Skip to main content
Pathway Analysis and Optimization in Metabolic Engineering
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 26
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Heidari, M. Zadeh, M. R. Fard, O. S. and Borzabadi, A. H. 2016. On Unconstrained Fuzzy-Valued Optimization Problems. International Journal of Fuzzy Systems, Vol. 18, Issue. 2, p. 270.

    Alvarez-Vasquez, Fernando J. Freyre-González, Julio A. Balderas-Martínez, Yalbi I. Delgado-Carrillo, Mónica I. and Collado-Vides, Julio 2015. Mathematical modeling of the apo and holo transcriptional regulation in Escherichia coli. Mol. BioSyst., Vol. 11, Issue. 4, p. 994.

    Faraji, Mojdeh Fonseca, Luis L. Escamilla-Treviño, Luis Dixon, Richard A. and Voit, Eberhard O. 2015. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum. Biotechnology for Biofuels, Vol. 8, Issue. 1,

    Torres, Nestor V. and Santos, Guido 2015. The (Mathematical) Modeling Process in Biosciences. Frontiers in Genetics, Vol. 6,

    Hormiga, José A. González-Alcón, Carlos and Torres, Néstor V. 2014. Development and Application of a Modified Genetic Algorithm for Estimating Parameters in GMA Models. Applied Mathematics, Vol. 05, Issue. 16, p. 2447.

    Voit, Eberhard O. 2014. Wiley StatsRef: Statistics Reference Online.

    Xu, Gongxian 2012. 2012 IEEE 6th International Conference on Systems Biology (ISB). p. 92.

    Fonseca, Luís L. Sánchez, Claudia Santos, Helena and Voit, Eberhard O. 2011. Complex coordination of multi-scale cellular responses to environmental stress. Mol. BioSyst., Vol. 7, Issue. 3, p. 731.

    Tian, Li-Ping 2011. 2011 5th International Conference on Bioinformatics and Biomedical Engineering. p. 1.

    Voit, Eberhard O. 2011. Applied Statistics for Network Biology.

    2011. Feedback Control in Systems Biology.

    Sun, Yaqin Mu, Xiaojia Li, Zheng Teng, Hu and Xiu, ZhiLong 2010. 2010 4th International Conference on Bioinformatics and Biomedical Engineering. p. 1.

    Thierie, Jacques and Penninckx, Michel 2010. Encyclopedia of Industrial Biotechnology.

    Yin, Weiwei Jo, Hanjoong and Voit, Eberhard O. 2010. Systems Analysis of the Role of Bone Morphogenic Protein 4 in Endothelial Inflammation. Annals of Biomedical Engineering, Vol. 38, Issue. 2, p. 291.

    Oyarzún, Diego A. Ingalls, Brian P. Middleton, Richard H. and Kalamatianos, Dimitrios 2009. Sequential Activation of Metabolic Pathways: a Dynamic Optimization Approach. Bulletin of Mathematical Biology, Vol. 71, Issue. 8, p. 1851.

    Qi, Zhen Miller, Gary W. and Voit, Eberhard O. 2009. Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals. Synapse, Vol. 63, Issue. 12, p. 1133.

    Wu, Jialiang and Voit, Eberhard 2009. Integrative biological systems modeling: challenges and opportunities. Frontiers of Computer Science in China, Vol. 3, Issue. 1, p. 92.

    Alves, Rui Vilaprinyo, Ester Hernández-Bermejo, Benito and Sorribas, Albert 2008. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways. Biotechnology and Genetic Engineering Reviews, Vol. 25, Issue. 1, p. 1.

    Feinendegen, Ludwig Hahnfeldt, Philip Schadt, Eric E. Stumpf, Michael and Voit, Eberhard O. 2008. Systems biology and its potential role in radiobiology. Radiation and Environmental Biophysics, Vol. 47, Issue. 1, p. 5.

    Polisetty, Pradeep K. Gatzke, Edward P. and Voit, Eberhard O. 2008. Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods. Biotechnology and Bioengineering, Vol. 99, Issue. 5, p. 1154.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Pathway Analysis and Optimization in Metabolic Engineering
    • Online ISBN: 9780511546334
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
  • Buy the print book

Book description

Facility in the targeted manipulation of the genetic and metabolic composition of organisms, combined with unprecedented computational power, is forging a niche for a new subspecialty of biotechnology called metabolic engineering. First published in 2002, this book introduces researchers and advanced students in biology and engineering to methods of optimizing biochemical systems of biotechnological relevance. It examines the development of strategies for manipulating metabolic pathways, demonstrates the need for effective systems models, and discusses their design and analysis, while placing special emphasis on optimization. The authors propose power-law models and methods of biochemical systems theory toward these ends. All concepts are derived from first principles, and the text is richly illustrated with numerous graphs and examples throughout. Special features include: nontechnical and technical introductions to models of biochemical systems; a review of basic methods of model design and analysis; concepts of optimization; and detailed case studies.

