Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T07:27:37.518Z Has data issue: false hasContentIssue false

2 - Sleep in insects

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Fond as the butterflies are of the light and sun, they dearly love their beds. Like most fashionable people who do nothing, they stay there very late. But their unwillingness to get up in the morning is equalled by their desire to leave the world and its pleasures early and be asleep in good time. They are the first of all our creatures to seek repose.

The Naturalist on the Thames, C. J. Cornish, 1902, p. 44

From these charming observations of insect quiescence made more than a century ago to current molecular and genetic studies in the fruit fly, the study of insect sleep during the last decade has evolved into a sophisticated field of inquiry for dissecting the potential cellular mechanisms controlling sleep in living organisms. The fundamental question of why we sleep continues to be unanswered, but it is likely that sleep in living organisms evolved from ancient origins (Allada & Siegel, 2008; Siegel, 2005). By examining insects, which have a long phylogenetic history, clues to the function and purpose of sleep may be discovered. Sleep in mammalian species such as humans, cats, and rodents has been well studied (Zeplin, Siegel, & Tobler, 2005). In contrast, there are relatively few systematic investigations of nonmammalian vertebrate sleep, and the literature is even sparser for invertebrate species. Insect sleep, with rare notable exceptions, is almost completely unstudied.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 34 - 56
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosto, J., Choi, J. C., Parisky, K. M., Stilwell, G., Rosbash, M., & Griffith, L. C. (2008). Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nature Neuroscience, 11, 354–359.CrossRefGoogle ScholarPubMed
Allada, R., & Siegel, J. M. (2008). Unearthing the phylogenetic roots of sleep. Current Biology, 18(15), R670–R679.CrossRefGoogle Scholar
Amlander, C. J., & Ball, N. J. (1994). Avian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 81–94). Philadelphia: W. B. Saunders.Google Scholar
Andretic, R., & Shaw, P. J. (2005). Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods in Enzymology, 393, 759–772.CrossRefGoogle ScholarPubMed
Andretic, R., van Swinderen, B., & Greenspan, R. J. (2005). Dopaminergic modulation of arousal in Drosophila. Current Biology, 15, 1165–1175.CrossRefGoogle ScholarPubMed
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.CrossRefGoogle ScholarPubMed
Brown, R., Piscopo, S., DeStefan, R., & Giuditta, A. (2006). Brain and behavioral evidence for rest–activity cycles in Octopus vulgaris. Behavioral Brain Research., 172, 355–359.CrossRefGoogle ScholarPubMed
Bushey, D., Huber, R., Tononi, G., & Cirelli, C. (2007). Drosophila hyperkinetic mutants have reduced sleep and impaired memory. Journal of Neuroscience, 27, 5384–5393.CrossRefGoogle ScholarPubMed
Cirelli, C. (2003). Searching for sleep mutants of Drosophila melanogaster. BioEssays, 25, 940–949.CrossRefGoogle ScholarPubMed
Cirelli, C., Bushey, D., Hill, S., Huber, R., Kreber, R., Ganetzky, B., et al. (2005). Reduced sleep in Drosophila Shaker mutants. Nature, 434, 1087–1092.CrossRefGoogle ScholarPubMed
Cornish, C. J. (1902). The naturalist on the Thames. London: Seeley and Col, Ltd.Google Scholar
Crocker, A., & Sehgal, A. (2008). Octopamine regulates sleep in Drosophila through protein kinase A–dependent mechanisms. Journal of Neuroscience, 28, 9377–9385.CrossRefGoogle ScholarPubMed
Denlinger, D. L., Giebultowicz, J. M., & Saunders, D. S. (Eds.). (2001). Insect timing: Circadian rhythmicity to seasonality. New York: Elsevier.
