Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T07:48:10.566Z Has data issue: false hasContentIssue false

15 - Novel Technologies in Studying Chronic Liver Disease

Published online by Cambridge University Press:  08 August 2009

Zobair M. Younossi
Affiliation:
Inova Fairfax Hospital, Annandale, VA
Get access

Summary

BACKGROUND

A “high-throughput revolution,” unfolding in modern clinical science, has led to a significant increase in knowledge describing genome, transcriptome, and proteome in complex human diseases, including chronic liver diseases.

Genome-based methods of the assessment of the cellular functioning highlight the differences between individuals known as Single Nucleotide Polymorphisms (SNPs). SNPs are a DNA sequence variations of a single nucleotide – A, T, C, or G – that are commonly present in a healthy human population. For example, two sequenced DNA fragments from different individuals, AATCCCTA and AATGCCTA, contain a difference in a single nucleotide. In this case, we usually say that there are two SNP alleles: C and G. SNPs may fall within coding sequences of genes or their noncoding, regulatory regions. SNPs that are not in protein coding regions may still have consequences for the alternative splicing of the mRNA, for the transcription factor binding to the promoter, or to the annealing of the gene-regulating noncoding RNA. Often, noncoding SNPs lead to the alterations in the cellular levels of the mRNA encoded for the particular protein, and, consequently, to the changes in the protein concentrations. As the concentrations of the proteins differ between individuals, humans differ in their degree of predisposition to various chronic diseases, including chronic liver diseases (CLD).

Transcriptomics and proteomics methods of cellular function assessment aim at the collection of the molecular “snapshots” reflecting relative levels of the mRNAs (transcriptome) or proteins (proteome) in the particular human tissues.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hu, H, Brzeski, H, Hutchins, J, Ramaraj, M, Qu, L, Xiong, R, et al. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research. Pharmacogenomics 2004; 5(7): 933–41.CrossRefGoogle Scholar
JJ, Berman. Nomenclature-based data retrieval without prior annotation: facilitating biomedical data integration with fast doublet matching. In Silico Biol 2005; 5(3): 313–22.Google Scholar
Shapiro, S, Gershtein, V, Elias, N, Zuckerman, E, Salman, N, Lahat, N. mRNA cytokine profile in peripheral blood cells from chronic hepatitis C virus (HCV)-infected patients: effects of interferon-alpha (IFN-alpha) treatment. Clin Exp Immunol 1998 Oct;114(1): 55–60.CrossRefGoogle Scholar
Goyal, A, Kazim, SN, Sakhuja, P, Malhotra, V, Arora, N, Sarin, SK. Association of TNF-beta polymorphism with disease severity among patients infected with hepatitis C virus. J Med Virol 2004 Jan;72(1):60–5.CrossRefGoogle Scholar
Dai, CY, Chuang, WL, Lee, LP, Chen, SC, Hou, NJ, Lin, ZY, Hsieh, MY, Hsieh, MY, Wang, LY, Chang, WY, ML, Yu. Associations of tumour necrosis factor alpha promoter polymorphisms at position -308 and -238 with clinical characteristics of chronic hepatitis C. J Viral Hepat 2006 Nov;13(11):770–4.CrossRefGoogle Scholar