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Aiba , M. Shoda , and M. Nagatani : Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 10, 845–64, 1968

R. A. Alberty : Biochemical thermodynamics. Biochim. Biophys. Acta 1207, 1–11, 1994

R. A. Alberty : Calculation of biochemical net reactions and pathways by using matrix operations. Biophys. J. 71, 507–15, 1996

R. A. Alberty , Calculation of equilibrium compositions of large systems of biochemical reactions. J. Phys. Chem. 104(19), 4808–14, 2000

G. E. Briggs , and J. B. S. Haldane : A note on the kinetics of enzyme action. Biochem. J. 19, 338–9, 1925

M. Cascante , A. Sorribas , R. Franco , and E. I. Canela : Biochemical systems theory: Increasing predictive power by using second-order derivatives measurements J. Theor. Biol. 149, 521–35, 1991

R. M. Corless , G. H. Gonnett , D. E. G. Hare , D. J. Jeffrey , and D. E. Knuth : On the Lambert W function. Adv. Comp. Math. 5, 329–59, 1996

R. Curto , E. O. Voit , A. Sorribas , and M. Cascante : Validation and steady-state analysis of a power-law model of purine metabolism. Biochem. J. 324, 761–75, 1997

K. D. Danenberg , and W. W. Cleland : Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry 14(1), 28–39, 1975

J. S. Edwards , and B.Ø. Palsson : The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–33, 2000

D. A. Fell , and H. M. Sauro : Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148, 555–61, 1985

D. A. Fell , and J. R. Small : Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–6, 1986

D. Garfinkel : The role of computer simulation in biochemistry. Comp. Biomed. Res. 2(1), 31–44, 1968

C. Giersch : Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur. J. Biochem. 174, 515–19, 1988

A. Goldstein : The mechanism of enzyme-inhibitor-substrate reactions. J. Gen. Physiol. 27, 529–80, 1944

R. Heinrich , and T. A. Rapoport : A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. 42, 89–95, 1974

R. Heinrich , and S. Schuster : The modeling of metabolic systems. Structure, control, and optimality. BioSystems 47, 61–77, 1998

B. Hess : Periodical patterns in biochemical reactions. Quart. Rev. Biophys. 30, 121–76, 1997

C. M. Hill , R. D. Waight , and W. G. Bardsley : Does any enzyme follow the Michaelis-Menten equation? Mol. Cell. Biochem. 15, 173–8, 1977

F. Horn , and R. Jackson : General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116, 1972

H. Jorgensen , J. Nielsen , and J. Villadsen : Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46, 117–31, 1995

H. Kacser , H. M. Sauro , and L. Acerenza : Enzyme-enzyme interactions and control analysis. Eur. J. Biochem. 187, 481–91, 1990

E. Kohen , B. Thorell , C. Kohen , and J. M. Solmon : Studies on metabolic events in localized compartments of the living cell by rapid microspectro-fluorometry. Adv. Biol. Med. Phys. 15, 271–97, 1974

E. T. Papoutsakis : Equations and calculations for fermentations of butyric acid bacteria Biotechnol. Bioeng. 26, 174–87, 1984

A. Pons , C. G. Dussap , C. Pequignot , and J. B. Gros : Metabolic flux distribution in Cornybacterium melassecola ATCC 17965 for various carbon sources. Biotechnol. Bioeng. 51, 177–89, 1996

J. Pramanik , and J. D. Keasling : Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421, 1997

C. Reder : Metabolic control theory: A structural approach. J. Theor. Biol. 135, 175–201, 1988

H. M. Sauro , J. R. Small , and D. A. Fell : Metabolic control and its analysis. Extensions to the theory and matrix methods. Eur. J. Biochem. 165, 215–22, 1987

M. A. Savageau , Biochemical systems analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. 25, 365–9, 1969a

M. A. Savageau , Biochemical systems analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969b

M. A. Savageau , Biochemical systems analysis, III. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26, 215–26, 1970

M. A. Savageau : Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. USA 76, 5413–17, 1979a

M. A. Savageau : Allometric morphogenesis of complex systems: Derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. USA 76, 6023–5, 1979b

M. A. Savageau , Biochemical systems theory: Operational differences among variant representations and their significance. J. Theor. Biol. 151, 509–30, 1991

M. A. Savageau : Dominance according to metabolic control analysis: Major achievement or house of cards? J. Theor. Biol. 154, 131–6, 1992b

M. A. Savageau , E. O. Voit , and D. H. Irvine : Biochemical systems theory and metabolic control theory. I. Fundamental similarities and differences. Math. Biosci. 86, 127–45, 1987a

M. A. Savageau , Michaelis-Menten mechanism reconsidered: Implications of fractal kinetics. J. Theor. Biol. 176, 115–24, 1995a

M. A. Savageau , and A. Sorribas : Constraints among molecular and systemic properties: Implications for physiological genetics. J. Theor. Biol. 141, 93–115, 1989

J. M. Savinell , and B.Ø. Palsson : Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154(4), 421–54, 1992a

M. Schauer , and R. Heinrich : Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks. Math. Biosci. 65, 155–70, 1983

C. H. Schilling , and B.Ø. Palsson : The underlying pathway structure of biochemical reaction networks. Proc. Natl. Acad. Sci. USA 95(8), 4193–8, 1998

C. H. Schilling , and B.Ø. Palsson : Assessment of metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–83, 2000

C. H. Schilling , S. Schuster , B.Ø. Palsson , and R. Heinrich : Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15(3), 296–303, 1999

C. H. Schilling , D. Letscher , and B.Ø. Palsson : Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248, 2000

S. Schnell , and P. K. Maini : Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–99, 2000

S. Schnell , and C. Mendoza : Closed-form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–12, 1997

L. A. Segel , On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–93, 1988

L. A. Segel , and M. Slemrod : The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31, 446–77, 1989

A. Seressiotis , and J. E. Bailey : MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602, 1988

A. Sols , and R. Marco : Concentrations of metabolites and binding sites. Implications in metabolic regulation. Curr. Top. Cell. Reg. 2, 227–73, 1970

H. G. Thornton : On the development of a standardised Agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. IX, 241–74, 1922

