Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T17:46:38.137Z Has data issue: false hasContentIssue false

8 - Conclusions

Published online by Cambridge University Press:  28 July 2009

Néstor V. Torres
Affiliation:
Universidad de la Laguna, Tenerife
Eberhard O. Voit
Affiliation:
Medical University of South Carolina
Get access

Summary

The two pathways we discussed in the previous chapters, namely citric acid accumulation in the mold A. niger and ethanol production in yeast, are good and at the same time not-so-good examples. They are good for the illustration of the proposed methods, because they are well known and relevant. Many kinetic features of the enzymatic and transport steps are readily available in the literature, and the glycolytic and citric acid pathways themselves, as well as diverging side branches, are well known in the biochemical community. Furthermore, both pathways are of undoubted industrial relevance, so that every predicted improvement in yield could potentially translate into biotechnological strategies of interest.

The examples are not ideal for a very closely related reason. Because of the strong industrial interest in ethanol and citric acid, uncounted scientists have been charged over the years with finding ways to increase their yield. As a consequence, it seems that “simple” means of improvement, consisting of alterations in one or two enzymes or transport steps, have already been found by experimental methods, such as random mutagenesis and selection. Consistent with the infeasibility of simple solutions, the predictions made from our mathematical optimizations require targeted and specific changes in several steps simultaneously. This translates directly into considerable experimental effort, which so far has precluded implementation in the laboratory, against which we could compare our results.