Thio, CL, Goedert, JJ, Mosbruger, T, Vlahov, D, Strathdee, SA, O'Brien, SJ, Astemborski, J, Thomas, DL. An analysis of tumor necrosis factor alpha gene polymorphisms and haplotypes with natural clearance of hepatitis C virus infection. Genes Immun 2004 Jun;5(4):294–300.CrossRefGoogle Scholar
Saito, T, Ji, G, Shinzawa, H, Okumoto, K, Hattori, E, Adachi, T, Takeda, T, Sugahara, K, Ito, JI, Watanabe, H, Saito, K, Togashi, H, Ishii, K, Matsuura, T, Inageda, K, Muramatsu, M, Kawata, S. Genetic variations in humans associated with differences in the course of hepatitis C. Biochem Biophys Res Commun 2004 Apr 30;317(2):335– 41.CrossRefGoogle Scholar
Hwang, Y, Chen, EY, Gu, ZJ, Chuang, WL, Yu, ML, Lai, MY, Chao, YC, Lee, CM, Wang, JH, Dai, CY, Shian-Jy, Bey M, Liao, YT, Chen, PJ, Chen, DS. Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics 2006 Jul;7(5):697–709.CrossRefGoogle Scholar
Naito, M, Matsui, A, Inao, M, Nagoshi, S, Nagano, M, Ito, N, Egashira, T, Hashimoto, M, Mishiro, S, Mochida, S, Fujiwara, K. SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J Gastroenterol 2005 Apr;40(4):381–8.CrossRefGoogle Scholar
Suzuki, F, Arase, Y, Suzuki, Y, Tsubota, A, Akuta, N, Hosaka, T, Someya, T, Kobayashi, M, Saitoh, S, Ikeda, K, Kobayashi, M, Matsuda, M, Takagi, K, Satoh, J, Kumada, H. Single nucleotide polymorphism of the MxA gene promoter influences the response to interferon monotherapy in patients with hepatitis C viral infection. J Viral Hepat 2004 May;11(3):271–6.CrossRefGoogle Scholar
Hennig, BJ, Hellier, S, Frodsham, AJ, Zhang, L, Klenerman, P, Knapp, S, Wright, M, Thomas, HC, Thursz, M, Hill, AV. Association of low-density lipoprotein receptor polymorphisms and outcome of hepatitis C infection. Genes Immun 2002 Sep;3(6):359–67.CrossRefGoogle Scholar
Yee, LJ, Tang, J, Gibson, AW, Kimberly, R, Leeuwen, DJ, Kaslow, RA. Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection. Hepatology 2001 Mar;33(3):708–12.CrossRefGoogle Scholar
Romero-Gomez, M, Montes-Cano, MA, Otero-Fernandez, MA, Torres, B, Sanchez-Munoz, D, Aguilar, F, Barroso, N, Gomez-Izquierdo, L, Castellano-Megias, VM, Nunez-Roldan, A, Aguilar-Reina, J, Gonzalez-Escribano, MF. SLC11A1 promoter gene polymorphisms and fibrosis progression in chronic hepatitis C. Gut 2004 Mar;53(3): 446–50.CrossRefGoogle Scholar
Huang, H, Shiffman, ML, Cheung, RC, Layden, TJ, Friedman, S, Abar, OT, Yee, L, Chokkalingam, AP, Schrodi, SJ, Chan, J, Catanese, JJ, DU, Leong, Ross, D, Hu, X, Monto, A, McAllister, LB, Broder, S, White, T, Sninsky, JJ, Wright, TL. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology 2006 May;130(6):1679–87.CrossRefGoogle Scholar
Suneetha, PV, Goyal, A, Hissar, SS, Sarin, SK. Studies on TAQ1 polymorphism in the 3'untranslated region of IL-12P40 gene in HCV patients infected predominantly with genotype 3. J Med Virol 2006 Aug;78(8):1055–60CrossRefGoogle Scholar
Fishman, S, Lurie, Y, Peretz, H, Morad, T, Grynberg, E, Blendis, LM, Leshno, M, Brazowski, E, Rosner, G, Halpern, Z, Oren, R. Role of CYP2D6 polymorphism in predicting liver fibrosis progression rate in Caucasian patients with chronic hepatitis C. Liver Int 2006 Apr;26(3):279–84.CrossRefGoogle Scholar
