Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T07:05:45.916Z Has data issue: false hasContentIssue false

2 - Interaction of ions with matter

Published online by Cambridge University Press:  12 January 2010

Nobutsugu Imanishi
Affiliation:
Kyoto University
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

When a beam of energetic particles enters a solid, several processes are initiated in the area of interaction. A fraction of the particles are backscattered from the surface layers, whilst the others are slowed down in the solid. The collision induces secondary processes such as recoil and sputtering of constituent atoms, defect formation, electron excitation and emission, and photon emission. Thermal and radiation-induced diffusion contributes to various phenomena of mixing of constituent elements, phase transformation, amorphization, crystallization, track formation, permanent damage, and so on. Ion implantation and sputtering changes the surface morphology; craters, facets, grooves, ridges, and pyramids and/or blistering, exfoliation, and a spongy surface may develop. All those processes are interrelated in a complicated way and several processes have to be included for the understanding of individual phenomena. Therefore, it is necessary to quantitatively understand the experimental observations and to have stringent design abilities for sophisticated applications of these versatile processes in the field of nanotechnology aiming at material modification, deposition, implantation, erosion, nano-fabrication, surface analysis, and so on.

This chapter is composed of basic processes and outline of theoretical models, ion implantation and defect formation, sputtering, and surface morphology. It is focused on the recent experimental findings in the field of interaction of ions with matter and theoretical models including various simulation codes explaining the complicated experimental phenomena.

Basic processes and outline of theoretical models

General remarks

An energetic ion incident on a solid sequentially collides with constituent atoms.

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 31 - 66
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

