Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T02:11:42.690Z Has data issue: false hasContentIssue false

6 - Primate sleep in phylogenetic perspective

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Introduction

The primates comprise a diverse group of eutherian mammals, with between some 200 and 400 species, depending on the taxonomic authority consulted (e.g., Corbet & Hill, 1991; Wilson & Reeder, 2005). Most of these species dwell in tropical forests, but primates also thrive in many other habitats, including savannas, mountainous forests of China and Japan, and even some urban areas. Living primates are divided into two groups, the strepsirrhines (lemurs and lorises) and the haplorrhines (monkeys, apes, and tarsiers). Strepsirrhines include mostly arboreal species and retain several ancestral characteristics, including greater reliance on smell and (in most species) a dental comb that is used for grooming. Most are nocturnal, but some have, in parallel with most haplorrhines, evolved a diurnal niche. They are found only in the Old World tropics. Haplorrhines are more widely distributed geographically, being found in both the New and Old Worlds. They include two groups, the platyrrhines and the catarrhines. Platyrrhines are monkeys native to the New World. Catarrhines include both Old World monkeys and apes. With the exception of owl monkeys in the genus Aotus, all monkeys and apes are active during the day (i.e., diurnal), and most live in bisexual social groups that vary in size from 2 to well over 100 adults (Smuts, Cheney, Seyfarth, et al., 1987).

Nonhuman primates are among the best-studied of mammals, in large part because of their close phylogenetic relatedness to humans.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 123 - 144
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, J. (1980). Baboon mothers and infants. Cambridge, MA: Harvard University Press.Google Scholar
Altmann, J., Altmann, S., & Hausfater, G. (1981). Physical maturation and age estimates of yellow baboons, Papio cynocephalus, in Amboseli National Park. American Journal of Primatology, 1, 389–399.CrossRefGoogle Scholar
Anderson, J. R. (1998). Sleep, sleeping sites, and sleep-related activities: Awakening to their significance. American Journal of Primatology, 46, 63–75.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Anderson, J. R. (2000). Sleep-related behavioural adaptations in free-ranging anthropoid primates. Sleep Medicine Reviews, 4, 355–373.CrossRefGoogle ScholarPubMed
Anderson, J. R., & McGrew, W. C. (1984). Guinea baboons (Papio papio) at a sleeping site. American Journal of Primatology, 6, 1–14.CrossRefGoogle Scholar
Ball, N. J. (1992). The phasing of sleep in mammals. In Stampi, C. (Ed.), Why we nap: Evolution, chronobiology, and functions of polyphasic and ultrashort sleep (pp. 31–49). Boston: Birkhauser.CrossRefGoogle Scholar
Balzamo, E., Bradley, R. J., & Rhodes, J. M. (1972). Sleep ontogeny in the chimpanzee: From two months to forty-one months. Electroencephalography and Clinical Neurophysiology, 33, 47–60.CrossRefGoogle ScholarPubMed
Balzamo, E., Santucci, V., Seri, B., Vuillon-Cacciuttolo, G., & Bert, J. (1977). Nonhuman-primates: Laboratory animals of choice for neurophysiologic studies of sleep. Laboratory Animal Science, 27, 879–886.Google Scholar
Barton, R. A. (1998). Visual specialization and brain evolution in primates. The Royal Society of London Series B–Biological Sciences, 265, 1933–1937.CrossRefGoogle ScholarPubMed
Barton, R. A., & Dunbar, R. I. M. (1997). Evolution of the social brain. In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian intelligence II: Extensions and evalutations (pp. 240–263). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barton, R. A., Purvis, A., & Harvey, P. H. (1995). Evolutionary radiation of visual and olfactory brain systems in primates, bats, and insectivores. Philosophical Transactions of the Royal Society, London, Series B, 348, 381–392.CrossRefGoogle ScholarPubMed