S. P. Tsai , and Y. H. Lee : Application of Gibbs' rule and a simple pathway method to microbial stoichiometry. Biotechnol. Prog. 4(2), 82–8, 1988

J. J. Vallino , and G. Stephanopoulos : Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41, 633–46, 1993

A. Varma , and B.Ø. Palsson : Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism. Biotechnol. Bioeng. 45, 69–79, 1995

A. Varma , B. W. Boesch , and B.Ø. Palsson : Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73, 1993

A. Varma , B. W. Boesch , and B.Ø. Palsson : Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technol. 12, 994–8, 1994

E. O. Voit : Canonical modeling: A review of concepts with emphasis on environmental health. Environ. Health Perspect. 108 (Suppl. 5): (Mathematical Modeling in Environmental Health Studies), 895–909, 2000b

K. V. Waller , and P. M. Mäkllä : Chemical reaction invariants and variants and their use in reactor modeling, simulation, and control. Ind. Eng. Chem. Proc. Des. Dev. 20, 1–11, 1981

C. A. Woolfolk , and E. R. Stadtman : Regulation of glutamine synthetase. III. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli. Arch. Biochem. Biophys. 118, 736–55, 1967

J. S. Almeida , M. A. M. Reis , and M. J. T. Carrondo : Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescence. Biotechnol. Bioeng. 46, 476–84, 1995

R. Alves , and M. Savageau : Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics 16, 527–33, 2000a

K. Bar-Eli , and W. Geiseler : Perturbations around steady states in a continuous stirred tank reactor. J. Phys. Chem. 87, 1352–7, 1983

P. H. Berg , E. O. Voit , and R. White : A pharmacodynamic model for the action of the antibiotic Imipenem on Pseudomonas in vitro. Bull. Math. Biol. 58(5), 923–38, 1996

T. Chevalier , I. Schreiber , and J. Ross : Toward a systematic determination of complex reaction mechanisms. J. Phys. Chem. 97, 6776–87, 1993

H. Degn , L. F. Olsen , and J. W. Perram : Bistability, oscillation, and chaos in an enzyme reaction. Ann. N.Y. Acad. Sci. 316, 622–37, 1979

R. Díaz-Sierra , and V. Fairén : Simplified method for the computation of parameters of power-law equations from time-series. Math. Biosci. 171, 1–19, 2001

R. Díaz-Sierra , J. B. Lozano , and V. Fairén : Deduction of chemical mechanisms from the linear response around steady state. J. Phys. Chem. 103, 337–43, 1999

H. Kacser , and J. A. Burns : Molecular democracy: Who shares the controls? Biochem. Soc. Trans. 7, 1149–60, 1979

R. Kopelman : Rate processes on fractals: Theory, simulations, experiments. J. Stat. Phys. 42, 185–200, 1986

R. Kopelman : Reaction kinetics in restricted spaces. Israel J. Chem. 31, 147–57, 1991

A. R. Neves , A. Ramos , M. C. Nunes , M. Kleerebezem , J. Hugenholtz , W. M. Vos , J. Almeida , and H. Santos : In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64(2), 200–12, 1999

M. Okamoto , Y. Morita , D. Tominaga , K. Tanaka , N. Kinoshita , J.-I. Ueno , Y. Miura , Y. Maki , and Y. Eguchi : Design of virtual-labo-system for metabolic engineering: Development of biochemical engineering system analyzing tool-kit (BEST KIT). Comp. Chem. Eng. 21(Suppl.), S745–50, 1997

L. F. Olsen , and H. Degn : Chaos in an enzyme reaction. Nature 267, 177–8, 1977

B.Ø. Palsson , R. Jamier , and E. N. Lightfoot : Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes. J. Theor. Biol. 111, 303–21, 1984

B.Ø. Palsson , H. Palsson , and E. N. Lightfoot : Mathematical modelling of dynamics and control in metabolic networks. III. Linear reaction sequences. J. Theor. Biol. 113, 231–59, 1985

P. Rugen , and B. Callahan : An overview of Monte-Carlo, a fifty year perspective. Human Ecological Risk Assess. 2(4), 671–80, 1996

P. J. Sands , and E. O. Voit : Flux-based estimation of parameters in S-systems. Ecol. Model. 93, 75–88, 1996

M. A. Savageau : Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229(5286), 542–4, 1971a

M. A. Savageau : Concepts relating behaviour of biochemical systems to their underlying molecular properties. Arch. Biochem. Biophys. 145, 612–21, 1971b

M. A. Savageau : The behavior of intact biochemical control systems. Curr. Top. Cell. Reg. 6, 63–129, 1972

M. A. Savageau : Optimal design of feedback control by inhibition: Dynamic considerations. J. Mol. Evol. 5, 199–222, 1975

M. A. Savageau : Influence of fractal kinetics on molecular recognition. J. Mol. Recogn. 6, 149–157, 1993

J. E Segall , S. M. Block , and H. C. Berg : Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 83, 8987–91, 1986

A. Sorribas , S. Samitier , E. I. Canela , and M. Cascante : Metabolic pathway characterization from transient response data obtained in situ: Parameter estimation in S-system models. J. Theor. Biol. 162, 81–102, 1993

C. G. Steinmetz , and R. Larter : The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction. J. Chem. Phys. 94(2), 1388–96, 1991

E. O. Voit , and P. J. Sands : Modeling forest growth. II. Biomass partitioning in Scots pine. Ecol. Model. 86, 73–89, 1996

