Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T03:26:26.273Z Has data issue: false hasContentIssue false

24 - Evaporation

Published online by Cambridge University Press:  05 August 2012

Craig M. Bethke
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

The process of evaporation, including transpiration (evaporation from plants), returns to the atmosphere more than half of the water reaching the Earth's land surface; thus, it plays an important role in controlling the chemistry of surface water and groundwater, especially in relatively arid climates. Geochemists study the evaporation process to understand the evolution of water in desert playas and lakes as well as the origins of evaporite deposits. They also investigate environmental aspects of evaporation (e.g., Appelo and Postma, 1993), such as its effects on the chemistry of rainfall and, in areas where crops are irrigated, the quality of groundwater and runoff.

To model the chemical effects of evaporation, we construct a reaction path in which H2O is removed from a solution, thereby progressively concentrating the solutes. We also must account in the model for the exchange of gases such as CO2 and O2 between fluid and atmosphere. In this chapter we construct simulations of this sort, modeling the chemical evolution of water from saline alkaline lakes and the reactions that occur as seawater evaporates to desiccation.

Springs and saline lakes of the Sierra Nevada

We choose as a first example the evaporation of spring water from the Sierra Nevada mountains of California and Nevada, USA, as modeled by Garrels and Mackenzie (1967). Their hand calculation, the first reaction path traced in geochemistry (see Chapter 1), provided the inspiration for Helgeson's (1968 and later) development of computerized methods for reaction modeling.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Evaporation
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Evaporation
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Evaporation
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.027
Available formats
×