Bert, J. (1975). Generic characteristics and specific characteristics of the ponto-geniculo-occipital spike activity (PGO) in 2 baboons, Papio hamadryas and Papio papio. Brain Research, 88(2), 362–366.CrossRefGoogle ScholarPubMed
Bert, J., Balzamo, E., Chase, M., & Pegram, V. (1975). The sleep of the baboon, Papio papio, under natural conditions and in the laboratory. Electroencephalography and Clinical Neurophysiology, 39, 657–662.CrossRefGoogle ScholarPubMed
Bert, J., Kripke, D. F., & Rhodes, J. (1970). Electroencephalogram of the mature chimpanzee: Twenty-four hour recordings. Electroencephalography and Clinical Neurophysiology, 28(4), 368–373.CrossRefGoogle ScholarPubMed
Bert, J., & Pegram, V. (1969). The sleep electroencephalogram in Cercopithecinae: Erythrocerbus patas and Cercopithecus aethiops sabaeus. Folia Primatologica, 11(1), 151–159.CrossRefGoogle ScholarPubMed
Bert, J., Pegram, V., & Balzamo, E. (1972). Comparison of sleep between 2 Macaca species (Macaca radiata and Macaca mulatta). Folia Primatologica, 17(3), 202–208.CrossRefGoogle Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., et al. (2007). The delayed rise of present-day Mammals. Nature, 446, 507–512.CrossRefGoogle ScholarPubMed
Blomberg, S. P., & Garland, T. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.CrossRefGoogle ScholarPubMed
Boesch, C., & Boesch-Achermann, H. (2000). The chimpanzees of the Tai Forest. Oxford: Oxford University Press.Google Scholar
Capellini, I., Barton, R. A., McNamara, P., Preston, B., & Nunn, C. L. (2008a). Ecology and evolution of mammalian sleep. Evolution, 62, 1764–1776.CrossRefGoogle ScholarPubMed
Capellini, I., Nunn, C. L., McNamara, P., Preston, B., & Barton, R. A. (2008b). Sleep cycles, predators, and energetics in mammals. Functional Ecology, 22, 847–853.CrossRefGoogle Scholar
Carroll, D. A., Denenberg, V. H., & Thoman, E. B. (1999). A comparative study of quiet sleep, active sleep, and waking on the first 2 days of life. Developmental Psychobiology, 35(1), 43–48.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Carskadon, M. A., & Dement, W. C. (2006). Normal human sleep: An overview. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 13–23). Philadelphia: W. B. Saunders.Google Scholar
Cartmill, M. (1974). Rethinking primate origins. Science, 184(135), 436–443.CrossRefGoogle ScholarPubMed
Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host–parasite interactions?Evolutionary Anthropology, 14,134–144.CrossRefGoogle Scholar
Corbet, G. B., & Hill, J. E. (1991). A world list of mammalian species. Oxford: Oxford University Press.Google Scholar
Davies, C. R., Ayres, J. M., Dye, C., & Deane, L. M. (1991). Malaria infection rate of Amazonian primates increases with body weight and group size. Functional Ecology 5, 655–662.CrossRefGoogle Scholar
Day, R. T., & Elwood, R. W. (1999). Sleeping site selection by the golden-handed tamarin Saguinus midas midas: The role of predation risk, proximity to feeding sites, and territorial defence. Ethology, 105,1035–1051.CrossRefGoogle Scholar
Di Bitetti, M. S., Vidal, E. M. L., Baldovino, M. C., & Benesovsky, V. (2000). Sleeping site preferences in tufted capuchin monkeys (Cebus apella nigritus). American Journal of Primatology, 50, 257–274.3.0.CO;2-J>CrossRefGoogle Scholar
Disotell, T. R. (2008). Primate Phylogenetics. In: Encyclopedia of Life Sciences. Chinchester: John Wiley and Sons.Google Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 20, 469–493.CrossRefGoogle Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.3.0.CO;2-8>CrossRefGoogle Scholar
Elgar, M. A., Pagel, M. D., & Harvey, P. H. (1988). Sleep in mammals. Animal Behavior, 36, 1407–1419.CrossRefGoogle Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.CrossRefGoogle Scholar
Foley, R. A., & Lee, P. C. (1989). Finite social space, evolutionary pathways, and reconstructing hominid behavior. Science, 243, 901–906.CrossRefGoogle ScholarPubMed