I. Yamazaki , K. Yokota , and R. Nakajima : Oscillatory oxidations of reduced pyridine nucleotide by peroxidase. Biochem. Biophys. Res. Commun. 21, 582–6, 1965

I. Arisan-Atac , M. Wolschek , and C. P. Kubicek : Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 140, 77–83, 1996

M. A. Blázquez , R. Lagunas , C. Gancedo , and J. M. Gancedo : Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–4, 1993

E. Boy-Marcotte , G. Lagniel , M. Perrot , F. Bussereau , A. Boudsocq , M. Jacquet , and J. Labarre : The heat shock response in yeast: Differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33(2), 274–83, 1999

M. Briquet : Transport of pyruvate and lactate in yeast mitochondria. Biochim. Biophys. Acta 459, 290–9, 1977

C. T. Evans , A. H. Scragg , and C. Ratledge : Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast by adenine nucleotides. Eur. J. Biochem. 132, 609–15, 1981

C. T. Evans , A. H. Scragg , and C. Ratledge : A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast. Eur. J. Biochem. 130, 195–204, 1983

H. A. Feir , and I. Suzuki : Pyruvate carboxilase of Aspergillus niger: Kinetic study of a biotin-containing carboxilase. Can. J. Biochem. 47, 697–710, 1969

A. Habison , C. P. Kubicek , and M. Röhr : Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger. FEMS Microbiol. Lett. 5, 39–42, 1979

A. Habison , C. P. Kubicek , and M. Röhr : Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–76, 1983

A. P. Halestrap , R. D. Scott , and A. P. Thomas : Mitochondrial pyruvate transport and its hormonal regulation. Int. J. Biochem. 11, 97–105, 1980

C. P. Henson , and W. W. Cleland : Kinetic studies of glutamic-oxalacetate transaminase isoenzymes. Biochemistry 3, 338–48, 1964

W. Jaklitsch , C. P. Kubicek , and M. Scrutton : Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol. 37, 823–7, 1991

K. Kirimura , Y. Hirowatari , and S. Usami : Alterations of respiratory systems in Aspergillus niger under the condition of citric acid fermentation. Agric. Biol. Chem. 51, 1299–303, 1987

K. Kirimura , M. Yoda , H. Shimizu , S. Sugano , M. Mizuno , K. Kino , and S. Usami : Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase to citric acid production in Aspergillus niger. Biosci. Biotechnol. Biochem. 64(10), 2034–9, 2000

C. P. Kubicek , and M. Röhr : Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger. Eur. J. Appl. Microbiol. 4, 167–173, 1977

C. P. Kubicek , and M. Röhr : The role of the tricarboxylic acid cycle in citric acid accumulation by Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 5, 263–71, 1978

C. P. Kubicek , and M. Röhr : Citric acid fermentation. CRC Crit. Rev. Biotechnol. 3(4), 331–73, 1986

C. P. Kubicek , W. Hampel , and M. Röhr : Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123, 73–9, 1979

C. P. Kubicek , O. Zehentgruber , H. El-Kalak , and M. Röhr : Regulation of citric acid production by oxygen: Effects of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 101–16, 1980

E. M. Kubicek-Pranz , M. Mozelt , M. Roehr , and C. P. Kubicek : Changes in the concentration of fructose 2, 6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim. Biophys. Acta 1033, 250–5, 1990

M. Legisa , and M. Mattey : Glycerol synthesis by Aspergillus niger under citric acid accumulating conditions. Enzyme Microbiol. Technol. 8, 607–9, 1988

H. Ma , C. P. Kubicek , and M. Röhr : Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiol. Lett. 12, 147–51, 1981

M. Mattey : Citrate regulation of citric acid production by Aspergillus niger. FEMS Microbiol. Lett. 2, 71–4, 1977

M. Mattey : The production of organic acids. Crit. Rev. Biotechnol. 12, 87–132, 1992

B. Meixner-Monori , C. P. Kubicek , and M. Röhr : Pyruvate kinase from Aspergillus niger: A regulatory enzyme in glycolysis? Can. J. Microbiol. 30, 16–22, 1983

B. Meixner-Monori , C. P. Kubicek , W. Harrer , G. Schreferl , and M. Röhr : NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem. J. 236, 549–57, 1986

H. Mischak , C. P. Kubicek , and M. Röhr : Citrate inhibition of glucose uptake in Aspergillus niger. Biotechnol. Lett. 6, 425–30, 1984

T.-C. Ni , and M. A. Savageau : Model assessment and refinement using strategies from biochemical systems theory: Application to metabolism in human red blood cells. J. Theor. Biol. 179, 329–68, 1996b

S. A. Osmani , and M. C. Scrutton : The subcellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–60, 1983

H. Panneman , G. J. G. Ruijter , H. C. Broeck , E. T. Driever , and J. Visser : Cloning and biochemical characterization of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240, 518–25, 1996

H. Panneman , G. J. G. Ruijter , H. C. Broeck , and J. Visser : Cloning and biochemical characterization of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur. J. Biochem. 258, 223–32, 1998

M. Perkins , J. M. Haslam , and A. W. Linnane : Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport sysytem for tricarboxylate-cycle anions. Biochem. J. 134, 923–934, 1973

C. Prömper , R. Schneider , and H. Weiss : The role of the proton-pumping and alternative respiratory chain NADH: Ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur. J. Biochem. 216, 223–30, 1993

M. Röhr , C. P. Kubicek , O. Zehentgruber , and R. Orthofer : Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. 27, 235–9, 1987

K. Sakai , K. Hasumi , and A. Endo : Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. Eur. J. Biochem. 193(1), 195–202, 1990

