Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T22:40:34.771Z Has data issue: false hasContentIssue false

7 - Maximization of Ethanol Production in Saccharomyces cerevisiae

Published online by Cambridge University Press:  28 July 2009

Néstor V. Torres
Affiliation:
Universidad de la Laguna, Tenerife
Eberhard O. Voit
Affiliation:
Medical University of South Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Vasquez, F., Cánovas, M., Iborra, J. L., and Torres, N. V.: Modelling and optimization of continuous L-(-)-carnitine production by high-densityEscherichia coli cultures, 2002Google Scholar
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Bothast, R. J., Nichols, N. N., and Dien, B. S.: Fermentations with new recombinant organisms. Biotechnol. Prog. 15(5), 867–75, 1999CrossRefGoogle ScholarPubMed
Brown, C. E., Taylor, J. M., and Chan, L. M.: The effect of pH on the interaction of substrates and effector to yeast and rabbit muscle pyruvate kinases. Biochim. Biophys. Acta 829(3), 342–7, 1985CrossRefGoogle Scholar
Cascante, M., Curto, R., and Sorribas, A.: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Steady-state analysis. Math. Biosci. 130, 51–69, 1995CrossRefGoogle ScholarPubMed
Cascante, M., Lloréns, M., Meléndez-Hevia, E., Puigjaner, J., Montero, F., and Martí, E.: E. The metabolic productivity of the cell factory. J. Theor. Biol. 182, 317–25, 1996CrossRefGoogle Scholar
Conejeros, R., and Vassiliadis, V. S.: Analysis and optimization of biochemical process reaction pathways. 1. Pathway sensitivities and identification of limiting steps. Ind. Eng. Chem. Res. 37, 4699–708, 1998CrossRefGoogle Scholar
Conejeros, R., and Vassiliadis, V. S.: Dynamic biochemical reaction process analysis and pathway modification predictions. Biotechnol. Bioeng. 68(3), 285–97, 20003.0.CO;2-X>CrossRefGoogle Scholar
Curto, R., Sorribas, A., and Cascante, M.: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model definition and nomenclature. Math. Biosci. 130, 25–50, 1995CrossRefGoogle ScholarPubMed
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Validation and steady-state analysis of a power-law model of purine metabolism. Biochem. J. 324, 761–75, 1997CrossRefGoogle ScholarPubMed
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Mathematical models of purine metabolism in man. Math. Biosci. 151, 1–49, 1998aCrossRefGoogle Scholar
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man. Biochem. J. 329, 477–87, 1998bCrossRefGoogle Scholar
Davies, S. E. C., and Brindle, K. M.: Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 331, 4729–35, 1992CrossRefGoogle Scholar
Atauri, P., Curto, R., Puigjaner, J., Cornish-Bowden, A., and Cascante, M.: Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modeling metabolic pathways. Eur. J. Biochem. 265, 671–9, 1999CrossRefGoogle Scholar
Easterby, J. S.: A generalized theory of the transition time for sequential enzyme reactions. Biochem. J. 199, 155–61, 1981CrossRefGoogle ScholarPubMed
Enfors, S.-O.: Baker's yeast. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 17). Cambridge University Press, Cambridge, U.K., 2001
Ferreira, A. E. N.: PLAS©. http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Galazzo, J. L., and Bailey, J. E.: In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast S. cerevisiae. Biotechnol. Bioeng. 33, 1283–9, 1989CrossRefGoogle Scholar
Galazzo, J. L., and Bailey, J. E.: Fermentation pathway kinetics and metabolic flux control in suspended and immobilized S. cerevisiae. Enzyme Microbiol. Technol. 12, 162–72, 1990CrossRefGoogle Scholar
Galazzo, J. L., and Bailey, J. E.: Errata. Enzyme Microbiol. Technol. 13, 363–71, 1991Google Scholar
Gong, C. S., Cao, N. J., Du, J., and Tsao, G. T.: Ethanol production from renewable resources. Adv. Biochem. Eng. Biotechnol. 65, 207–41, 1999Google ScholarPubMed
Hatzimanikatis, V., Floudas, C., and Bailey, J. E.: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a3.0.CO;2-L>CrossRefGoogle Scholar
