Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T19:28:35.644Z Has data issue: false hasContentIssue false

12 - Ion beam implantation of surface layers

Published online by Cambridge University Press:  12 January 2010

Daniel Recht
Affiliation:
Princeton University
Nan Yao
Affiliation:
Princeton University
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

Ion implantation is a method for the direct, controlled introduction of impurities into solids. In ion implantation, a beam of dopant ions is aimed at a target material (the substrate) so that the ions are incident with sufficient energy to become permanently embedded. Because ion implantation is an essentially nonequilibrium process, it allows for the creation of concentration profiles that would be impossible to achieve using equilibrium techniques such as diffusion. The advent of focused ion beam (FIB) systems spawned a host of new applications for ion implantation. The ability to create high-resolution (feature sizes of order 10 nm [1, 2]) doping configurations without the use of a mask allows not only for rapid prototyping, but also for unique devices whose fabrication would not otherwise be feasible. FIB implantation has been used to make a wide variety of experimental devices including low-dimensional transistors, single photon detectors, subwavelength optics, and quantum computers.

This chapter covers the basics of ion implantation in general and of FIB implantation in particular. Next it considers the challenge of measuring the ion dose introduced into the substrate. It then discusses the major parameters relevant to the FIB implantation process and presents a sample of their complex interrelationships. Finally, it describes the aforementioned applications of FIB implantation to the fabrication of novel devices.

Basics

In the years since its development in the 1950s [3], ion implantation has become the preferred method for the introduction of impurities into solid substrates.