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712–726.CrossRefGoogle Scholar
Fruth, B., & Hohmann, G. (1993). Comparative analyses of nest building behavior in bonobos and chimpanzees. In Wrangham, R. W., McGrew, W. C., Waal, F. B. M., & Heltne, P. G. (Eds.), Chimpanzee cultures (pp. 109–128). Cambridge, MA: Harvard University Press.Google Scholar
Ganguly-Fitzgerald, I., Donlea, J., & Shaw, P. J. (2006). Waking experience affects sleep need in Drosophila. Science, 313, 1775–1781.CrossRefGoogle ScholarPubMed
Garland, T., Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 4, 18–32.CrossRefGoogle Scholar
Gartlan, J. S., & Brain, C. K. (1968). Ecology and social variability in Cercopithecus aethiops and C. mitis. In Jay, P. C. (Ed.), Primates: Studies in adaptation and variability (pp. 253–292). New York: Holt, Rinehart and Winston.Google Scholar
Gaulin, S. J. C., & Gaulin, C. K. (1982). Behavioral ecology of Alouatta seniculus in Andean cloud forest. International Journal of Primatology, 3(1), 1–32.CrossRefGoogle Scholar
Goodall, A. (1979). The wandering gorillas. London: William Collins & Sons.Google Scholar
Hausfater, G., & Meade, B. J. (1982). Alternation of sleeping groves by yellow baboons (Papio cynocephalus) as a strategy for parasite avoidance. Primates, 23, 287–297.CrossRefGoogle Scholar
Heymann, E. W. (1995). Sleeping habits of tamarins, Saguinus mystax, and Saguinus fuscicollis (Mammalia: Primates; Callitrichidae), in northeastern Peru. Journal of Zoology, London, 237, 211–226.CrossRefGoogle Scholar
Hilton-Taylor, C. (2002). IUCN Red List of threatened species. Morges: IUCN.Google Scholar
Horr, D. A. (1977). Orangutan maturation, growing up in a female world. In Chevalier-Skolnikoff, S. & Poirier, F. E. (Eds.), Primate bio-social development (pp. 289–321). New York: Garland Publishing.Google Scholar
Hsieh, K. C., Robinson, E. L., & Fuller, C. A. (2008). Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-hour light-dark cycles. Sleep, 31(9), 1239–1250.Google ScholarPubMed
Ives, A. R., Midford, P. E., & Garland, T. (2007). Within-species variation and measurement error in phylogenetic comparative methods. Systematic Biology, 56, 252–270.CrossRefGoogle ScholarPubMed
Janson, C. H. (1992). Evolutionary ecology of primate social structure. In Smith, E. A., & Winterhalder, B. (Eds.), Evolutionary ecology and human behavior (pp. 95–130). New York: Aldine de Gruyter.Google Scholar
Koyama, N. (1973). Dominance, grooming, and clasped-sleeping relationships among bonnet monkeys in India. Primates, 14, 225–244.CrossRefGoogle Scholar
Kummer, H. (1968). Social organization of Hamadryas baboons: A field study. Bibliotheca Primatologica, 6.Google Scholar
Lesku, J. A., RothII, T. C., Amlaner, C. J., Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. The American Naturalist, 168, 1–13.CrossRefGoogle ScholarPubMed
Lima, S. L., Rattenborg, N. C., Lesku, J. A., & Amlaner, C. J. (2005). Sleeping under the risk of predation. Animal Behavior, 70, 723–726.CrossRefGoogle Scholar
Lindenfors, P., Nunn, C. L., & Barton, R. A. (2007). Primate brain architecture and selection in relation to sex. BioMed Central Biology, 5 (20). doi:10.1186/1741-7007-5-20.Google Scholar
Maddison, W. P., & Maddison, D. R. (2006). Mesquite: A modular system for evolutionary analysis, version 1.1. See http://mesquiteproject.org
Martin, R. D. (1990). Primate origins and evolution. London: Chapman & Hall.Google Scholar
Martin, R. D., & Ross, C. F. (2005). The evolutionary and ecological context of primate vision. In Kremers, J. (Ed.), The primate visual system: A comparative approach (pp. 1–36). Chichester: John Wiley and Sons.Google Scholar
McNamara, P., Capellini, I., Harris, E., Nunn, C. L., Barton, R. A., & Preston, B. (2008). The phylogeny of sleep database: A new resource for sleep scientists. The Open Sleep Journal, 1, 11–14.CrossRefGoogle ScholarPubMed
Midford, P. E., Garland, Jr., T., & Maddison, W. P. (2005). PDAP package of Mesquite, version 1.07.