A. Salvador : Synergism analysis of biochemical systems. I. Conceptual framework. Math. Biosci. 163(2), 105–29, 2000a

A. Salvador : Synergism analysis of biochemical systems. II. Tensor formulation and treatment of stoichiometric constraints. Math. Biosci. 163(2), 131–58, 2000b

G. Schreferl-Kunar , M. Grotz , M. Röhr , and C. P. Kubicek : Increased citric acid production by mutants of Aspergillus niger with increased glycolytic capacity. FEMS Microbiol. Lett. 59, 297–300, 1989

A. Sorribas , and M. A. Savageau : Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways. Math. Biosci. 94, 239–69, 1989

N. V. Torres : Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. II. Sensitivity analysis. Biotechnol. Bioeng. 44, 112–18, 1994b

F. H. Verhoff , and J. E. Spradlin : Mass and energy balance analysis of metabolic pathways applied to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 18(3), 425–32, 1976

J. Wallrath , J. Schmidt , and H. Weiss : Concomitant loss of respiratory chain NADH: ubiquinone reductase (complex I) and citric acid accumulation in Aspergillus niger. Appl. Microbiol. Biotechnol. 36, 76–81, 1991

D.-B. Xu , C. P. Madrid , M. Röhr , and C. P. Kubicek : The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30, 553–8, 1989

O. Zehentgruber , C. P. Kubicek , and M. Röhr : Alternative respiration of Aspergillus niger. FEMS Microbiol. Lett. 8, 71–4, 1980

Filho J. L. Ribeiro , P. C. Treleaven , and C. Alippi : Genetic-algorithm programming environments. IEEE Comp., pp. 28–43, June 1994

R. Alves , and M. Savageau : Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16, 786–98, 2000c

R. Alves , and M. Savageau : Effect of overall feedback inhibition in unbranched biosynthetic pathways. Biophys. J. 79, 2290–304, 2000d

J. Bailey : Mathematical modeling and analysis in biochemical engineering: Past accomplishment and future opportunities. Biotechnol. Prog. 14(1), 8–20, 1998

G. C. Brown , R. P. Hafner , and M. D. Brand : A “top-down” approach to the determination of control coefficients in metabolic control theory. Eur. J. Biochem. 188, 321–5, 1990

W. Candler , and R. Townsley : A linear two-level programming problem. Comp. Ops. Res. 9, 59–76, 1982

P. A. Clark , and A. W. Westerberg : Bilevel programming for steady-state chemical process design – I. Fundamentals and algorithms. Comp. Chem. Eng. 14, 87–97, 1990

R. Conejeros , and V. S. Vassiliadis : Dynamic biochemical reaction process analysis and pathway modification predictions. Biotechnol. Bioeng. 68(3), 285–97, 2000

O. Ebenhöh , and R. Heinrich : Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull. Math. Biol. 63, 21–55, 2001

D. A. Fell : Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–30, 1992

C. E. Garcia , and M. Morari : Optimal operation of integrated processing systems. AIChE J. 27, 960–8, 1981

A. Górak , A. Krasławski , and A. Vogelpohl : Simulation und optimierung der mehrstoff-rektifikation. Chem. Ing. Tech. 59, 95–106, 1987

J. Harmon , S. A. Svoronos , and G. Lyberatos : Adaptive steady-state optimization of biomass productivity in continuous fermentors. Biotechnol. Bioeng. 30, 335–44, 1987

V. Hatzimanikatis , and J. E. Bailey : MCA has more to say. J. Theor. Biol. 182, 233–42, 1996

V. Hatzimanikatis , C. A. Floudas , and J. E. Bailey : Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a

V. Hatzimanikatis , C. A. Floudas , and J. E. Bailey : Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996b

R. Heinrich , S. M. Rapoport , and T. A. Rapoport : Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977

W. S. Hlavacek , and M. A. Savageau : Subunit structure of regulator proteins influences the design of gene circuitry: Analysis of perfectly coupled and completely uncoupled circuits. J. Mol. Biol. 248, 739–55, 1995

W. S. Hlavacek , and M. A. Savageau : Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol. 255(1), 121–39, 1996

W. S. Hlavacek , and M. A. Savageau : Completely uncoupled and perfectly coupled gene expression in repressible systems. J. Mol. Biol. 266, 538–58, 1997

H. Kacser , and L. Acerenza : A universal method for increase in metabolite production. Eur. J. Biochem. 216, 361–7, 1993

M. Koffas , C. Roberge , K. Lee , and G. Stephanopoulos : Metabolic engineering. Ann. Rev. Biomed. Eng. 1, 535–57, 1999

J. C. Liao , and J. Delgado : Advances in metabolic control analysis. Biotechnol. Prog. 9, 221–33, 1993

R. A. Majewski , and M. M. Domach : Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732–8, 1990

A. Marín-Sanguino , and N. V. Torres : Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization. Biotechnol. Prog. 16(2), 133–45, 2000

M. L. Mavrovouniotis , G. Stephanopoulos , and G. Stephanopoulos : Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119–32, 1990

E. Meléndez-Hevia , and A. Isidoro : The game of the pentose phosphate cycle. J. Theor. Biol. 117, 251–63, 1985

E. Meléndez-Hevia , and N. V. Torres : Economy of design in metabolic pathways: Further remarks on the game of the pentose phosphate cycle. J. Theor. Biol. 132, 97–111, 1988

E. Meléndez-Hevia , T. G. Waddell , and F. Montero : Optimization of metabolism: The evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J. Theor. Biol. 166, 201–19, 1994