Hatzimanikatis, V., Floudas, C., and Bailey, J. E.: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996bCrossRefGoogle Scholar
Hauf, J., Zimmerman, F. K., and Müller, S.: Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 26, 688–98, 2000CrossRefGoogle ScholarPubMed
Heinish, J: Isolation and characterization of the two structural genes encoding for phosphofructokinase in yeast. Mol. Gen. Genet. 202, 75–80, 1986CrossRefGoogle Scholar
Heinrich, R., and Hoffmann, E.: Kinetic parameters of enzymatic reactions in states of maximal activity. An evolutionary approach. J. Theor. Biol. 151, 249–83, 1991CrossRefGoogle ScholarPubMed
Heinrich, R., and S. Schuster: The Regulation of Cellular Systems. Chapman and Hall, New York, 1996
Heinrich, R., Rapoport, S. M., and Rapoport, T. A.: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977CrossRefGoogle ScholarPubMed
Heinrich, R., Hoffmann, E., and Holzhütter, H.-G.: Calculation of kinetic parameters of a reversible enzymatic reaction in states of maximal activity. Biomed. Biochim. Acta 49, 891–902, 1990Google ScholarPubMed
Heinrich, R., Schuster, S., and Holzhütter, H.-G.: Mathematical analysis of enzymatic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21, 1991CrossRefGoogle Scholar
Hess, B., and Plesser, T.: Temporal and spatial order in biochemical systems. Ann. N.Y. Acad. Sci. 316, 203–13, 1978CrossRefGoogle Scholar
Hynne, F., Dane, S., and S⊘rensen, P. G.: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94(1–2), 121–63, 2001CrossRefGoogle ScholarPubMed
Isermann, H.: EFFACET Operating Manual. University of Frankfurt, Germany, 1977a
Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple objective program. Operations Res. Quart. 28(3), 711–25, 1977bCrossRefGoogle Scholar
Jeffries, T. W., and Shi, N. Q.: Genetic engineering for improved xylose fermentation by yeasts. Adv. Biochem. Eng.-Biotechnol. 65, 117–61, 1999Google ScholarPubMed
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–4, 2000 (supplementary material to be found at http://www.nd.edu/~networks/cell/supply.htm)Google ScholarPubMed
Jorge-Santiso, J.: Aspectos metodológicos y computacionales de la optimización multiobjetivo. El caso lineal. Master's thesis, Universidad de La Laguna, 1992
Leicester, H. M.: Development of Biochemical Concepts from Ancient to Modern Times. Harvard University Press, Cambridge, MA, 1974
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–8, 1944CrossRefGoogle Scholar
Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters. J. SIAM 11(2), 431–41, 1963Google Scholar
Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs. Springer, Berlin, 1992
Michalewicz, Z., and N. Attia: Evolutionary optimization of constrained problems. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming (pp. 150–65). World Scientific, Singapore, 1994
Moré, J., G. Burton, and H. Kenneth: User guide for MINIPACK-1. Argonne National Labs Report ANL-80-74. Argonne, IL, 1980
Niederberger, P., Prasad, R., Miozzari, G., and Kacser, H.: A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem. J. 287, 473–9, 1992CrossRefGoogle Scholar
Petkov, S. B., and Maranas, C. D.: Quantitative assessment of uncertainty in the optimization of metabolic pathways. Biotechnol. Bioeng. 56(2), 145–61, 19973.0.CO;2-P>CrossRefGoogle ScholarPubMed
Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 289–95, 1992CrossRefGoogle ScholarPubMed
Pretorius, I. S.: Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16(8), 675–729, 20003.0.CO;2-B>CrossRefGoogle ScholarPubMed
Rothman, L., and Cabib, E.: Allosteric properties of yeast glycogen synthetase. I. General kinetic study. Biochemistry 6(7), 2098–112, 1967CrossRefGoogle ScholarPubMed
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savinell, J. M., and Palsson, B.Ø.: Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992CrossRefGoogle ScholarPubMed
Schaaff, I., Heinish, J., and Zimmermann, F. K.: Overproduction of glycolytic enzymes in yeast. Yeast 5, 285–90, 1989CrossRefGoogle Scholar
