition to the limbic cortex, a number of subcortical structures can be added to make up what is usually considered the limbic system. The subcortical structures include the hippocampus, the amygdala, and the septal nuclei. Depending on the author, the list of limbic structures can be expanded to include portions of the hypothalamus and thalamus, the habenula, the raphe nuclei, the ventral tegmental nucleus, the nucleus accumbens, the basal nucleus (of Meynert), the posterior frontal orbital cortex, and others (Trimble, 1991; Van Hoesen et al., 1996).

The limbic system works in collaboration with other brain systems. Therefore, a more complete theory of the function of the limbic system can be developed only in tandem with a more complete understanding of the entire brain. The limbic system provides the animal with a means of coping with the environment and with other members of the species found in that environment. More basic parts of the system are concerned with primal activities (i.e., food and sex), while others are related to feelings and emotions.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 223 - 238
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alheid, G. F., and Heimer, L. 1996. Theories of basal forebrain organization and the “emotional motor system.” In: Holstege, G., Bandler, R., and Saper, C. B. (eds.) The Emotional Motor System. Amsterdam: Elsevier pp. 461–484.Google ScholarPubMed
Amaral, D. G., Price, J. L., Pitkanen, A., and Carmichael, S. T. 1992. Anatomical organization of the primate amygdaloid complex. In: Aggleton, J. P. (ed.) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. New York: Wiley-Liss, pp. 1–66.Google Scholar
Arendt, T., Bigl, V., Arendt, A., and Tennstedt, A. 1983. Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's disease. Acta Neuropathol. 61:101–108.CrossRefGoogle ScholarPubMed
Bear, D. 1986. Behavioural changes in temporal lobe epilepsy: conflict, confusion, challenge. In: Trimble, M. R. and Bolwig, T. G. (eds.) Aspects of Epilepsy and Psychiatry. Chichester, England: Wiley, pp. 19–30.Google Scholar
Blum, K., Cull, J. G., Braverman, E. R., and Comings, D. E. 1996. Reward deficiency syndrome. Am. Sci. 84:132–145.Google Scholar
Bondi, M. W., Kaszniak, A. W., Rapcsak, S. Z., and Butters, M. 1993. Implicit and explicit memory following anterior communicating artery aneurysm rupture. Brain Cogn. 22:213–229.CrossRefGoogle ScholarPubMed
Buzsaki, G., Chen, L. S., and Gage, F. H. 1990. Spatial organization of physiological activity in the hippocampus regions: relevance to memory formation. In: J. Storm-Mathisen, R. Zimmer, and O. Ottersen (eds.) Understanding the brain through the hippocampus. Prog. Brain Res. 83:257–268.
Canteras, N. S., and Swanson, L. W. 1992. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: an PHAL anterograde tract-tracing study in the rat. J. Comp. Neurol. 324:180–194.CrossRefGoogle ScholarPubMed
Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., and O'Brien, C. P. 1999. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156:11–18.CrossRefGoogle ScholarPubMed
Coghill, R., Sang, C., Maisog, J. and Iadarola, M. 1999. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82:1934–1943.CrossRefGoogle ScholarPubMed
Coyle, J. T., Price, D. L., and DeLong, M. R. 1983. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190.CrossRefGoogle ScholarPubMed
Davis, M. 1992. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15:353–375.CrossRefGoogle ScholarPubMed
De Bruin, J. P. C. 1990. Social behaviour and the prefrontal cortex. In: H. B. M. Uylings, C. G. Van Eden, J. P. C. De Gruin, M. A. Corner, and M. G. P. Feenstra (eds.) The Prefrontal Cortex: Its Structure, Function and Pathology. Prog. Brain Res. 85:485–497.
