Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T21:10:59.710Z Has data issue: false hasContentIssue false

3 - Gas assisted ion beam etching and deposition

Published online by Cambridge University Press:  12 January 2010

Hyoung Ho (Chris) Kang
Affiliation:
IBM Microelectronics, East Fishkill, NY
Clive Chandler
Affiliation:
FEI Company, 5350 NE Dawson Creek Drive Hillsboro
Matthew Weschler
Affiliation:
FEI Company, Hillsboro
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

Fundamental to the area of nanotechnology is the ability to modify surfaces. There are many methods available to researchers to achieve surface modification over large areas but there are limited choices for small samples or sections of samples. The main method for small sample manipulation is via focused ion beams (FIB). These devices enable the user to define complex patterns covering hundreds of square micrometers all the way down to submicrometer feature formation.

FIB enables various materials to be deposited such as conductors, insulators and carbon based materials. FIB also enables users to etch materials selectively. FIB induced deposition and etching has been widely used in the field of mask repair, circuit modification, formation of contacts in semiconductors, atomic force microscope (AFM) tip fabrication, maskless lithography, and TEM sample preparation.

In this chapter, the materials of deposition, the basic concepts of focused ion beam induced deposition and etching, their parameters, and application examples will be introduced. The material presented will mostly draw from work with Ga+ ion beams but other ion sources will also exhibit similar behavior with the addition of gas.

Gas assisted focused ion beam etching

The wide use of FIB systems as micro-machining tools stems from their ability to precisely mill away material from a localized area. This may be done to expose buried structures for failure analysis, as in the semiconductor field, or to create free standing structures for nanotechnology.

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 67 - 86
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Winters, H. F. and Coburn, J. W.. Surface Sci. Rep., 14 (1992), 161–270.CrossRef
Joyce, S., Langan, J. G. and Steinfeld, J. I.. Surf. Sci., 195 (1988), 270–82.CrossRef
Loudiana, M. A. and Dickinson, J. T.. J. Vac. Sci. Technol. B, 3 (1985), 1393–6.CrossRef
Tu, Y. Y., Chuang, T. J. and Winters, H. F.. Phys. Rev. B, 23 (1981), 823–35.CrossRef
Winters, H. F.. J. Vac. Sci. Technol. B, 1 (1983), 927–31.CrossRef
J. J. Hren. Introduction to Analytical Electron Microscopy, ed. Hren, J. J., Goldstein, J. I. and Joy, D. C. (New York: Plenum, 1979), p. 481.CrossRefGoogle Scholar
Stark, T. J., Shedd, G. M., Vitarelli, J., Griffis, D. P. and Russell, P. E.. J. Vac. Sci. Technol. B, 13 (1995), 2565–9.CrossRef
Gerlach-Meyer, U., Coburn, J. W. and Kay, E.. Surf. Sci., 103 (1981), 177–88.CrossRef
Orloff, J., Utlaut, M. and Swanson, L.. High Resolution Focused Ion Beams (New York: Plenum, 2003).CrossRefGoogle Scholar
Dubner, A. D. and Wagner, A.. J. Appl. Phys., 66 (1989), 870–4.CrossRef
Gamo, K., Takakura, N., Samoto, N., Shimizu, R. and Namba, S.. Jpn. J. Appl. Phys., 23 (1984), L293–5.CrossRef
Platinum Deposition Technical Note (Hillsboro, OR: FEI Company, 2003), PN 4035 272 21851-B.
Young, R. J., Cleaver, J. R. A. and Ahmed, H.. J. Vac. Sci. Technol. B, 11 (1993), 234–41.CrossRef
Casey, J. D. Jr, Doyle, A. F., Lee, R. G. and Stewart, D. K.. Microelectron. Eng., 24 (1994), 43–50.CrossRef
M. L. Thayer. Tutorial. IEEE Int. Reliability Phys. Symp. (1996).
Yamaguchi, A. and Nishikawa, T.. J. Vac. Sci. Technol. B, 13 (1995), 962–6.CrossRef
Young, R. J.. Vacuum, 44 (1993), 353–6.CrossRef
Gross, M. E., Harriott, L. R. and Opila, R. L. Jr. J. Appl. Phys., 68 (1990), 4820–4.CrossRef
Kubena, R. L., Stratton, F. P. and Mayer, T. M.. J. Vac. Sci. Technol. B, 6 (1988), 1865–8.CrossRef
Gamo, K., Takehara, N., Hamaura, Y., Tomita, M. and Namba, S.. Microelectron. Eng., 5 (1986), 163–70.CrossRef
Stewart, D. K., Stern, L. A. and Morgan, J. C.. Electron Beam X-ray and Ion Beam Technologies: Submicrometer Lithographies VIII, Proc. SPIE, 1089 (1989), 18–25.
Xu, Z., Kosugi, T., Gamo, K. and Namba, S.. J. Vac. Sci. Technol. B, 7 (1989), 1959–62.CrossRef
Shedd, G. M., Dubner, A. D., Thompson, C. V. and Melngailis, J.. J., Appl. Phys. Lett., 49 (1989), 1584–6.CrossRef
Blauner, P. G., Ro, J. S., Butt, Y. and Melngailis, J.. J. Vac. Sci. Technol. B, 7 (1989), 609–17.CrossRef
Tao, T., Ro, J. S., Melngailis, J., Xue, Z. and Kaesz, H.. J. Vac. Sci. Technol. B, 8 (1990), 1826–9.CrossRef
Puretz, J. and Swanson, L. W.. J. Vac. Sci. Technol. B, 10 (1992), 2695–8.CrossRef
Ratta, A. D. Della, Melngailis, J. and Thompson, C. V.. J. Vac. Sci. Technol. B, 11 (1993), 2195–9.CrossRef
Harriott, L. R., Cummings, K. D., Gross, M. E. and Brown, W. L.. Appl. Phys. Lett., 49 (1986), 1661–2.CrossRef
Young, R. J. and Puretz, J.. J. Vac. Sci. Technol. B, 13 (1995), 2576–9.CrossRef
Komano, H., Ogawa, Y. and Takigawa, T.. Jpn. J. App. Phys., 28 (1989), 2372–5.CrossRef
Stewart, D. K., Doyle, A. F. and Casey, J. D. Jr. Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V, Proc. SPIE, 2437 (1995), 276–307.CrossRef
Heard, P. J. and Prewett, P. D.. Microelectron. Eng., 11 (1990), 421–5.CrossRef
Carbon Deposition Technical Note (Hillsboro, OR: FEI Company, 2003), PN 4035 272 27241-A.
Shiokawa, T., Aoyagi, Y., Kim, P. H., Toyoda, K. and Namba, S.. Jpn. J. Appl. Phys., 23 (1984), L232–3.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×