Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-14T11:11:26.193Z Has data issue: false hasContentIssue false

17 - Contribution of S. Hecht

Published online by Cambridge University Press:  22 January 2010

Bjørn Stabell
Affiliation:
Universitetet i Oslo
Ulf Stabell
Affiliation:
Universitetet i Oslo
Get access

Summary

HECHT'S PHOTOCHEMICAL THEORY

The finding of Loeser (1904) that cones also had the ability to increase their sensitivity during early dark adaptation was confirmed by Hecht (1921/1922). He found that cones could increase their sensitivity markedly even during the first few seconds after bleaching.

More importantly, however, Hecht developed a photochemical theory for dark and light adaptation of rods and cones that had a strong influence on a whole generation of research workers. Certainly, he has played a central role in the developmental history of the duplicity theory. In a series of papers he provided an array of evidence supporting his photochemical theory (see Hecht, 1919/1920a, b, c, 1921/1922). In its essence and in its most simple version, the theory runs as follows: light acts on a photosensitive substance S and decomposes it into two precursors called P and A. The sensitivity of the eye, then, depends on the concentration of these precursors, not on the quantity of the photosensitive substance S. Thus, the model states that the amount of fresh precursors necessary for a threshold response is always a constant fraction of the amount of the precursors already present in the system. Hence, dark adaptation was thought to depend on the regular decrease in the concentration of the residual precursors present in the sensory system. This decrease was assumed to proceed according to the dynamics of a bimolecular reaction, to be independent of light stimulation, and, in accord with Kühne's (1879) ‘Optochemische’ hypothesis, to result in a reformation of the photosensitive substance S. Thus, the model states that the amount of fresh precursors necessary for a threshold response is always a constant fraction of the amount of the precursors already present in the system.

Type
Chapter
Information
Duplicity Theory of Vision
From Newton to the Present
, pp. 135 - 139
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×