Dew, M. A., Hoch, C. C., Buysse, D. J., Monk, T. H., Begley, A. E., Houck, P. R., et al. (2003). Healthy older adults' sleep predicts all-cause mortality at 4 to 19 years of follow-up. American Psychosomatic Society, 65, 63–73.CrossRefGoogle Scholar
Donlea, J. M., Ramanan, N., & Shaw, P. J. (2009) Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science, 324, 105–108.CrossRefGoogle ScholarPubMed
Eban-Rothschild, A. D., & Bloch, G. (2008). Differences in the sleep architecture of forager and young honeybees (Apis mellifera). Journal of Experimental Biology, 211(15), 2408–2416.CrossRefGoogle Scholar
Engel, M., & Grimaldi, D. (2004). New light shed on the oldest insect. Nature, 427, 627–630.CrossRefGoogle ScholarPubMed
Farris, S. M., Robinson, G. E., & Fahrbach, S. E. (2001). Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. Journal of Neuroscience, 27, 6395–6404.CrossRefGoogle Scholar
Foltenyi, K., Greenspan, R. J., & Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neuroscience, 10, 1160–1167.CrossRefGoogle ScholarPubMed
Ganguly-Fitzgerald, I., Donlea, J., & Shaw, P. J. (2006). Waking experience affects sleep need in Drosophila. Science, 313, 1775–1780.CrossRefGoogle ScholarPubMed
Gilestro, G., Tononi, G. & Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science, 324, 109–112.CrossRefGoogle ScholarPubMed
Goldschmid, R., Holzman, R., Weihs, D., & Genin, A. (2004). Aeration of corals by sleep swimming fish. Limmol. Oceanography, 49, 1832–1839.CrossRefGoogle Scholar
Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. Cambridge: Cambridge University Press.Google Scholar
Harbison, S. T., & Sehgal, A. (2008). Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics, 178, 2341–2360.CrossRefGoogle ScholarPubMed
Hartse, K. M. (1994). Sleep in insects and nonmammalian vertebrates. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 95–104). Philadelphia: W. B. Saunders.Google Scholar
Hastings, M. H., & Herzog, . (2004). Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. Journal of Biological Rhythms, 19, 400–413.CrossRefGoogle ScholarPubMed
Haufe, W. O. (1963). Ethological and statistical aspects of a quantal response in mosquitoes to environmental stimuli. Behaviour, 20, 221–241.CrossRefGoogle Scholar
Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., et al. (2000a). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138.CrossRefGoogle ScholarPubMed
Hendricks, J. C., Kirk, D., Panckeri, K. A., Miller, M. S., & Pack, A. I. (2003). Modafinil maintains waking in the fruit fly Drosophila melanogaster. Sleep, 26, 139–146.CrossRefGoogle ScholarPubMed
Hendricks, J. C., Sehgal, A., & Pack, A. (2000b). The need for a simple animal model to understand sleep. Progress in Neurobiology, 61, 339–351.CrossRefGoogle ScholarPubMed
Hendricks, J. C., Williams, J. A., Panckeri, K., Kirk, D., Tello, M., Yin, J. C.-P., et al. (2001). A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neuroscience, 4, 1108–1115.CrossRefGoogle ScholarPubMed
Hill, R. (1865). Zoology: The sleep of insects. In Wells, D. A. (Ed.), Annual of scientific discovery: Year book of facts and science and art for 1864 (pp. 278–282). Boston: Gould and Lincoln.Google Scholar
Huber, R., Hill, S., Holladay, C., Biesiadecki, M., Tononi, G., & Cirelli, C. (2004). Sleep homeostasis in Drosophila melanogaster. Sleep, 27(4), 628–639.CrossRefGoogle ScholarPubMed
Iber, C., Ancoli Israel, S., Chesson, A., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology, and technical specifications (1st ed.). Westchester, IL: American Academy of Sleep Medicine.Google Scholar
Joiner, W. J., Crocker, A., White, B. H., & Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature, 441, 757–760.CrossRefGoogle ScholarPubMed
