Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T03:39:14.297Z Has data issue: false hasContentIssue false

25 - Sediment diagenesis

Published online by Cambridge University Press:  05 August 2012

Craig M. Bethke
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Diagenesis is the set of processes by which sediments evolve after they are deposited and begin to be buried. Diagenesis includes physical effects such as compaction and the deformation of grains in the sediment (or sedimentary rock), as well as chemical reactions such as the dissolution of grains and the precipitation of minerals to form cements in the sediment's pore space. The chemical aspects of diagenesis are of special interest here.

Formerly, geologists considered chemical diagenesis to be a process by which the minerals and pore fluid in a sediment reacted with each other in response to changes in temperature, pressure, and stress. As early as the 1960s and especially since the 1970s, however, geologists have recognized that many diagenetic reactions occur in systems open to groundwater flow and mass transfer. The reactions proceed in response to a supply of reactants introduced into the sediments by flowing groundwater, which also serves to remove reaction products.

Hay (1963, 1966), in studies of the origin of diagenetic zeolite, was perhaps the first to emphasize the effects of mass transport on sediment diagenesis. He showed that sediments open to groundwater flow followed reaction pathways different from those observed in sediments through which flow was restricted. Sibley and Blatt (1976) used cathodoluminescence microscopy to observe the Tuscarora orthoquartzite of the Appalachian basin. The almost nonporous Tuscarora had previously been taken as a classic example of pressure welding, but the microscopy demonstrated that the rock is not especially well compacted but, instead, tightly cemented. The rock consists of as much as 40% quartz (SiO2) cement that was apparently deposited by advecting groundwater.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sediment diagenesis
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sediment diagenesis
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sediment diagenesis
  • Craig M. Bethke, University of Illinois, Urbana-Champaign
  • Book: Geochemical and Biogeochemical Reaction Modeling
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619670.028
Available formats
×