Nunn, C. L., & Altizer, S. (2005). The global mammal parasite database: An online resource for infectious disease records in wild primates. Evolutionary Anthropology, 14, 1–2.CrossRefGoogle Scholar
Nunn, C. L., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology, and evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nunn, C. L., & Barton, R. A. (2001). Comparative methods for studying primate adaptation and allometry. Evolutionary Anthropology, 10, 81–98.CrossRefGoogle Scholar
Nunn, C. L., & Heymann, E. W. (2005). Malaria infection and host behaviour: A comparative study of neotropical primates. Behavioral Ecology and Sociobiology, 59, 30–37.CrossRefGoogle Scholar
Nunn, C. L., & Schaik, C. P. (2002). Reconstructing the behavioral ecology of extinct primates. In Plavcan, J. M., Kay, R. F., Jungers, W. L., & Schaik, C. P. (Eds.), Reconstructing behavior in the fossil record (pp. 159–216). New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Oates, J. F. (1987). Food distribution and foraging behavior. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., and Struhsaker, T. T. (Eds.), Primate Societies (pp. 197–209). Chicago: University of Chicago Press.Google Scholar
Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331–348.CrossRefGoogle Scholar
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.CrossRefGoogle ScholarPubMed
Pagel, M., & Meade, A. (2007). BayesTraits Version 1.0. http://www.evolution.rdg.ac.uk. Reading, UK.
Pagel, M., Meade, A., & Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53, 673–684.CrossRefGoogle ScholarPubMed
Perachio, A. A. (1971). Sleep in the nocturnal primate, Aotus trivirgatus. Proceedings of the 3rd International Congress on Primates (vol. 2, pp. 54–60). Basel: Karger.Google Scholar
Plavcan, J. M., & Schaik, C. P. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. American Journal of Physical Anthropology, 103, 37–68.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Purvis, A. (1995). A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society, London, Series B, 348, 405–421.CrossRefGoogle ScholarPubMed
Purvis, A., Nee, S., & Harvey, P. H. (1995). Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society London Series B, 260, 329–333.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Voiren, B., Vyssotski, A. L., Kays, R. W., Spoelstra, K., Kuemmeth, F., et al. (2008). Sleeping outside the box: Electroencephalographic measues of sleep in sloths inhabiting a rainforest. The Royal Society Biology Letters. doi:10.1098/rsbl.2008.0203.CrossRefGoogle Scholar
Reite, M., Stynes, A. J., Vaughn, L., Pauley, J. D., & Short, R. A. (1976). Sleep in infant monkeys: Normal values and behavioral correlates. Physiology and Behavior, 16(3), 245–251.CrossRefGoogle ScholarPubMed
Salzarulo, P., & Ficca, G. (2002). Awakening and sleep-wake cycle across development. Philadelphia: J. Benjamins.CrossRefGoogle Scholar
Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (1987). Primate societies. Chicago: University of Chicago Press.Google Scholar
Suzuki, K. (1965). The pattern of mammalian brain gangliosides: Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. Journal of Neurochemistry, 12(7), 629–638.CrossRefGoogle ScholarPubMed
Tattersall, I. (1987). Cathemeral activity in primates: A definition. Folia Primatologica, 49, 200–202.CrossRefGoogle Scholar
Thurber, A., Jha, S. K., Coleman, T., & Frank, M. G. (2008). A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo). Behavioural Brain Research, 189, 41–51.CrossRefGoogle Scholar
Tobler, I. (2005). Phylogeny of sleep regulation. In Kryger, M., Roth, T., & Dement, W. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 77–90). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
Schaik, C. P. (1983). Why are diurnal primates living in groups?Behaviour, 87, 120–143.CrossRefGoogle Scholar
Schaik, C. P., & Janson, C. (2000). Infanticide by males and its implications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vessey, S. H. (1973). Night observations of free-ranging rhesus monkeys. American Journal of Physical Anthropology, 38(2), 613–619.CrossRefGoogle ScholarPubMed
Vuillon-Cacciuttolo, G., Balzamo, E., Petter, J. J., & Bert, J. (1976). Wakefulness-sleep cycle studied by telementry in a lemurian (Lemur macaco fulvus). Revue d'électroencéphalographie et de neurophysiologie clinique, 6(1), 34–36.Google Scholar
Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world. Baltimore: Johns Hopkins University Press.Google Scholar
Wolfe, N. D., Escalante, A. A., Karesh, W. B., Kilbourn, A., Spielman, A., Lal, A. A. (1998). Wild primate populations in emerging infectious disease research: The missing link?Emerging Infectious Diseases, 4, 149–158.CrossRefGoogle ScholarPubMed
Zepelin, H., Siegel, J. M., & Tobler, I. (2005). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed, pp. 91–100). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×