Jones, S., Pfister-Genskow, M., Cirelli, C., & Benca, R. M. (2008). Changes in brain gene expression during migration in the white-crowned sparrow. Brain Research Bulletin, 76, 536–544.CrossRefGoogle ScholarPubMed
Jouvet, M. (1969). Biogenic amines and the states of sleep. Science, 163, 32–41.CrossRefGoogle Scholar
Kaiser, W. (1988). Busy bees need rest, too. Journal of Comparative Physiology, A: Sensory, Neural, and Behavioral Physiology, 163, 565–584.CrossRefGoogle Scholar
Kaiser, W. (1995). Rest at night in some solitary bees – A comparison with the sleep-like state of honey bees. Apidologie, 26, 213–230.CrossRefGoogle Scholar
Kaiser, W. (2002). Honey bee sleep is different from chill coma – Behavioural and electrophysiological recordings in forager honey bees. Journal of Sleep Research (Suppl.), 11, 115.Google Scholar
Kaiser, W., Faltin, T., & Bayer, G. (2002). Sleep in a temperature gradient: Behavioural recordings from forager honey bees. Journal of Sleep Research (Suppl.), 11, 115–116.Google Scholar
Kaiser, W., & Steiner-Kaiser, J. (1983). Neuronal correlates of sleep, wakefulness, and arousal in a diurnal insect. Nature, 301, 707–709.CrossRefGoogle Scholar
Kaiser, W., Weber, T., & Otto, D. (1996). Vegetative physiology at night in honey bees. In Elsner, N. & Schnitzler, H.-U. (Eds.), Proceedings of the 24th Gottingen Neurobiology Conference 1996 (Vol. 2). New York: Verlag Stuttgart.Google Scholar
Kaslin, J., Nystedt, J. M., Ostergard, M., Peitsaro, N., & Panula, P. (2004). The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. Journal of Neuroscience, 24, 2678–2689.CrossRefGoogle ScholarPubMed
Klein, B. A., Olzowy, K. M., Klein, A., Saunders, K. M., & Seeley, T. D. (2008). Caste-dependent sleep of worker honey bees. Journal of Experimental Biology, 211, 3028–3040.CrossRefGoogle ScholarPubMed
Koh, K., Evans, J. M., Hendricks, J. C., & Sehgal, A. (2006). A Drosophila model for age-associated changes in sleep–wake cycles. Proceedings of the National Academy of Sciences of the United States of America, 103, 13843–13847.CrossRefGoogle ScholarPubMed
Koh, K., Joiner, W. J., Wu, M. N., Yue, Z., Smith, C. J., & Sehgal, A. (2008). Identification of SLEEPLESS, A sleep-promoting factor. Science, 321, 372–376.CrossRefGoogle ScholarPubMed
Kripke, D., Garfinkel, L., Wingard, D. L., Klauber, M. R., & Marler, M. R. (2002). Mortality associated with sleep duration and insomnia. Archives of General Psychiatry, 59, 131–136.CrossRefGoogle ScholarPubMed
Kume, K., Kume, S., Park, S. K., Hirsh, J., & Jackson, F. R. (2005). Dopamine is a regulator of arousal in the fruit fly. Journal of Neuroscience, 25, 7377–7384.CrossRefGoogle ScholarPubMed
Lancel, M. (1999). Role of GABAA receptors in the regulation of sleep: Initial sleep responses to peripherally administered modulators and agonists. Sleep, 22, 33–42.CrossRefGoogle ScholarPubMed
Liu, W., Guo, F., Lu, B., & Guo, A. (2008). Amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 372, 798–803.CrossRefGoogle ScholarPubMed
Lyamin, O. I., Pryaslova, J., Lace, V., & Siegel, J. M. (2005). Continuous activity in cetaceans after birth. Nature, 435, 1177.CrossRefGoogle ScholarPubMed
Meshi, A., & Bloch, G. (2007). Monitoring circadian rhythms of individual honey bees in a social environment reveals social influences on postembryonic ontogeny of activity rhythms. Journal of Biological Rhythms, 22, 343–355.CrossRefGoogle Scholar
Mignot, E. (2005). Narcolepsy: Pharmacology, pathophysiology, and genetics. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 761–770). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
,National Sleep Foundation. (2008). Sleep in America poll. Retrieved December 9, 2008, from www.sleepfoundation.org.