Wang, H, Mengsteab, S, Tag, CG, Gao, CF, Hellerbrand, C, Lammert, F, Gressner, AM, Weiskirchen, R. Transforming growth factor-beta1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol 2005 Apr 7;11(13):1929–36.CrossRefGoogle Scholar
Aguilar-Reina, J, Ruiz-Ferrer, M, Pizarro, MA, Antinolo, G. The -670A > G polymorphism in the promoter region of the FAS gene is associated with necrosis in periportal areas in patients with chronic hepatitis C. J Viral Hepat 2005 Nov;12(6):568–73.CrossRefGoogle Scholar
Tseng, CS, Tang, KS, Lo, HW, Ker, CG, Teng, HC, Huang, CS. UDP-glucuro- nosyltransferase 1A7 genetic polymorphisms are associated with hepatocellular carcinoma risk and onset age. Am J Gastroenterol 2005 Aug;100(8):1758–63.CrossRefGoogle Scholar
Ho, SY, Wang, YJ, Chen, HL, Chen, CH, Chang, CJ, Wang, PJ, Chen, HH, Guo, HR. Increased risk of developing hepatocellular carcinoma associated with carriage of the TNF2 allele of the -308 tumor necrosis factor-alpha promoter gene. Cancer Causes Control 2004 Sep;15(7):657–63.CrossRefGoogle Scholar
Silvestri, L, Sonzogni, L, Silvestri, A, Gritti, C, Foti, L, Zavaglia, C, Leveri, M, Cividini, A, Mondelli, MU, Civardi, E, Silini, EM. CYP enzyme polymorphisms and susceptibility to HCV-related chronic liver disease and liver cancer. Int J Cancer 2003 Apr 10;104(3):310–7.CrossRefGoogle Scholar
FS, Wang. Current status and prospects of studies on human genetic alleles associated with hepatitis B virus infection. World J Gastroenterol 2003 Apr;9(4):641–4.Google Scholar
Lorenzo, A, Auguet, T, Vidal, F, Broch, M, Olona, M, Gutierrez, C, Lopez-Dupla, M, Sirvent, JJ, Quer, JC, Santos, M, Richart, C. Polymorphisms of alcohol-metabolizing enzymes and the risk for alcoholism and alcoholic liver disease in Caucasian Spanish women. Drug Alcohol Depend 2006 Sep 15;84(2):195–200.CrossRefGoogle Scholar
Campos, J, Gonzalez-Quintela, A, Quinteiro, C, Gude, F, Perez, LF, Torre, JA, Vidal, C. The -159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res 2005 Jul; 29(7):1206–13.CrossRefGoogle Scholar
Pastor, IJ, Laso, FJ, Romero, A, Gonzalez-Sarmiento, R. -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men. Alcohol Clin Exp Res 2005 Nov; 29(11):1928–31.CrossRefGoogle Scholar
Namikawa, C, Shu-Ping, Z, JR, Vyselaar, Nozaki, Y, Nemoto, Y, Ono, M, Akisawa, N, Saibara, T, Hiroi, M, Enzan, H, Onishi, S. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol 2004 May;40(5):781–6.CrossRefGoogle Scholar
Iwamoto, N, Ogawa, Y, Kajihara, S, Hisatomi, A, Yasutake, T, Yoshimura, T, Mizuta, T, Hara, T, Ozaki, I, Yamamoto, K. Gln27Glu beta2-adrenergic receptor variant is associated with hypertriglyceridemia and the development of fatty liver. Clin Chim Acta 2001 Dec; 314(1–2):85–91.CrossRefGoogle ScholarPubMed
Ohnishi, T, Ogawa, Y, Saibara, T, Nishioka, A, Kariya, S, Fukumoto, M, Onishi, S, Yoshida, S. CYP17 polymorphism and tamoxifen-induced hepatic steatosis. Hepatol Res 2005 Oct; 33(2):178–80.CrossRefGoogle Scholar
Niemi, M, Neuvonen, PJ, Hofmann, U, Backman, JT, Schwab, M, Lutjohann, D, BergmannK, , Eichelbaum, M, KivistoKT, . Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005;15: 303–9.CrossRefGoogle ScholarPubMed