Schlosser, P. M., Riedy, G., and Bailey, J. E.: Ethanol production in baker's yeast: Application of experimental perturbation techniques for model development and resultant changes in flux control analysis. Biotechnol. Prog. 10, 141–54, 1994CrossRefGoogle Scholar
Schuster, S., and Heinrich, R.: Minimization of intermediates concentrations as a suggested optimality principle for biochemical networks. I. Theoretical analysis. J. Math. Biol. 29, 425–42, 1991CrossRefGoogle Scholar
Schuster, S., Schuster, R., and Heinrich, R.: Minimization of intermediates concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erytrocyte metabolism. J. Math. Biol. 29, 443–55, 1991CrossRefGoogle Scholar
Shanks, J. V., and Bailey, J. E.: Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P magnetic resonance spectroscopy. Biotechnol. Bioeng. 32, 1138–52, 1988CrossRefGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267, 22912–18, 1992aGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267, 22919–25, 1992bGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behaviour. J. Biol. Chem. 267, 22926–33, 1992cGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alterntative methods of analysis. J. Biol. Chem. 267, 22934–43, 1992dGoogle Scholar
Smits, H. P., Hauf, J., Müller, S., Hobley, T. J., Zimmermann, F. K., Hahn-Hägerdal, B., Nielsen, J., and Olsson, L.: Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 20003.0.CO;2-E>CrossRefGoogle Scholar
Sorribas, A., Curto, R., and Cascante, M.: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model validation and dynamic behavior. Math. Biosci. 130, 71–84, 1995CrossRefGoogle ScholarPubMed
Stephanoupoulos, G., and Simpson, T. W.: Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52(15), 2607–27, 1997CrossRefGoogle Scholar
Steuer, R.: ADBASE. Multiple Objective Linear Programming Package. Operating Manual. Faculty of Management Science, University of Georgia, Athens, GA, 1995
Su, S., and Russel, P. J.: Adenylate kinase from bakers' yeast. 3. Equilibria: Equilibrium exchange and mechanism. J. Biol. Chem. 243, 3826–33, 1968Google ScholarPubMed
Thomas, S., and Fell, D.: The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Reg. 38, 65–85, 1998CrossRefGoogle ScholarPubMed
Torres, N. V.: Application of the transition time of metabolic systems as a criterion for optimization of metabolic processes. Biotechnol. Bioeng. 44, 291–6, 1994CrossRefGoogle ScholarPubMed
Torres, N. V., Voit, E. O., Glez-Alcón, C., and Rodriguez, F.: An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 55(5), 758–72, 19973.0.CO;2-A>CrossRefGoogle ScholarPubMed
Vera, J., P. de Atauri, M. Cascante, and N. V. Torres: Multi-criteria optimization of biochemical systems by linear programming. Application to the ethanol production by Saccharomyces cerevisiae, submitted
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge, U.K, 2000
Voit, E. O., and Del Signore, M.: Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001CrossRefGoogle ScholarPubMed
Voit, E. O., and Ferreira, A. E. N.: Buffering in models of integrated biochemical systems. J. Theor. Biol. 191, 429–38, 1998CrossRefGoogle Scholar
Voit, E. O., and Savageau, M. A.: Analytical solutions to a generalized growth equation. J. Math. Anal. Appl. 103(2), 380–6, 1984CrossRefGoogle Scholar
Voit, E. O., and Savageau, M. A.: Accuracy of alternative representations for integrated biochemical systems. Biochemistry 26, 6869–80, 1987CrossRefGoogle ScholarPubMed
Wilhelm, T., and Brüggermann, R.: Goal functions for the developments of natural systems. Ecol. Model. 132, 231–46, 2000CrossRefGoogle Scholar
Wilkinson, K. D., and Rose, I. A.: Isotope trapping studies of yeast hexokinase during steady state catalysis. A combined rapid quench and isotope trapping technique. J. Biol. Chem. 254(24), 12567–72, 1979Google ScholarPubMed
Yang, S. T., and Deal, W. C. Jr.: Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 8(7), 2806–13, 1969CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×