Newman, S., Paletz, E., Rattenborg, N. C., Obermeyer, W., & Benca, R. M. (2008). Sleep deprivation in the pigeon using the disk-over-water method. Physiology and Behavior, 93, 50–58.CrossRefGoogle ScholarPubMed
Nichols, C. D. (2006). Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacology and Therapeutics, 112, 677–700.CrossRefGoogle ScholarPubMed
Nitz, D. A., Swinderen, B., Tononi, G., & Greenspan, R. J. (2002). Electrophysiological correlates of rest and activity in Drosophila melanogaster. Current Biology, 12, 1934–1940.CrossRefGoogle ScholarPubMed
Pitman, J. L., McGill, J. J., Keegan, K. P., & Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature, 441, 753–756.CrossRefGoogle ScholarPubMed
Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y., Sundaram, M. V., et al. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451, 569–572.CrossRefGoogle ScholarPubMed
Ramon, F., Hernandez-Falcon, J., Nguyen, B., & Bullock, T. H. (2004). Slow wave sleep in crayfish. Proceedings of the National Academy of Sciences of the United States of America, 101, 11857–11861.CrossRefGoogle ScholarPubMed
Rattenborg, N. C. (2006). Do birds sleep in flight?Naturwissenschaften, 93, 413–425.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Lesku, J. A., Martinez-Gonzalez, D., & Lima, S. L. (2007). The nontrivial functions of sleep. Sleep Medicine Reviews, 11, 405–409.CrossRefGoogle Scholar
Rau, P., & Rau, N. (1916). The sleep of insects: An ecological study. Annals of the Entomological Society of America, 9, 227–274.CrossRefGoogle Scholar
Rechtschaffen, A., & Bergmann, B. M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep, 25, 18–24.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Gilliland, M. A., Bergmann, B. M., & Winter, J. B. (1983). Physiological correlates of prolonged sleep deprivation in rats. Science, 221, 182–184.CrossRefGoogle ScholarPubMed
Rial, R. V., Nicolau, M. C., Gamundí, A., Akaârir, M., Aparicio, S., Garau, C., et al. (2007a). Sleep and wakefulness, trivial and nontrivial: Which is which?Sleep Medicine Reviews, 11, 411–417.CrossRefGoogle Scholar
Rial, R. V., Nicolau, M. C., Gamundí, A., Akaârir, M., Aparicio, S., Garau, C., et al. (2007b). The trivial function of sleep. Sleep Medicine Reviews, 11, 311–325.CrossRefGoogle ScholarPubMed
Rubin, G. M., Yandel, M. D., & Wortman, J. R. (2000). Comparative genomics of the eukaryotes. Science, 287, 2204–2215.CrossRefGoogle ScholarPubMed
Sauer, S., Herrmann, E., & Kaiser, W. (2004). Sleep deprivation in honey bees. Journal of Sleep Research, 13, 145–152.CrossRefGoogle ScholarPubMed
Sauer, S., Menna-Barreto, L., & Kaiser, W. (1998). The temporal organization of rest and activity in newly emerged honeybees kept in isolation – initial results. Apidologie, 29, 445–447.Google Scholar
Schmolz, E., Hoffmeister, D., & Lamprecht, I. (2002). Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica). Thermochimica Acta, 382, 221–227.CrossRefGoogle Scholar
Seugnet, L., Boero, J., Gottschalk, L., Duntley, S., & Shaw, P. (2006). Identification of a biomarker for sleep drive in flies and humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 19913–19918.CrossRefGoogle ScholarPubMed
Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L., & Shaw, P. J. (2008). D1 receptor activation in the mushroom bodies rescues sleep-loss–induced learning impairments in Drosophila. Current Biology, 18, 1110–1117.CrossRefGoogle ScholarPubMed
Shaw, P., Ocorr, K., Bodmer, R., & Oldham, S. (2008). Drosophila aging 2006/2007. Experimental Gerontology, 43(1), 5–10.CrossRefGoogle ScholarPubMed
Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437, 1264–1271.CrossRefGoogle ScholarPubMed
Sogaard Andersen, F. (1968). Sleep in moths and its dependence on the frequency of stimulation in Anagasta kuehniella. Opuscula Entomologica, 33, 15–24.Google Scholar