Takane, H, Miyata, M, Burioka, N, Shigemasa, C, Shimizu, E, Otsubo, K, Ieiri, I. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet 2006;51(9):822-6.CrossRefGoogle Scholar
Shah, RR. Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics 2006 Sep;7(6):889–908. Review.CrossRefGoogle Scholar
Jain, KK. Applications of AmpliChip CYP450. Mol Diagn. 2005;9(3):119–27.Google Scholar
Clayton, TA, Lindon, JC, Cloarec, O, Antti, H, Charuel, C, Hanton, G, Provost, JP, LeNet, JL, Baker, D, Walley, RJ, JR, Everett, Nicholson, JK. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006;440:1073-7.Google ScholarPubMed
Zhang, LH, Ji, JF. Molecular profiling of hepatocellular carcinomas by cDNA microarray. World J Gastroenterol 2005 January 28; 11(4):463–8.CrossRefGoogle Scholar
Baranova, A, Schlauch, K, Gowder, S, Collantes, R, Chandhoke, V, Younossi, ZM. Microarray technology in the study of obesity and non-alcoholic fatty liver disease. Liver Int 2005 Dec;25(6):1091–6. Review.CrossRefGoogle Scholar
Yano, N, Habib, NA, Fadden, KJ, Yamashita, H, Mitry, R, Jauregui, H, Kane, A, Endoh, M, Rifai, A. Profiling the adult human liver transcriptome: analysis by cDNA array hybridization. J Hepatol 2001 Aug;35(2):178–86.CrossRefGoogle Scholar
Kaneko, S, Kobayashi, K. Clinical application of a DNA chip in the field of liver diseases. J Gastroenterol 2003 Mar; 38 Suppl 15:85–8.Google ScholarPubMed
Yamashita, T, Kaneko, S, Hashimoto, S, Sato, T, Nagai, S, Toyoda, N, Suzuki, T, Kobayashi, K, Matsushima, K. Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun 2001 Mar 30;282(2):647–54.CrossRefGoogle Scholar
Yamashita, T, Hashimoto, S, Kaneko, S, Nagai, S, Toyoda, N, Suzuki, T, Kobayashi, K, Matsushima, K. Comprehensive gene expression profile of a normal human liver. Biochem Biophys Res Commun 2000 Mar 5;269(1):110–6.CrossRefGoogle Scholar
Ruijter, JM, Kampen, AH, Baas, F. Statistical evaluation of SAGE libraries: consequences for experimental design. Physiol Genomics 2002 Oct 29; 11(2):37–44. Review.CrossRefGoogle Scholar
Yamamoto, M, Wakatsuki, T, Hada, A, Ryo, A. Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 2001 Apr; 250(1–2): 45–66. Review.CrossRefGoogle ScholarPubMed
Shackel, NA, Seth, D, Haber, PS, Gorrell, MD, McCaughan, GW. The hepatic transcriptome in human liver disease. Comp Hepatol. 2006 Nov 7; 5:6.CrossRefGoogle ScholarPubMed
Shackel, NA, Gorrell, MD, McCaughan, GW. Gene array analysis and the liver. Hepatology 2002 Dec;36(6):1313–25.CrossRefGoogle Scholar
Emmert-Buck, MR, Bonner, RF, Smith, PD, Chuaqui, RF, Zhuang, Z, Goldstein, SR, Weiss, RA, Liotta, . Laser capture microdissection. Science 1996 Nov 8; 274(5289):998–1001.CrossRefGoogle Scholar
Banks, R. E., Dunn, M. J., et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis–preliminary findings. Electrophoresis 1999;20(4–5): 689–700.3.0.CO;2-J>CrossRefGoogle Scholar
Harris, AJ, Dial, SL, Casciano, DA. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat Res 2004 May 18;549(1–2):79–99.CrossRefGoogle Scholar