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 318 - 336
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gierak, J., Vieu, C., Launois, H., Assayag, G. Ben and Septier, A.. Appl. Phys. Lett., 70:15 (1997), 2049–51.CrossRef
Huey, B. D. and Langford, R. M.. Nanotechnology, 14: (2003) 409–12.CrossRef
Dearnaley, G.. Rep. Prog. Phys., 32:2 (1969), 405–91.CrossRef
Orloff, J., Utlaut, M. and Swanson, L.. High Resolution Focused Ion Beams (New York: Kluwer Academic/Plenum Publishers, 2003).CrossRefGoogle Scholar
Rubin, L.. Advanced applications of ion implantation and their impacts on vacuum technology. AVEM International Fall Seminar, 3 October, 2000, Sheraton Boston Hotel, Boston, MA.Google Scholar
S. Richards, B. Cook, P. Eide, B. Flint and D. Gilbert. A new dose controller for the genus 1510/1520/Kestrel MeV ion implanter. Proc. 1998 Int. Conf. Ion Implantation Technology (1998).
J. T. Scheuer, A. Renau, J. C. Olson et al. VIISta 810 dosimetry performance. Conf. Ion Implantation Technology (2000).
Chen, L.et al. Proc. 10th Int. Conf. Photoacoustic and Photothermal Phenomena, AIP Conf. Proc., 463. (1999), 368–71.CrossRef
Smith, W. L., Rosencwaig, A. and Willenborg, D. L.. Appl. Phys. Lett., 47:6 (1985), 584.CrossRef
Salnick, A. and Opsal, J.. J. Appl. Phys., 91:5 (2002), 2874.CrossRef
M. Sano, M. Harada, M. Kabasawa, F. Sato and P. Sugitani. Dose monitoring of heavy ion implantation by Therma-Wave signal. Conf. Ion Implantation Technology (2002).
S. F. Corcoran, J. L. Hunter and A. Budrevich. SIMS characterization of ion implanted materials: current status and future opportunities. Conf. Ion Implantation Technology (1999).
Engineeringtalk Editorial Team. Low-wavelength Laser is Fine for Microstructures. Laser Lines (Industrial and Medical), 27 February (2002), see: www.engineeringtalk.com/news/las/las103.html
EUV generation, see: www.thales-laser.com/appli_euvgeneration.html
Dunn, J., et al. Phys. Rev. Lett., 84 (2000), 4834.CrossRef
Arnold, G. W. and Borders, J. A.. J. Appl. Phys., 48:4 (1977), 1488.CrossRef
Ion Beam Analysis and Characterization Center, University of Minnesota, see: http://resolution.umn.edu/InstDesc/IBAdesc.html
Bourdeault, G., Jeyes, C., Wendler, E., Nejim, A., Webb, R. P. and Watjen, U.. Surf. Interface Anal., 33:6 (2002), 478–86.
Takai, M.. Nucl. Instr. Methods Phys. Res. Section B, 96:1–2 (1995), 179.CrossRef
P. G. Coleman, C. P. Burrows, A. P. Knights et al. A new tool for nondestructive monitoring of ion implantation. Conf. Ion Implantation Technology (2000).
Knights, A. P. and Coleman, P. G.. Mater. Sci. Forum 445–446 (2004), 123–5.CrossRef
Razeghi, M.. Fundamentals of Solid State Engineering (New York: Kluwer Academic Publishers, 2002).Google Scholar
Ziegler, J. F., Biersack, J. P. and Littmark, U.. The Stopping and Ranges of Ions in Matter, Vol. 1. (New York: Pergamon, 1985), p. 321.CrossRefGoogle Scholar
Jager, P. W. H. D., Hagen, C. W. and Kruit, P.. Microelectron. Eng., 30: (1996), 353–6.CrossRef
Fu, Y. and Bryan, K. A. N.. Opt. Eng., 39:11 (2000), 3008–13.
S. T. Nakagawa, Y. Hada and L. Thome. Proc. 1998 Int. Conf. Ion Implantation Technology (1998), pp. 767–70.
Nakagawa, S.. Nucl. Instrum. Methods Phys. Res., Section B, 153:1–4 (1999), 446–51.CrossRef
Hausmann, S., Bischoff, L., Teichert, J., Voelskow, M. and Moller, W.. J. Appl. Phys., 87:1 (2000), 57–62.CrossRef
Hausmann, S., Bischoff, L., Teichert, J.et al. Appl. Phys. Lett., 72:21 (1998), 2719–21.CrossRef
Tamura, M., Shukuri, S., Ishitani, T., Ichikawa, M. and Doi, T.. Jpn. J. Appl. Phys., Part 2, 23:6 (1984), L417–L420.CrossRef
Ion implantation damage annealing, see: www.semiconfareast.com/implant-annealing.htm
Lezec, H., Musil, C., Melngailis, J., Mahoney, L. and Woodhouse, J.J. Vac. Sci. Technol., B, 9:5 (1991), 2709–13.CrossRef
Orth, A., et al. Appl. Phys. Lett., 69 (1996), 1906–8.CrossRef
Posselt, M., Teichert, J., Bischoff, L. and Hausmann, S.. Nucl. Instrum. Methods Phys. Res., Section B, 178 (2001), 170–5.CrossRef
Kim, H., Noda, T. and Sakaki, H.. J. Vac. Sci. Technol., B, 16:4 (1998), 2547–50.CrossRef
Dotsch, U. and Wieck, A. D.. Nucl. Instrum. Methods Phys. Res., Section B, 139:1–4 (1998), 12–19.CrossRef
Reuter, D., Meier, C., Seekamp, A. and Wieck, A. D.. Physica E, 13:2–4 (2002), 938–41.CrossRef
Shiokawa, T., Kim, P. H., Toyoda, K.et al. J. Vac. Sci. Technol., B, 1:4 (1983), 1117–20.CrossRef
Marco, A. J. and Melngailis, J.. Solid-State Electron., 48:10–11 (2004), 1833–6.CrossRef
Vitzethum, M., Schmidt, R., Kiesel, P.et al. Physica E, 12:1–4 (2002), 570–3.CrossRef
Ocelic, N. and Hillenbrand, R.. Nature Mater., 3:9 (2004), 606–9.CrossRef
Barnes, W. K., Dereux, A. and Ebbesen, T. W.. Nature, 424:6950 (2003), 824–30.CrossRef
Konig, H.et al. Appl. Phys. Lett., 75:11 (1999), 1491–3.CrossRef
Reithmaier, J. P. and Forchel, A.. IEEE J. Sel. Top. Quantum Electron., 4:4 (1998), 595–605.CrossRef
Reithmaier, J. P., Höfling, E., Orth, A. and Forchel, A.. AIP Conf. Proc., 392:1 (1997), 1009–12.CrossRef
Hollenberg, L. C. L., Dzurak, A. S., Wellard, C.et al. Phys. Rev. B, 69:11 (2004), 113301-1–11301-4.
Matsukawa, T., Shinada, T., Fukai, T. and Ohdomari, I.. J. Vac. Sci. Technol. B, 16:4 (1998), 2479–83.CrossRef
Schenkel, T., Persaud, A., Park, S. J.et al. J. Vac. Sci. Technol. B, 20:6 (2002), 2819–23.CrossRef
McKinnon, R. P., Stanley, F. E., Lumpkin, N. E.et al. Smart Mater. Struct., 11:5 (2002), 735–40.CrossRef
Buehler, T. M., McKinnon, R. P., Lumpkin, N. E.et al. Nanotechnology, 13:5 (2002), 686–90.CrossRef
A. S. Dzurak, L. C. L. Hollenberg, D. N. Jamieson et al. arXiv: cond-mat (2003), p. 0306265.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×