Stephenson, R., Chu, K. M., & Lee, J. (2007). Prolonged deprivation of sleep-like rest raises metabolic rate in the Pacific beetle cockroach, Diploptera punctata (Eschscholtz). Journal of Experimental Biology, 210, 2540–2547.CrossRefGoogle Scholar
Stickgold, R., & Walker, M. P. (2005a). Memory consolidation and reconsolidation: What is the role of sleep?Trends in Neurosciences, 28, 408–415.CrossRefGoogle Scholar
Stickgold, R., & Walker, M. P. (2005b). Sleep and memory: The ongoing debate. Sleep, 28, 1225–1227.CrossRefGoogle ScholarPubMed
Tobler, I. (1983). Effect of forced locomotion on the rest–activity cycle of the cockroach. Behavioral Brain Research, 8(3), 351–360.CrossRefGoogle ScholarPubMed
Tobler, I. (2005). Phylogeny of sleep regulation. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 77–90). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
Tobler, I., & Stalder, J. (1988). Rest in the scorpion – A sleep-like state?Journal of Comparative Physiology, A: Sensory, Neural, and Behavioral Physiology, 163, 227–235.CrossRefGoogle Scholar
Buskirk, C., & Sternberg, P. W. (2007). Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neuroscience, 10, 1300–1307.CrossRefGoogle ScholarPubMed
Swindern, B., Nitz, D. A., & Greenspan, R. J. (2004). Uncoupling of brain activity from movement defines arousal states in Drosophila. Current Biology, 14, 81–87.CrossRefGoogle Scholar
Vertes, R. P., & Siegel, J. M. (2005). Time for the sleep community to take a look at the purported role of sleep in memory processing. Sleep, 28, 1228–1229.CrossRefGoogle Scholar
Williams, D. M. (2001). Largest. In Walker, T. J. (Ed.), University of Florida book of insect records (http://recbk.ifas.ufl.edu/recbk.htm).
Williams, J. A., Sathyanarayanan, S., Hendricks, J. C., & Sehgal, A. (2007). Interaction between sleep and the immune response in Drosophila: A role for the NFkB Relish. Sleep, 30, 389–400.CrossRefGoogle Scholar
Winsor, J., Nishino, S., Sora, I., Uhl, G. H., Mignot, E., & Edgar, D. M. (2001). Dopaminergic role in stimulant-induced wakefulness. Journal of Neuroscience, 21, 1787–1794.CrossRefGoogle Scholar
Wu, M. N., Koh, K., Yue, Z., Joiner, W. J., & Sehgal, A. (2008). A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep, 31, 465–472.CrossRefGoogle ScholarPubMed
Xing, X. (2004). A new troodontid dinosaur from China with avian-like sleeping posture. Nature, 431, 838–841.Google Scholar
Xu, Y., Padiath, Q., Shapiro, R., Jones, C. R., Wu, S. C., Saigoh, N., et al. (2005). Functional consequences of a CKI mutation causing familial advanced sleep phase syndrome. Nature, 434, 640–644.CrossRefGoogle ScholarPubMed
Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., et al. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biology, 5, 2379–2397.CrossRefGoogle ScholarPubMed
Yuan, Q., Joiner, W. J., & Sehgal, A. (2006). A sleep-promoting role for the Drosophila serotonin receptor 1A. Current Biology, 16, 1051–1062.CrossRefGoogle ScholarPubMed
Zeplin, H., & Rechtschaffen, A. (1974). Mammalian sleep, longevity, and energy metabolism. Brain, Behavior, and Evolution, 10, 425–470.CrossRefGoogle Scholar
Zeplin, H., Siegel, J. M., & Tobler, I. (2005). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 91–100). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
Zheng, X., & Sehgal, A. (2008). Probing the relative importance of molecular oscillations in the circadian clock. Genetics, 178, 1147–1155.CrossRefGoogle ScholarPubMed
Zimmerman, J. E., Rizzo, W., Shockley, K., Raizen, D., Naidoo, N., Mackiewicz, M., et al. (2006). Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiological Genomics, 27(3), 337.CrossRefGoogle ScholarPubMed
Zimmerman, J. E., Naidoo, N., Raizen, D. M., & Pack, A. I. (2008a). Conservation of sleep: Insights from nonmammalian model systems. Trends in Neurosciences, 31, 371–376.CrossRefGoogle Scholar
Zimmerman, J. E., Raizen, D. M., Maycock, M., Maislin, G., & Pack, A. I. (2008b). A video method to study Drosophila sleep. Sleep, 31, 1557–1598.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×