Wong, LY, Hafeman, A, Boyd, VL, Bodeau, J, Lazaruk, KD, Liew, SN, Casey, P, Belonogoff, V, Bit, S, Sumner, C, Bredo, A, Ho, N, Chu, E, Olson, S, Rabkin, S, Maltchenko, S, Spier, G, Gilbert, D, Baumhueter, S. Assessing gene expression variation in normal human tissues using GeneTag, a novel, global, sensitive profiling method. J Biotechnol 2003 Mar 20;101(3):199–217.CrossRefGoogle Scholar
Rinn, J L, Rozowsky, J S, Laurenzi, I J et al. Major molecular differences between mammalian sexes are involved in drug metabolism and renal function. Dev Cell 2004; 6: 791–800.CrossRefGoogle ScholarPubMed
Delongchamp, RR, Velasco, C, Dial, S, Harris, AJ. Genome-wide estimation of gender differences in the gene expression of human livers: statistical design and analysis. BMC Bioinformatics 2005 Jul 15;6 Suppl 2:S13.CrossRefGoogle ScholarPubMed
Cox, , Schlabritz-Loutsevitch, N, Hubbard, GB, Nijland, MJ, McDonald, TJ, Nathanielsz, PW. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J Physiol 2006 Apr 1;572(Pt 1):59–66.CrossRefGoogle Scholar
Haugen, G, Hanson, M, Kiserud, T, Crozier, S, Inskip, H, Godfrey, KM. Fetal liver-sparing cardiovascular adaptations linked to mother's slimness and diet. Circ Res 2005;96:12–14.CrossRefGoogle ScholarPubMed
Haugen, G, Kiserud, T, Godfrey, K, Crozier, S & Hanson, M. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol 2004;24:599–605.CrossRefGoogle ScholarPubMed
Walters, KA, Smith, MW, Pal, S, Thompson, JC, Thomas, MJ, Yeh, MM, Thomas, DL, Fitzgibbon, M, Proll, S, Fausto, N, Gretch, DR, Carithers RL Jr, , Shuhart, MC, Katze, MG. Identification of a specific gene expression pattern associated with HCV-induced pathogenesis in HCV- and HCV/HIV-infected individuals. Virology 2006 Jul 5;350(2):453–64.CrossRefGoogle Scholar
Smith, MW, Walters, K.-A, Korth, M. J., Fitzgibbon, M., Proll, S.C., Thompson, J.C., Yeh, M.M., Shuhart, M.C., Furlong, J.C., Cox, P.P., Thomas, D.L., Phillips, J.D., Kushner, J.P., Fausto, N., Carithers, R.L., Katze, M.G.Gene expression patterns that correlate with hepatitis C and early progression to fibrosis in liver transplant patients. Gastroenterol 2006;130, 179–87.CrossRefGoogle Scholar
Einav, S., Koziel, M.J.Immunopathogenesis of hepatitis C virus in the immunosuppressed host. Transplant Infect Dis 2002;4, 85–92.CrossRefGoogle ScholarPubMed
Bieche, I, Asselah, T, Laurendeau, I, Vidaud, D, Degot, C, Paradis, V, Bedossa, P, Valla, DC, Marcellin, P, Vidaud, M. Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virol 2005 Feb 5; 332(1):130–44.CrossRefGoogle Scholar
Lau, DT, Luxon, BA, Xiao, SY, Beard, MR, Lemon, SM. Intrahepatic gene expression profiles and alpha-smooth muscle actin patterns in hepatitis C virus induced fibrosis. Hepatology 2005 Aug; 42(2):273–81.CrossRefGoogle Scholar
Okamoto, M, Utsunomiya, T, Wakiyama, S, Hashimoto, M, Fukuzawa, K, Ezaki, T, Hanai, T, Inoue, H, Mori, M. Specific gene-expression profiles of noncancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients. Ann Surg Oncol 2006 Jul;13(7):947–54.CrossRefGoogle Scholar
Ho, MC, Lin, JJ, Chen, CN, Chen, CC, Lee, H, Yang, CY, Ni, YH, Chang, KJ, Hsu, HC, Hsieh, FJ, Lee, PH. A gene expression profile for vascular invasion can predict the recurrence after resection of hepatocellular carcinoma: a microarray approach. Ann Surg Oncol 2006 Nov;13(11):1474–84.CrossRefGoogle Scholar