Dyr, W., McBride, W. J., Lumeng, T. K., and Murphy, J. M. 1993. Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 10:207–212.CrossRefGoogle ScholarPubMed
Elliot, F. A. 1992. Violence: the neurological contribution: an overview. Arch. Neurol. 49:595–603.CrossRefGoogle Scholar
Fillingham, R. and Maixner, W. 1995. Gender differences in the responses to noxious stimuli. Pain Forum 4:209–221.CrossRefGoogle Scholar
Gaykema, R. P. A., Luiten, P. G. M., Nyakas, C., and Traber, J. 1990. Cortical projection patterns of the medial septum-diagonal band complex. J. Comp. Neurol. 293:103–124.CrossRefGoogle ScholarPubMed
George, M. S., Ketter, T. A., Parekh, P. I., Horwitz, B., Herscovitch, P., and Post, R. M. 1995. Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry 152:341–351.Google ScholarPubMed
Gloor, P. 1997. The Temporal Lobe and Limbic System. New York: Oxford University Press.Google Scholar
Heath, R., Dempsy, C., Fontana, C., and Myers, W. 1978. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol. Psychiatry 13:501–529.Google ScholarPubMed
Huh, K., Meador, K. J., Lee, G. P., Loring, D. W., Murrow, A. M., King, D. W., Gallagher, B. B., Smith, J. R., and Flanigin, H. F. 1990. Human hippocampal EEG: effects of behavioral activation. Neurology 40:1177–1181.CrossRefGoogle ScholarPubMed
Jarrard, L. E. 1993. On the role of the hippocampus in learning and memory in the rat. Behav. Neurol. Biol. 60:9–26.CrossRefGoogle ScholarPubMed
Kandel, E., and Kupfermann, I. 1995. Emotional states. In: Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds.) Essentials of Neural Science and Behavior. Norwalk, Conn.: Appleton and Lange, pp. 595–612.Google Scholar
Kesner, R. P. 1992. Learning and memory in rats with an emphasis on the role of the amygdala. In: Aggleton, J. (ed.) The Amygdala. New York: Wiley, pp. 379–400.Google ScholarPubMed
Ketter, T. A., Andreaseon, P. J., George, M. S., Lee, C., Gill, D. S., Parekh, P. I., Willis, M. W., Herscovitch, P., and Post, R. M. 1996. Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch. Gen. Psychiatry 53:59–69.CrossRefGoogle ScholarPubMed
Kluver, H., and Bucy, P. C. 1939. Preliminary analysis of functions of the temporal lobe in monkeys. Arch. Neurol. Psychiatry 42:979–1000.CrossRefGoogle Scholar
Kopelman, M. D. 1995. The Korsakoff syndrome. Br. J. Psychiatry 166:154–173.CrossRefGoogle ScholarPubMed
Kwon, J. S., Shenton, M. E., Hirayasu, Y., Salisbury, D. F., Fischer, I. A., Dickey, C. C., Yurgelun-Todd, D., Tohen, M., Kikinis, R., Jolesz, F. A., and McCarley, R. W. 1998. MRI study of cavum septi pellucidi in schizophrenia, affective disorder, and schizotypal personality disorder. Am. J. Psychiatry 155:509–515.CrossRefGoogle ScholarPubMed
Marazziti, D., and Conti, L. 1991. Aggression, hyperactivity, and platelet IMI-binding. Acta Psychiatr. Scand. 84:209–211.CrossRefGoogle Scholar
McGuire, P. K., Bench, C. J., Frith, C. D., Marks, I. M., Frackowiak, R. S. J., and Dolan, R. J. 1994. Functional anatomy of obsessive-compulsive phenomena. Br. J. Psychol. 164:459–468.CrossRefGoogle ScholarPubMed
Mega, M. S., Cummings, J. C., Salloway, S., and Malloy, P. 1997. The limbic system: an anatomic, phylogenetic, and clinical perspective. J. Neuropsychiatry Clin. Neurosci. 9:315–330.Google ScholarPubMed
Mendez, M. F., and Foti, D. 1997. Lethal hyperoral behavior from the Kluver–Bucy syndrome. J. Neurol. Neurosurg. Psychiatry 62:293–294.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R., Voogd, J., and Huijzen, C. 1988. The Human Nervous System. New York: Springer-Verlag.Google Scholar
Nopoulos, P., Swayze, V., and Andreasen, N. C. 1996. Pattern of brain morphology in patients with schizophrenia and large cavum septi pellucidi. J. Neuropsychiatry. Clin. Neurosci. 8:147–152.Google ScholarPubMed