E. Meléndez-Hevia , T. G. Waddell , and M. Cascante : The puzzle of the Krebs cycle: Assembling the pieces of chemically featusible reactions and opportunism in design of metabolic pathways during evolution. J. Mol. Evol. 43, 293–303, 1996

E. Meléndez-Hevia , T. G. Waddell , R. Heinrich , and F. Montero : Theoretical approaches to the evolutionary optimization of glycolysis. Eur. J. Biochem. 244, 527–43, 1997

J. E. Mittenthal , A. Yuan , B. Clarke , and A. Scheeline : Designing metabolism; alternative connectivities for the pentose-phosphate pathway. Bull. Math. Biol. 60, 815–56, 1998

J. E. Mittenthal , B. Clarke , T. G. Waddell , and G. Fawcett : A new method for assembling metabolic networks, with application to the Krebs citric acid cycle. J. Theor. Biol. 208(3), 361–82, 2001

E. T. Papoutsakis , and C. L. Meyer : Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27, 50–66, 1985a

E. T. Papoutsakis , and C. L. Meyer : Fermentation equations for propionic-acid bacteria and production of assorted oxychemicals from various sugars. Biotechnol. Bioeng. 27, 67–80, 1985b

J. N. Petersen , and G. A. Whyatt : Dynamic on-line optimization of a bioreactor. Biotechnol. Bioeng. 35, 712–18, 1990

P. N. Pissara , J. Nielsen , and M. J. Bazin : Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 51, 168–76, 1996

P. A. Quant : Experimental application of top-down analysis to metabolic systems. Trends Biochem. Sci. 18, 26–30, 1993

L. Regan , I. D. L. Bogle , and P. Dunhill : Simulation and optimization of metabolic pathways. Comp. Chem. Eng. 17(5/6), 627–37, 1993

F. Rodríguez-Acosta , C. M. Regalado , and N. V. Torres : Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. J. Biotechnol. 68, 15–28, 1999

M. J. Rolf , and H. C. Lim : Experimental adaptive on-line optimization of cellular productivity of a continuous bakers' yeast culture. Biotechnol. Bioeng. 27, 1236–45, 1985

M. A. Savageau : Comparison of classical and autogenous systems of regulation in inducible operons. Nature (London) 252, 546–9, 1974a

M. A. Savageau : Genetic regulatory mechanisms and the ecological niche of Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 2354–455, 1974b

J. M. Savinell , and B.Ø. Palsson : Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154(4), 421–54, 1992a

J. M. Savinell , and B.Ø. Palsson : Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992d

G. B. Semones , and H. C. Lim : Experimental multivariable adaptive optimization of the steady-state cellular productivity of continuous baker's yeast culture. Biotechnol. Bioeng. 33, 16–25, 1989

T. W. Simpson , G. E. Colon , and G. Stephanopoulos : Two paradigms of metabolic engineering applied to amino acid biosynthesis. Biochem. Soc. Trans. 23(2), 381–7, 1995

T. W. Simpson , B. D. Follstad , and G. Stephanopoulos : Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71, 207–23, 1999

E. O. Voit : Optimization in integrated biochemical systems. Biotechnol. Bioeng. 40, 572–82, 1992

F. Alvarez-Vasquez , C. González-Alcón , and N. V. Torres : Metabolism of citric acid production by Aspergillus niger: Model definition, steady state analysis and constrained optimization of the citric acid production rate. Biotechnol. Bioeng. 70(1), 82–108, 2000

W. E. Bentley , N. Mirjalili , D. C. Andersen , R. H. Davis , and D. S. Kompala : Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechol. Bioeng. 35, 668–81, 1990

L. Führer , C. P. Kubicek , and M. Röhr : Pyridine nucleotide levels and ratios in Aspergillus niger. Can. J. Microbiol. 26, 405–08, 1980

J. F. Görgens , W. H. Zyl , J. H. Knoetze , and B. Hahn-Hägerdal : The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol. Bioeng. 73(3), 238–45, 2001

G. Guarante , L. Gail , T. M. Roberts , and M. Ptashane : Improved methods for maximizing expression of a cloned gene: A bacterium that synthesizes rabbit β-globin. Cell 20, 543–53, 1980

P. R. Jensen , and K. Hammer : Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–5, 1998

D. Mattanovitch , W. Kramer , C. Lüttich , R. Weik , K. Bayer , and H. Katinger : Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58, 296–8, 1998

A. Netik , N. V. Torres , J. M. Riol , and C. P. Kubicek : Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta 1326, 287–94, 1997

P. Niederberger , R. Prasad , G. Miozzari , and H. Kacser : A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem. J. 287, 473–9, 1992

C. Ratledge : Look before you clone. Letter to the editor. FEMS Microbiol. Lett. 189, 317–18, 2000

C. J. G. Ruijter : Life is not that simple. Letter to the editor. FEMS Microbiol. Lett. 189, 318–19, 2000

C. J. G. Ruijter , H. Panneman , and J. Visser : Overexpression of phosphofructokinase and pyruvate kinasse in citric acid producing Aspergillus niger. Biochim. Biophys. Acta 1334, 317–23, 1997

C. J. G. Ruijter , H. Panneman , X. Ding-Bang , and J. Visser : Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40, 2000

M. A. Savageau and E. O. Voit : Recasting nonlinear differential equations as S-systems: A canonical nonlinear form. Math. Biosci. 87, 83–115, 1987