Mas, VR, Maluf, DG, Archer, KJ, Yanek, K, Williams, B, Fisher, RA. Differentially expressed genes between early and advanced hepatocellular carcinoma (HCC) as a potential tool for selecting liver transplant recipients. Mol Med 2006 Apr-Jun;12(4–6):97–104.Google Scholar
Murakami, Y, Yasuda, T, Saigo, K, Urashima, T, Toyoda, H, Okanoue, T, Shimotohno, K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006 Apr 20;25(17):2537–45.CrossRefGoogle Scholar
Tamori, A, Yamanishi, Y, Kawashima, S, Kanehisa, M, Enomoto, M, Tanaka, H, Kubo, S, Shiomi, S, Nishiguchi, S. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res 2005 Aug 15;11(16):5821–6.CrossRefGoogle Scholar
Kim, J W, Ye, Q, Forgues, M, Chen, Y, Budhu, A, Sime, J, Hofseth, LJ, Kaul, R, Wang, XW. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology 2004: 39: 518–27.CrossRefGoogle ScholarPubMed
Lederer, SL, Walters, KA, Proll, S, Paeper, B, Robinzon, S, Boix, L, Fausto, N, Bruix, J, Katze, MG. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis. Virol J 2006 Nov 22;3:98.CrossRefGoogle ScholarPubMed
Sreekumar, R, Rosado, B, Rasmussen, D, Charlton, M. Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis. Hepatology 2003 Jul; 38(1):244–51.CrossRefGoogle Scholar
Younossi, ZM, Gorreta, F, Ong, JP, Schlauch, K, Giacco, LD, Elariny, H, Meter, A, Younoszai, A, Goodman, Z, Baranova, A, Christensen, A, Grant, G, Chandhoke, V. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int 2005 Aug;25(4):760–71.CrossRefGoogle Scholar
Chiappini, F, Barrier, A, Saffroy, R, Domart, MC, Dagues, N, Azoulay, D, Sebagh, M, Franc, B, Chevalier, S, Debuire, B, Dudoit, S, Lemoine, A. Exploration of global gene expression in human liver steatosis by high-density oligonucleotide microarray. Lab Invest 2006 Feb;86(2):154–65.CrossRefGoogle Scholar
Tian, Q, Stepaniants, SB, Mao, M, Weng, L, Feetham, MC, Doyle, MJ, Yi, EC, DaiH, H,Thorsson, V, Eng, J, Goodlett, D, Berger, JP, Gunter, B, Linseley, PS, Stoughton, RB, Aebersold, R, Collins, SJ, Hanlon, WA, Hood, . Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 2004 Oct;3(10):960–9.CrossRefGoogle Scholar
Chen, G, Gharib, TG, Huang, CC, Taylor, JM, Misek, , Kardia, SL, Giordano, TJ, Iannettoni, MD, Orringer, MB, Hanash, SM, Beer, DG. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002 Apr;1(4):304–13.CrossRefGoogle Scholar
Craven, R. A., Selby, P. J., et al. (2004). Proteomics-Based Approaches: New Opportunities in Cancer Research, Humana Press.CrossRefGoogle Scholar
Berggren, K., Chernokalskaya, E., et al. (2000). “Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.” Electrophoresis 21: 2509–21.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Wulfkuhle, J.D., Liotta, L.A., et al. “Proteomic applications for the early detection of cancer.” Nat Rev Cancer 2003;3(4),: 267–75CrossRefGoogle Scholar
Sadygov, RG, Cociorva, D, Yates, JR 3rd. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 2004 Dec; 1(3):195–202.CrossRefGoogle Scholar
Lewis, JK, Wei, J, et al. Matrix-assisted Laser Desorption/Ionization Mass spectrometry in Peptide and Protein Analysis. Encyclopedia of Analytical Chemistry. R. A. Meyers. Chichester, John Wiley & Sons Ltd. 2000;5880–94.