The conjecture that singular changes in well-studied systems are often ineffectual is supported by experimental evidence that has been surprising and disappointing at times.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrieu, A., Doree, M., and Fisher, D.: The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J. Cell Sci. 114(2), 257–67, 2001Google ScholarPubMed
Aiba, S., and Matsuoka, M.: Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21, 1373–86, 1979CrossRefGoogle Scholar
Alvarez-Vasquez, F., Cánovas, M., Iborra, J. L., and Torres, N. V.: Modelling and optimization of continuous L-(-)-carnitine production by high-density Escherichia coli cultures. Biotechnol. Bioeng. (in press)
An, H., Scopes, R. P., Rodríguez, M., Kesvav, K.-F., and Ingram, L. O.: Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of an alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173, 5975–82, 1991CrossRefGoogle ScholarPubMed
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Auge, N., Negre-Salvayre, A., Salvayre, R., and Levade, T.: Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog. Lipid Res. 39(3), 207–29, 2000CrossRefGoogle ScholarPubMed
Bailey, J.: Toward a science of metabolic engineering. Science 252, 1668–74, 1991CrossRefGoogle Scholar
Bailey, J. E.: Lessons from metabolic engineering for functional genomics and drug discovery. Nature Biotechnol. 17, 616–18, 1999CrossRefGoogle ScholarPubMed
Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H., and Kompala, D. S.: Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–81, 1990CrossRefGoogle ScholarPubMed
Bhalla, U. S., and Iyenger, R.: Emergent properties of networks of biological signaling pathways. Science 283, 381–7, 1999CrossRefGoogle ScholarPubMed
Bliss, R. D., Painter, P. R., and Marr, A. G.: Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–93, 1982CrossRefGoogle ScholarPubMed
Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–12, 1995CrossRefGoogle ScholarPubMed
Cánovas, M., Maiquez, J. R., Obón, J. M., and Iborra, J. L.: Modelling of the biotransformation of crotonobetaine into L(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77, 764–775, 2002CrossRefGoogle Scholar
Covert, M. W., Schilling, C. H., Famili, I., Edwards, J. S., Goryanin, I. I., Selkov, E., and Palsson, B.Ø.: Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–86, 2001CrossRefGoogle ScholarPubMed
Curto, R., Sorribas, A., and Cascante, M.: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis. Model definition and nomenclature. Math. Biosci. 130, 25–50, 1995CrossRefGoogle ScholarPubMed
Duncan, T. M., and J. A. Reimer: Chemical Engineering Design and Analysis: An Introduction. Cambridge University Press, Cambridge, U.K., 1998
Edwards, J., and Palsson, B.Ø.: How will bioinformatics influence metabolic engineering?Biotechnol. Bioeng. 58, 162–9, 19983.0.CO;2-J>CrossRefGoogle ScholarPubMed
Eggeling, L., W. Pfefferle, and H. Sahm: Amino acids. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 13). Cambridge University Press, Cambridge, U.K., 2001
Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–8, 1998CrossRefGoogle ScholarPubMed
Goodwin, B. C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Reg. 3, 425–38, 1965CrossRefGoogle ScholarPubMed
Griffith, J. S.: Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 2, 202–8, 1968aCrossRefGoogle Scholar
Griffith, J. S.: Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol. 2, 209–16, 1968bCrossRefGoogle Scholar
Hannun, Y. A., Luberto, C., and Argraves, K. M.: Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40(16), 4893–903, 2001CrossRefGoogle ScholarPubMed
Harwood, C. R., and A. Wipat: Genome management and analysis: Prokaryotes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 4) Cambridge University Press, Cambridge, U.K., 2001
Jetton, M. S. M., and Sinskey, A. J.: Recent advances in physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15(1), 73–103, 1995CrossRefGoogle Scholar
Kelly, G. S.: L-Carnitine: Therapeutic applications of a conditionally-essential amino acid. Alt. Med. Rev. 3(5), 345–60, 1998Google ScholarPubMed
Koffas, M. A., Roberge, C., Lee, K., and Stephanopoulos, G.: Metabolic engineering. Annu. Rev. Biomed. Eng. 1, 535–57, 1999CrossRefGoogle ScholarPubMed
Kuhn, T. S.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago, IL, 1962
Kyriakis, J. M., and Avruch, J.: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81(2), 807–69, 2001CrossRefGoogle ScholarPubMed
Lanczos, C.: Applied Analysis. Prentice Hall, Englewood Cliffs, NJ, 1964
Lowe, D.: Antibiotics. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 16). Cambridge University Press, Cambridge, U.K., 2001a
Lowe, D.: Production of enzymes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 18). Cambridge University Press, Cambridge, U.K., 2001b
Marín-Sanguino, A., and Torres, N. V.: Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization. Biotechnol. Prog. 16(2), 133–45, 2000CrossRefGoogle ScholarPubMed
Nelson, J. C.: Augmentation strategies in depression 2000. J. Clin. Psychiat. 61(Suppl. 2), 13–19, 2000Google ScholarPubMed
Nielsen, J.: Metabolic engineering: Techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58, 125–32, 19983.0.CO;2-N>CrossRefGoogle ScholarPubMed