See for an example, Nastasi, M., Mayer, J. W. and Hirvonen, J. K.. Ion–Solid Interactions: Fundamentals and Applications (Cambridge: Cambridge University Press, 1996).CrossRefGoogle Scholar
Firsov, O. B.. Sov. Phys. JETP, 36 (1959), 1076–80.
Molière, G.. Z. Naturforsch., A, 2 (1947), 133–45.
Lindhard, J., Nielsen, V. and Scharff, M.. Mat. Fys. Medd. Dan Vid. Selsk., 36: 10 (1968).
Ziegler, J. F., Biersack, J. P. and Littmark, U.. The Stopping and Range of Ions in Solids (New York: Pergamon Press, 2003).Google Scholar
Bethe, H.. Ann. de Phys., 5 (1930), 325–400.CrossRef
Bloch, F.. Zeit. F. Phys., 81 (1933), 363–76.CrossRef
Lindhard, J., Scharff, M. and Schiott, H. E.. Mat. Fys. Medd. Dan Vid. Selsk., 33: 14 (1963).
Sigmund, P.. Phys. Rev., 184 (1969), 383–416.CrossRef
Robinson, M. T.. Phys. Rev. B, 40 (1989), 10717–26.CrossRef
F. Gonella and P. Mazzoldi. Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, ed. Nalwa, S. (San Diego, CA: Academic Press, 1999), pp. 81–158.Google Scholar
Gonella, F.. Nucl. Instr. Meth. B, 166–7 (2000), 831–9.CrossRef
Hosono, H.. Jpn. J. Appl. Phys., 32 (1993), 3892–4.CrossRef
Hosono, H. and Matsunami, N.. Phys. Rev. B, 48 (1993), 13469–73.CrossRef
Strobel, M., Heinig, K. -H. and Möller, W.. Nucl. Instr. Meth. B, 148 (1999), 104–9.CrossRef
Mattei, G., Marchi, G., Maurizio, C.et al. Phys. Rev. Lett., 90 (2003), 085502.CrossRef
White, C. W., Budai, J. D., Withrow, S. P.et al. Nucl. Instr. Meth. B, 141 (1998), 228–40.CrossRef
Klimenkov, M., Matz, W., Nepijko, S. A. and Lehmann, M.. Nucl. Instr. Meth. B, 179 (2001), 209–14.CrossRef
Takeguchi, M., Tanaka, M. and Furuya, K.. Appl. Surf. Sci., 146 (1999), 257–61.CrossRef
Wang, L. M., Wang, S. X., Ewing, R. C.et al. Mater. Sci. Eng. A, 286 (2000), 72–80.CrossRef
Klimenkov, M., Borany, J., Matz, W., Grötzschel, R. and Herrmann, F.. J. Appl. Phys., 91 (2002), 10062–7.CrossRef
Markwitz, A., Grötzschel, R., Heinig, K. -H., Rebohle, L. and Skorupa, W.. Nucl. Instr. Meth. B, 152 (1999), 319–24.CrossRef
Nakajima, A., Nakao, H., Ueno, H., Futatsugi, T. and Yokoyama, N.. Appl. Phys. Lett., 73 (1998), 1071–3.CrossRef
Heinig, K. H., Schmidt, B., Strobel, M. and Bernas, H.. Mater. Res. Soc. Symp. Proc., 647 (2001), O14.6.1.
Ignatova, V., Chakarov, I., Torrisi, A. and Licciardello, A.. Appl. Surf. Sci., 187 (2002), 145–53.CrossRef
Ikeda, M., Mitsusue, R., Imanishi, N.et al. Nucl. Instr. Meth. B, 209 (2003), 154–8.CrossRef
Canut, B., Fallavier, M., Marty, O. and Ramos, S. M. M.. Nucl. Instr. Meth. B, 164–5 (2000), 396–400.CrossRef
Shen, H., Brink, C., Hevelplund, P.et al. Nucl. Instr. Meth. B, 129 (1997), 203–6.CrossRef
Koster, M. and Urbassek, H. M.. Nucl. Instr. Meth. B, 202 (2003), 125–31.CrossRef
Nordlund, K., Keinonen, J., Ghaly, M. and Averback, R. S.. Nucl. Instr. Meth. B, 148 (1999), 74–82.CrossRef
Pelaz, L., Marqués,, L. A.Aboy, M.et al. Comp. Meter. Sci., 27 (2003), 1–5.CrossRef
Jaraiz, M., Pelaz, L., Rubio, E.et al. Mater. Res. Soc. Symp. Proc., 54 (1998), 532.
Pelaz, L., Gilmer, G. H., Jaraiz, M.et al. Appl. Phys. Lett., 73 (1998), 1421–3.CrossRef
Vieu, C., Gierak, J., Schneider, M., Assayag, G. B. and Marzin, J. Y.. J. Vac. Sci. Technol. B, 16 (1998), 1919–27.CrossRef
Behrisch, R.. (ed.) Sputtering by Particle Bombardment I, (Berlin: Springer-Verlag, 1981).CrossRefGoogle Scholar