Hutchens, T. W. and Yip, T. T.. Rapid Commun. Mass Spectrom 1993;7: 576–80.Google Scholar
Grus, FH, Joachim, SC, et al. “Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization-time of flight mass spectrometry.” Proteomics 2003;3(6): 957–61.CrossRefGoogle Scholar
Guo, J, Yang, EC, et al. “A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: Calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma.” Proteomics 2005;3(6): 957–61.Google Scholar
Bogdanov, B, Smith, RD. “Proteomics by FTICR mass spectrometry: top down and bottom up.” Mass Spectrom Reviews 2005;24(2): 168–200.CrossRefGoogle Scholar
Espina, V, Mehta, AI, Winters, ME, Calvert, V, Wulfkuhle, J, Petricoin, EF 3rd, Liotta, . Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 2003 Nov;3(11):2091–100. Review.CrossRefGoogle Scholar
Poetz, O., Schwenk, J. M., et al. “Protein microarrays: catching the proteome.” Mechanisms of Ageing and Development 2005;126: 161–70.CrossRefGoogle ScholarPubMed
Geho, DH, Liotta, , Petricoin, EF, Zhao, W, Araujo, RP. The amplified peptidome: the new treasure chest of candidate biomarkers. Curr Opin Chem Biol 2006 10(1):50-5.Google Scholar
Geho, DH, Jones, CD, Petricoin, EF, Liotta, . Nanoparticles: potential biomarker harvesters. Curr Opin Chem Biol 2006 10(1):56-61.Google Scholar
Tibes, R, Qiu, Y, Lu, Y, Hennessy, B, Andreeff, M, Mills, GB, Kornblau, SM. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006 Oct;5(10):2512–21.CrossRefGoogle Scholar
Zheng, J, Gao, X, Beretta, L, He, F. The Human Liver Proteome Project (HLPP) workshop during the 4th HUPO World Congress. Proteomics. 2006 Mar;6(6):1716–8.CrossRefGoogle Scholar
Cagney, G, Park, S, Chung, C, Tong, B, O'Dushlaine, C, Shields, DC, Emili, A. Human tissue profiling with multidimensional protein identification technology. J Proteome Res 2005 Sep-Oct;4(5):1757–67.CrossRefGoogle Scholar
Washburn, M. P.; Wolters, D.; Yates, J. R.III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol 2001;19:242–247.CrossRefGoogle Scholar
Zhang, X, Guo, Y, Song, Y, Sun, W, C, Yu, Zhao, X, Wang, H, Jiang, H, Li, Y, Qian, X, Jiang, Y, He, F. Proteomic analysis of individual variation in normal livers of human beings using difference gel electrophoresis. Proteomics 2006 Oct;6(19):5260–8.CrossRefGoogle Scholar
Gallagher, EP, Gardner, JL, Barber, DS. Several glutathione S-transferase isozymes that protect against oxidative injury are expressed in human liver mitochondria. Biochem Pharmacol 2006 71(11):1619-28CrossRefGoogle Scholar
Petushkova, NA, Kanaeva, IP, Lisitsa, AV, Sheremetyeva, GF, Zgoda, VG, Samenkova, NF, Karuzina, II, Archakov, AI. Characterization of human liver cytochromes P450 by combining the biochemical and proteomic approaches. Toxicol In Vitro 2006 20(6):966-74.Google Scholar
Zeindl-Eberhart, E, Haraida, S, Liebmann, S, Jungblut, PR, Lamer, S, Mayer, D, Jager, G, Chung, S, Rabes, HM. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatology 2004 Feb;39(2):540–9.CrossRefGoogle Scholar
Park, KS, Kim, H, Kim, NG, Cho, SY, Choi, KH, Seong, JK, Paik, YK. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 2002 Jun;35(6):1459–66.CrossRefGoogle Scholar