M. Schmidt , J. Wallrath , A. Dörner , and H. Weiss : Disturbed assembly of the respiratory chain NADH: Ubiquinone reductase (complex I) in citric-acid-accumulating Aspergillus niger strain B60. Appl. Microbiol. Biotechnol. 36, 667–72, 1992

F. A. Steinbock , I. Held , S. Chojun , H. Harsen , M. Rohr , E. M. Kubicek-Pranz , and C. P. Kubicek : Regulatory aspects of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol. 11(6), 571–81, 1991

N. V. Torres , J. M. Riol-Cimas , M. Wolschek , and C. P. Kubicek : Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–4, 1996a

N. V. Torres , E. O. Voit , C. González-Alcón , and F. Rodríguez : An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 247–58, 1997

E. O. Voit , and M. Del Signore : Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001

R. J. Bothast , N. N. Nichols , and B. S. Dien : Fermentations with new recombinant organisms. Biotechnol. Prog. 15(5), 867–75, 1999

C. E. Brown , J. M. Taylor , and L. M. Chan : The effect of pH on the interaction of substrates and effector to yeast and rabbit muscle pyruvate kinases. Biochim. Biophys. Acta 829(3), 342–7, 1985

M. Cascante , R. Curto , and A. Sorribas : Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Steady-state analysis. Math. Biosci. 130, 51–69, 1995

M. Cascante , M. Lloréns , E. Meléndez-Hevia , J. Puigjaner , F. Montero , and E. Martí : E. The metabolic productivity of the cell factory. J. Theor. Biol. 182, 317–25, 1996

R. Conejeros , and V. S. Vassiliadis : Analysis and optimization of biochemical process reaction pathways. 1. Pathway sensitivities and identification of limiting steps. Ind. Eng. Chem. Res. 37, 4699–708, 1998

R. Curto , E. O. Voit , A. Sorribas , and M. Cascante : Mathematical models of purine metabolism in man. Math. Biosci. 151, 1–49, 1998a

R. Curto , E. O. Voit , A. Sorribas , and M. Cascante : Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man. Biochem. J. 329, 477–87, 1998b

P. Atauri , R. Curto , J. Puigjaner , A. Cornish-Bowden , and M. Cascante : Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modeling metabolic pathways. Eur. J. Biochem. 265, 671–9, 1999

J. S. Easterby : A generalized theory of the transition time for sequential enzyme reactions. Biochem. J. 199, 155–61, 1981

J. L. Galazzo , and J. E. Bailey : In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast S. cerevisiae. Biotechnol. Bioeng. 33, 1283–9, 1989

J. L. Galazzo , and J. E. Bailey : Fermentation pathway kinetics and metabolic flux control in suspended and immobilized S. cerevisiae. Enzyme Microbiol. Technol. 12, 162–72, 1990

J. Hauf , F. K. Zimmerman , and S. Müller : Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 26, 688–98, 2000

J Heinish : Isolation and characterization of the two structural genes encoding for phosphofructokinase in yeast. Mol. Gen. Genet. 202, 75–80, 1986

R. Heinrich , and E. Hoffmann : Kinetic parameters of enzymatic reactions in states of maximal activity. An evolutionary approach. J. Theor. Biol. 151, 249–83, 1991

R. Heinrich , S. Schuster , and H.-G. Holzhütter : Mathematical analysis of enzymatic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21, 1991

B. Hess , and T. Plesser : Temporal and spatial order in biochemical systems. Ann. N.Y. Acad. Sci. 316, 203–13, 1978

F. Hynne , S. Dane , and P. G. S⊘rensen : Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94(1–2), 121–63, 2001

H. Isermann : The enumeration of the set of all efficient solutions for a linear multiple objective program. Operations Res. Quart. 28(3), 711–25, 1977b

S. B. Petkov , and C. D. Maranas : Quantitative assessment of uncertainty in the optimization of metabolic pathways. Biotechnol. Bioeng. 56(2), 145–61, 1997

G. Pettersson : Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 289–95, 1992

I. S. Pretorius : Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16(8), 675–729, 2000

L. Rothman , and E. Cabib : Allosteric properties of yeast glycogen synthetase. I. General kinetic study. Biochemistry 6(7), 2098–112, 1967

I. Schaaff , J. Heinish , and F. K. Zimmermann : Overproduction of glycolytic enzymes in yeast. Yeast 5, 285–90, 1989

P. M. Schlosser , G. Riedy , and J. E. Bailey : Ethanol production in baker's yeast: Application of experimental perturbation techniques for model development and resultant changes in flux control analysis. Biotechnol. Prog. 10, 141–54, 1994

S. Schuster , R. Schuster , and R. Heinrich : Minimization of intermediates concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erytrocyte metabolism. J. Math. Biol. 29, 443–55, 1991

J. V. Shanks , and J. E. Bailey : Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P magnetic resonance spectroscopy. Biotechnol. Bioeng. 32, 1138–52, 1988

A. Sorribas , R. Curto , and M. Cascante : Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model validation and dynamic behavior. Math. Biosci. 130, 71–84, 1995

G. Stephanoupoulos , and T. W. Simpson : Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52(15), 2607–27, 1997

S. Thomas , and D. Fell : The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Reg. 38, 65–85, 1998

N. V. Torres : Application of the transition time of metabolic systems as a criterion for optimization of metabolic processes. Biotechnol. Bioeng. 44, 291–6, 1994

N. V. Torres , E. O. Voit , C. Glez-Alcón , and F. Rodriguez : An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 55(5), 758–72, 1997

E. O. Voit , and A. E. N. Ferreira : Buffering in models of integrated biochemical systems. J. Theor. Biol. 191, 429–38, 1998