Nopoulos, P., Swayze, V., Flaum, M., Ehrhardt, J. C., Yuh, W. T., and Andreasen, N. C. 1997. Cavum septi pellucidi in normals and patients with schizophrenia as detected by magnetic resonance imaging. Biol. Psychiatry 41:1102–1108.CrossRefGoogle ScholarPubMed
Nopoulos, P. C., Giedd, J. N., Andreasen, N. C., and Rapoport, J. L. 1998. Frequency and severity of enlarged cavum septi pellucidi in childhood-onset schizophrenia. Am. J. Psychiatry 155:1074–1079.CrossRefGoogle ScholarPubMed
Norita, M., and Kawamura, K. 1980. Subcortical afferents to monkey amygdala: an HRP study. Brain Res. 190:225–230.CrossRefGoogle Scholar
Papez, J. W. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:725–743.CrossRefGoogle Scholar
Peoples, L., Lynch, K. G., Lesnock, J., and Gangdhar, N. 2004. Accumbal neural response during the initiation and maintenance of intravenous cocaine self-administration. J. Neurophysiol. 91 (1):314–323.CrossRefGoogle ScholarPubMed
Pilotte, N. S., and Sharpe, L. G. 1996. Cocaine withdrawal alters regulatory elements of dopamine neurons. In: Majewska, M. D. (ed.) Neurotoxicity and Neuropathology Associated with Cocaine Abuse. Rockville, Md.: National Institutes of Health, pp. 193–202.Google ScholarPubMed
Rossetti, Z. L., Hmaidan, Y., and Gessa, G. L. 1992. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol. 221:227–234.CrossRefGoogle ScholarPubMed
Self, D. W., and Nestler, E. J. 1995. Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18:463–495.CrossRefGoogle ScholarPubMed
Servan-Schreiber, D., and Perlstein, W. M. 1997. Pharmacologic activation of limbic structures and neuroimaging studies of emotions. J. Clin. Psychiatry 58 (Suppl. 16):13–15.Google ScholarPubMed
Shioiri, T., Oshitani, Y., Kato, T., Murashita, J., Hamakawa, H., Inubushi, T., Nagata, T., and Takahashi, S. 1996. Prevalence of cavum septum pellucidum detected by MRI in patients with bipolar disorder, major depression and schizophrenia. Psychol. Med. 26:431–434.CrossRefGoogle Scholar
Squire, L. R. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99:195–231.CrossRefGoogle ScholarPubMed
Tamminga, C. A. 1998. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol. 12:21–36.CrossRefGoogle ScholarPubMed
Trimble, M. R. 1991. The Psychoses of Epilepsy. New York: Raven Press.Google ScholarPubMed
Trimble, M. R., Mendez, M. F., and Cummings, J. L. 1997. Neuropsychiatric symptoms from the temporolimbic lobes. J. Neuropsychiatry Clin. Neurosci. 9:429–438.Google ScholarPubMed
Unruh, A. 1996. Gender variations in clinical pain experience. Pain 65:123–167.CrossRefGoogle ScholarPubMed
Van Hoesen, G. W., Morecraft, R. J., and Semendeferi, K. 1996. Functional neuroanatomy of the limbic system and prefrontal cortex. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 113–143.Google Scholar
Vanderwolf, C. H. 1988. Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int. Rev. Neurobiol. 30:225–340.CrossRefGoogle ScholarPubMed
Cramon, D. Y., and Schuri, U. 1992. The septo-hippocampal pathways and their relevance to human memory: a case report. Cortex 28:411–422.CrossRefGoogle Scholar
Wolf, S. S., Hyde, T. M., and Weinberger, D. R. 1994. Malformations of the septum pellucidum: two distinctive cases in association with schizophrenia. J. Psychiatry Neurosci. 19:140–144.Google ScholarPubMed
Yudofsky, S. C., and Hales, R. E. (eds.). 1992. The American Psychiatric Press Textbook of Neuropsychiatry, 2nd edn. Washington, D. C.: American Psychiatric Press.Google Scholar
Zola-Morgan, S. M., and Squire, L. R. 1993. Neuroanatomy of memory. Annu. Rev. Neurosci. 16:547–563.CrossRefGoogle Scholar
Zubieta, J.-K., Smith, Y. R., Bueller, J. A., Xu, Y., Kilbourn, M. R., Jewett, D. M., Meyer, C. R., Koeppe, R. A., and Stohler, C. S. 2002. μ-Opioid receptor-mediated antinociceptive responses differ in men and women. J. Neurosci. 22 (12):5100–5107.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×