Behrisch, R.. (ed.) Sputtering by Particle Bombardment II, (Berlin: Springer-Verlag, 1983).CrossRefGoogle Scholar
Behrisch, R. and Wittmaack, K.. (eds.) Sputtering by Particle Bombardment III, (Berlin: Springer-Verlag, 1991).CrossRefGoogle Scholar
Betz, G. and Wien, K.. Int. J. Mass Spec. Ion Process., 140 (1994), 1–110.CrossRef
Shulga, V. I.. Nucl. Instr. Meth. B, 195 (2002), 291–301.CrossRef
Rosencrance, S. W., Burnham, J. S., Sanders, D. E.et al. Phys. Rev. B, 52 (1995), 6006–14.CrossRef
Hautala, M.. Phys. Rev. B, 30 (1984), 5010–18.CrossRef
Yamamura, Y. and Takeuchi, W.. Nucl. Instr. Meth. B, 29 (1987), 461–70.
Posselt, M.. Radiat. Eff. Def. Solids, 130–1 (1994), 87–119.CrossRef
Yamamura, Y.. Nucl. Instr. Meth. B, 28 (1987), 17–26.CrossRef
Miyagawa, Y., Nakadate, H., Djurabekova, F. and Miyagawa, S.. Surf. Coatings Tech., 158–9 (2002), 87–93.
Miyagawa, Y. and Miyagawa, S.. Nucl. Instr. Meth. B, 190 (2002), 256–60.CrossRef
Eckstein, W.. Nucl. Instr. Meth. B, 171 (2000), 435–42.CrossRef
Gades, H. and Urbassek, H. M.. Nucl. Instr. Meth. B, 102 (1995), 261–71.CrossRef
Colla, T. J. and Urbassek, H. M.. Nucl. Instr. Meth. B, 152 (1999), 459–71.CrossRef
Jakas, M. M. and Bringa, E. M.. Phys. Rev. B, 62 (2000), 824–30.CrossRef
Bringa, E. M., Jakas, M. and Johnson, R. E.. Nucl. Instr. Meth. B, 164–5 (2000), 762–71.CrossRef
Jakas, M. M.. Nucl. Instr. Meth. B, 193 (2002), 727–33.CrossRef
Wucher, A. and Wahl, M.. Nucl. Instr. Meth. B, 115 (1996), 581–9.CrossRef
Staudt, C. and Wucher, A.. Phys. Rev. B, 66 (2002), 075419.CrossRef
Rehn, L. E., Birtcher, R. C., Donnelly, S. E., Baldo, P. M. and Funk, L.. Phys. Rev. Lett., 87 (2001), 207601.CrossRef
Urbassek, H. M.. Nucl. Instr. Meth. B, 31 (1988), 541–50.CrossRef
Bitensky, I. S. and Parilis, E. S.. Nucl. Instr. Meth. B, 21, (1987), 26–36.CrossRef
Bouneau, S., Brunelle, A., Della-Negra, S.et al. Phys. Rev. B, 65 (2002), 144106.CrossRef
Colla, T. J. and Urbassek, H. M.. Nucl. Instr. Meth. B, 164–5 (2000), 687–96.CrossRef
Colla, T. J., Aderjan, R., Kissel, R. and Urbassek, H. M.. Phys. Rev. B, 62 (2000), 8487–93.CrossRef
Ninomiya, S., Gomi, S., Imanishi, N.et al. Nucl. Instr. Meth. B, 209 (2003), 233–8.CrossRef
Stampfli, P.. Nucl. Instr. Meth. B, 107 (1996), 138–45.CrossRef
Stuart, S. J., Tutein, A. B. and Harrison, J. A. J. Chem. Phys., 112 (2000), 6472–86.CrossRef
Delcorte, A., Arezki, B., Bertrand, P. and Garrison, B. J.. Nucl. Instr. Meth. B, 193 (2002), 768–74.CrossRef
Barber, D. J., Frank, F. C., Moss, M., Steeds, J. W. and Tsong, I. S.. J. Mater. Sci., 8 (1973), 1030–40.CrossRef
Karen, A., Nakagawa, Y., Hatada, M.et al. Surf. Interf. Anal., 23 (1995), 506–13.CrossRef
MacLaren, S. W., Baker, J. E., Finnegan, N. L. and Loxton, C. M.. J. Vac. Sci. Technol. A, 10 (1992), 468–76.CrossRef
Brandy, R. M. and Harper, J. M. E.. J. Vac. Sci. Technol. A, 6 (1988), 2390–5.
Makeev, M. A., Cuerno, R. and Barabási, A. -L.. Nucl. Instr. Meth. B, 197 (2002), 185–227.CrossRef
Valbusa, U., Boragno, C. and Mongeo, F. Buatier. Materials Sci. Eng. C, 23 (2003), 201–9.CrossRef
Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U.. Phys. Rev. Lett., 81 (1998), 4184–7.CrossRef
Facsko, S., Dekorsy, T., Koerdt, C.et al. Science, 285 (1999), 1551–3.CrossRef
Facsko, S., Bobek, T., Kurz, H.et al. Appl. Phys. Lett., 80 (2002), 130–2.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×