E. O. Voit , and M. A. Savageau : Analytical solutions to a generalized growth equation. J. Math. Anal. Appl. 103(2), 380–6, 1984

E. O. Voit , and M. A. Savageau : Accuracy of alternative representations for integrated biochemical systems. Biochemistry 26, 6869–80, 1987

T. Wilhelm , and R. Brüggermann : Goal functions for the developments of natural systems. Ecol. Model. 132, 231–46, 2000

S. T. Yang , and W. C. Deal Jr.: Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 8(7), 2806–13, 1969

S. Aiba , and M. Matsuoka : Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21, 1373–86, 1979

N. Auge , A. Negre-Salvayre , R. Salvayre , and T. Levade : Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog. Lipid Res. 39(3), 207–29, 2000

J. Bailey : Toward a science of metabolic engineering. Science 252, 1668–74, 1991

J. E. Bailey : Lessons from metabolic engineering for functional genomics and drug discovery. Nature Biotechnol. 17, 616–18, 1999

U. S. Bhalla , and R. Iyenger : Emergent properties of networks of biological signaling pathways. Science 283, 381–7, 1999

R. D. Bliss , P. R. Painter , and A. G. Marr : Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–93, 1982

D. Bray : Protein molecules as computational elements in living cells. Nature 376, 307–12, 1995

M. Cánovas , J. R. Maiquez , J. M. Obón , and J. L. Iborra : Modelling of the biotransformation of crotonobetaine into L(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77, 764–775, 2002

M. W. Covert , C. H. Schilling , I. Famili , J. S. Edwards , I. I. Goryanin , E. Selkov , and B.Ø. Palsson : Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–86, 2001

R. Curto , A. Sorribas , and M. Cascante : Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis. Model definition and nomenclature. Math. Biosci. 130, 25–50, 1995

J. Edwards , and B.Ø. Palsson : How will bioinformatics influence metabolic engineering? Biotechnol. Bioeng. 58, 162–9, 1998

M. B. Eisen , P. T. Spellman , P. O. Brown , and D. Botstein : Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–8, 1998

B. C. Goodwin : Oscillatory behavior in enzymatic control processes. Adv. Enzyme Reg. 3, 425–38, 1965

Y. A. Hannun , C. Luberto , and K. M. Argraves : Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40(16), 4893–903, 2001

M. S. M. Jetton , and A. J. Sinskey : Recent advances in physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15(1), 73–103, 1995

J. Nielsen : Metabolic engineering: Techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58, 125–32, 1998

S. Roth , K. Jung , R. K. Hommel , and H. P. Kleber : Crotonobetaine reductase from Escherichia coli. A new inducible enzyme of aerobic metabolism of L-(-)-carnitine. Antoine van Leuwenhoek J. Microbiol. Serol. 65, 63–9, 1994

A. K. Sen , and W.-M. Liu : Dynamic analysis of genetic control and regulation of aminoacid synthesis: The tryptophan operon in Escherichia coli. Biotechnol. Bioeng. 35, 185–94, 1990

S. Sinha : Theoretical study of tryptophan operon: Application in microbial technology. Biotechnol. Bioeng. 31, 117–24, 1988

H. P. Smits , J. Hauf , S. Müller , T. J. Hobley , F. K. Zimmermann , B. Hahn-Hägerdal , J. Nielsen , and L. Olsson : Simultaneous overepression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 2000

J. L. Snoep , L. P. Yomano , H. V. Westerhoff , and L. O. Ingram : Protein burden in Zymomonas mobilis: Negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141, 2329–37, 1995

A. Sorribas , and M. Cascante : Structure identifiability in metabolic pathways: Parameter estimation in models based on the power-law formalism. Biochem. J. 298, 303–11, 1994

G. Stephanopoulos : Metabolic enginnering. Biotechnol. Bioeng. 58, 119–20, 1998

G. Stephanopoulos , and J. Kelleher : How to make a superior cell. Science 292, 2024–5, 2001

N. Takiguchi , H. Shimizu , and S. Shioya : An online physiological-state recognition system for the lysine fermentation process – based on a metabolic reaction model. Biotechnol. Bioeng. 55, 170–81, 1997

W. M. Gulik , W. T. A. M. Laat , J. L. Vinke , and J. J. Heijnen : Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68(6), 602–18, 2000

E. O. Voit , and T. Radivoyevitch : Biochemical systems analysis of genome-wide expression data. Bioinformatics 16(11), 1023–37, 2000

G. Weng , U. S. Bhalla , and R. Iyenger : Complexity in biochemical signaling systems. Science 284, 92–6, 1999

S. C. Winter , and N. R. Buist : Cardiomyopathy in childhood, mitochondrial dysfunction, and the role of L-carnitine. Am. Heart J. 139(2, Pt 3), S63–9, 2000

L. Xie , and D. I. C. Wang : Material balance studies on animal cell metabolism using a stoichiometrically based reaction network. Biotechnol. Bioeng. 52, 579–90, 1996

Z.-L. Xiu , A.-P. Zeng , and W.-D. Deckwer : Model analysis concerning the effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria. J. Biotechnol. 58, 125–40, 1997

L. A. Zaslavskaia , J. C. Lippmeier , C. Shih , D. Ehrhardt , A. R. Grossman , and K. E. Apt : Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292, 2073–5, 2001


Full text views

Total number of HTML views: 0
Total number of PDF views: 73 *
Loading metrics...

Book summary page views

Total views: 49 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2017. This data will be updated every 24 hours.