Park, KS, Cho, SY, Kim, H, Paik, YK. Proteomic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma. Int J Cancer 2002 Jan 10;97(2):261–5.CrossRefGoogle Scholar
Kim, W, Oe Lim, S, Kim, JS, Ryu, YH, Byeon, JY, Kim, HJ, Kim, YI, Heo, JS, Park, YM, Jung, G. Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res. 2003 Nov 15;9(15):5493–500.Google Scholar
Ai, J, Tan, Y, Ying, W, Hong, Y, Liu, S, Wu, M, Qian, X, Wang, H. Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 2006 Jan;6(2):538–46.CrossRefGoogle Scholar
Kim, KA, Lee, EY, Kang, JH, Lee, HG, Kim, JW, Kwon, DH, Jang, YJ, Yeom, YI, Chung, TW, Kim, YD, Yoon, Y, Song, EY. Diagnostic accuracy of serum asialo-alpha1-acid glycoprotein concentration for the differential diagnosis of liver cirrhosis and hepatocellular carcinoma. Clin Chim Acta 2006 Jul 15;369(1):46–51.CrossRefGoogle Scholar
Nabetani, T, Tabuse, Y, Tsugita, A, Shoda, J. Proteomic analysis of livers of patients with primary hepatolithiasis. Proteomics 2005 Mar;5(4):1043–61.CrossRefGoogle Scholar
Guedj, N, Dargere, D, Degos, F, Janneau, JL, Vidaud, D, Belghiti, J, Bedossa, P, Paradis, V. Global proteomic analysis of microdissected cirrhotic nodules reveals significant biomarkers associated with clonal expansion. Lab Invest 2006 Sep;86(9):951–8.CrossRefGoogle Scholar
Schwegler, EE, Cazares, L, Steel, LF, Adam, BL, Johnson, DA, Semmes, OJ, Block, TM, Marrero, JA, Drake, RR. SELDI-TOF MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma. Hepatology 2005 Mar;41(3):634–42.CrossRefGoogle Scholar
Paradis, V, Degos, F, Dargere, D, Pham, N, Belghiti, J, Degott, C, Janeau, JL, Bezeaud, A, Delforge, D, Cubizolles, M, Laurendeau, I, Bedossa, P. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology 2005 Jan;41(1):40–7.CrossRefGoogle Scholar
Ward, DG, Cheng, Y, N'Kontchou, G, Thar, TT, Barget, N, Wei, W, Martin, A, Beaugrand, M, Johnson, PJ. Preclinical and post-treatment changes in the HCC-associated serum proteome. Br J Cancer 2006 Nov 20;95(10):1379–83.CrossRefGoogle Scholar
Takashima, M, Kuramitsu, Y, Yokoyama, Y, Iizuka, N, Harada, T, Fujimoto, M, Sakaida, I, Okita, K, Oka, M, Nakamura, K. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics 2006 Jul;6(13):3894–900.CrossRefGoogle Scholar
Younossi, ZM, Baranova, A, Ziegler, K, Del Giacco, L, Schlauch, K, Born, TL, Elariny, H, Gorreta, F, VanMeter, A, Younoszai, A, Ong, JP, Goodman, Z, Chandhoke, V. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology 2005 Sep;42(3):665–74.CrossRefGoogle Scholar
Chan, K, Lucas, D, Hise, D, Schaefer, C, Xiao, Z, Janini, G, et al. Analysis of the human serum proteome. Clinical Proteomics 2004;101–226.CrossRefGoogle Scholar
Calvert, V, Collantes, R., Elariny, H, Afendy, A, Baranova, A., Mendoza, M., Goodman, Z., Liotta, L., Petricoin, EF, Younossi, ZM.A Systems Biology Approach to the Pathogenesis of Obesity-related Non Alcoholic Fatty Liver Disease Using Reverse Phase Protein Microarrays for Multiplexed Cell Signaling Analysis. Hepatology, in press.
Wang, Y, Xu, LY, Lam, KS, Lu, G, Cooper, GJ, Xu, A. Proteomic characterization of human serum proteins associated with the fat-derived hormone adiponectin. Proteomics 2006 Jul;6(13):3862–70.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×