Obón, J. M., Maiquez, J. R., Cánovas, M., Kleber, H. P., and Iborra, J. L.: High density E. coli cultures for continuous L(-)-carnitine production. Appl. Microbiol. Biotechnol. 51, 760–4, 1999Google ScholarPubMed
Patrick, L.: Nutrients and HIV: Part three – N-acetylcysteine, alpha-lipoic acid, L-glutamine, and L-carnitine. Alt. Med. Rev. 5(4), 290–305, 2000Google ScholarPubMed
Ratledge, C., and B. Kristiansen (Eds.): Basic Biotechnology. Cambridge University Press, Cambridge, U.K., 2001
Roth, S., Jung, K., Hommel, R. K., and Kleber, H. P.: Crotonobetaine reductase from Escherichia coli. A new inducible enzyme of aerobic metabolism of L-(-)-carnitine. Antoine van Leuwenhoek J. Microbiol. Serol. 65, 63–9, 1994CrossRefGoogle ScholarPubMed
Ruijter, C. J. G., Panneman, H., Ding-Bang, X., and Visser, J.: Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40, 2000CrossRefGoogle ScholarPubMed
Schaaff, I., Heinisch, J., and Zimmermann, F. K.: Overproduction of glycolytic enzymes in yeast. Yeast 5(4), 285–90, 1989CrossRefGoogle Scholar
Sen, A. K., and Liu, W.-M.: Dynamic analysis of genetic control and regulation of aminoacid synthesis: The tryptophan operon in Escherichia coli. Biotechnol. Bioeng. 35, 185–94, 1990CrossRefGoogle Scholar
Sinha, S.: Theoretical study of tryptophan operon: Application in microbial technology. Biotechnol. Bioeng. 31, 117–24, 1988CrossRefGoogle ScholarPubMed
Smith, J. E.: Public perception of biotechnology. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 1). Cambridge University Press, Cambridge, U.K., 2001
Smits, H. P., Hauf, J., Müller, S., Hobley, T. J., Zimmermann, F. K., Hahn-Hägerdal, B., Nielsen, J., and Olsson, L.: Simultaneous overepression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 20003.0.CO;2-E>CrossRefGoogle Scholar
Snoep, J. L., Yomano, L. P., Westerhoff, H. V., and Ingram, L. O.: Protein burden in Zymomonas mobilis: Negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141, 2329–37, 1995CrossRefGoogle Scholar
Sorribas, A., and Cascante, M.: Structure identifiability in metabolic pathways: Parameter estimation in models based on the power-law formalism. Biochem. J. 298, 303–11, 1994CrossRefGoogle ScholarPubMed
Stephanopoulos, G.: Metabolic enginnering. Biotechnol. Bioeng. 58, 119–20, 19983.0.CO;2-O>CrossRefGoogle Scholar
Stephanopoulos, G.: A platform of flux and gene expression measurements for metabolic engineering and drug discovery (Presentation). Biological Information Processing and Systems Workshop, Clemson University, Clemson, SC, January 19–20, 2001
Stephanopoulos, G., and Kelleher, J.: How to make a superior cell. Science 292, 2024–5, 2001CrossRefGoogle ScholarPubMed
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering. Principles and Methodologies. Academic Press, San Diego, CA, 1998
Takiguchi, N., Shimizu, H., and Shioya, S.: An online physiological-state recognition system for the lysine fermentation process – based on a metabolic reaction model. Biotechnol. Bioeng. 55, 170–81, 19973.0.CO;2-Q>CrossRefGoogle Scholar
Vandevivere, P., and W. Verstraete: Environmental applications. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 24). Cambridge University Press, Cambridge, U.K., 2001
Gulik, W. M., Laat, W. T. A. M., Vinke, J. L., and Heijnen, J. J.: Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68(6), 602–18, 20003.0.CO;2-2>CrossRefGoogle ScholarPubMed
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 532 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O.: Models-of-data and models-of-processes in the post-genomic era. Math. Biosci., in press
Voit, E. O., and Radivoyevitch, T.: Biochemical systems analysis of genome-wide expression data. Bioinformatics 16(11), 1023–37, 2000CrossRefGoogle ScholarPubMed
Vriezen, N., J. P. van Dijken, and L. Häggström: In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 21). Cambridge University Press, Cambridge, U.K., 2001
Weng, G., Bhalla, U. S., and Iyenger, R.: Complexity in biochemical signaling systems. Science 284, 92–6, 1999CrossRefGoogle Scholar
Werbach, M. R.: Nutritional strategies for treating chronic fatigue syndrome. Alt. Med. Rev. 5(2), 93–108, 2000Google ScholarPubMed
Winter, S. C., and Buist, N. R.: Cardiomyopathy in childhood, mitochondrial dysfunction, and the role of L-carnitine. Am. Heart J. 139(2, Pt 3), S63–9, 2000CrossRefGoogle ScholarPubMed
Xie, L., and Wang, D. I. C.: Material balance studies on animal cell metabolism using a stoichiometrically based reaction network. Biotechnol. Bioeng. 52, 579–90, 19963.0.CO;2-G>CrossRefGoogle ScholarPubMed
Xiu, Z.-L., Zeng, A.-P., and Deckwer, W.-D.: Model analysis concerning the effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria. J. Biotechnol. 58, 125–40, 1997CrossRefGoogle Scholar
Zaslavskaia, L. A., Lippmeier, J. C., Shih, C., Ehrhardt, D., Grossman, A. R., and Apt, K. E.: Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292, 2073–5, 2001CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Conclusions
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Conclusions
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Conclusions
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.009
Available formats
×