Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T04:30:15.898Z Has data issue: false hasContentIssue false

4 - What exactly is it that sleeps? The evolution, regulation, and organization of an emergent network property

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Abstract

It is posited that sleep is a network-emergent property of any viable group of interconnected neurons. Animals ranging from jellyfish to all homeotherms sleep. Biochemical sleep-regulatory events, including cytokines and nuclear factor kappa B (NF-kB), are shared by insects and mammals. It seems likely that these sleep-regulatory events evolved from metabolic-regulatory events and that sleep is a local use-dependent process. Relationships between sleep and tumor necrosis factor (TNF) are used to examine the local use-dependent sleep hypothesis. ATP released during neurotransmission is posited to drive the production and release of cytokines, such as TNF, that, in turn, act within a biochemical sleep homeostat in the short term – via adenosine, nitric oxide, and prostaglandins – to enhance non–rapid-eye-movement (NREM) sleep. In the long term, TNF and other sleep-regulatory substances, via NF-kB activation, enhance expression of receptors such as adenosine A1 and glutamate amino-3-hydroxy-5-methylisoxazoleproprionic (AMPA) receptors. Changes in the expression of these receptors will change the sensitivity of neurons and thereby change synaptic efficacy. Such actions suggest that sleep mechanisms cannot be separated from a connectivity function of sleep at the local network level. The need for sleep is derived from the experience-driven changes in neuronal microcircuitry that necessitate the stabilization of synaptic networks to maintain physiological regulatory networks and instinctual and acquired memories. The need for unconsciousness is derived from the local use-dependent sleep mechanisms.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 86 - 106
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albensi, B. C., & Mattson, M. P. (2000). Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse, 35, 151–159.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Basheer, R., Rainnie, D. G., Porkka-Heiskanen, T., Ramesh, V., & McCarley, R. W. (2001). Adenosine, prolonged wakefulness, and A1-activated NF-κB DNA binding in the basal forebrain of the rat. Neuroscience, 104, 731–739.CrossRefGoogle ScholarPubMed
Basheer, R., Strecker, R. E., Thakkar, M. M., & McCarley, R. W. (2004). Adenosine and sleep-wake regulation. Progress in Neurobiology, 73, 379–396.CrossRefGoogle ScholarPubMed
Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience, 22, 8691–8704.CrossRefGoogle ScholarPubMed
Beattie, E. C., Stellwagen, D., Morishita, W., Bresnahan, J. C., Ha, B. K., , Zastrow, et al. (2002). Control of synaptic strength by glial TNF alpha. Science, 295, 2282–2285.CrossRefGoogle Scholar
Benington, J. H., & Frank, M. G. (2003). Cellular and molecular connection between sleep and synaptic plasticity. Progress in Neurobiology, 69, 71–101.CrossRefGoogle Scholar
Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Moller, T., Matteoli, M., et al. (2005). Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. Journal of Immunology, 174, 7268–7277.CrossRefGoogle ScholarPubMed
Borbély, A. A., & Tobler, I. (1989). Endogenous sleep-promoting substances and sleep regulation. Physiological Reviews, 69, 605–670.CrossRefGoogle ScholarPubMed
Brandt, J. A., Churchill, L., Rehman, A., Ellis, G., Mémet, S., Israël, A., et al. (2004). Sleep-deprivation increases activation of nuclear factor kappa B in lateral hypothalamic cells. Brain Research, 1004, 91–97.CrossRefGoogle ScholarPubMed
Bredow, S., Taishi, P., Guha-Thakurta, N., Obál, F., Jr, & Krueger, J. M. (1997). Diurnal variations of tumor necrosis factor-alpha mRNA and alpha-tubulin mRNA in rat brain. Journal of Neuroimmunomodulation, 4, 84–90.CrossRefGoogle ScholarPubMed
Cavadini, G., Petrzilka, S., Kohler, P., Jud, C., Tobler, I., Birchler, T., et al. (2007). TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 104, 12843–12848.CrossRefGoogle ScholarPubMed
Chen, Z., Gardi, J., Kushikata, T., Fang, J., & Krueger, J. M. (1999). Nuclear factor kappa B-like activity increases in murine cerebral cortex after sleep deprivation. American Journal of Physiology, 45, R1812–R1818.Google Scholar
Churchill, L., Rector, D., Yasuda, K., Rojas, M. J., Schactler, S., Fix, C., et al. (2006). Tumor necrosis factor α increases surface evoked potentials in the barrel field by whisker deflection during sleep in rats. Sleep, 29, A12–A13.Google Scholar
Churchill, L., Yasuda, K., Yasuda, T., Blindheim, K., Falter, M., Garcia-Garcia, F., et al. (2005). Unilateral cortical application of tumor necrosis factor alpha induces asymmetry in Fos- and interleukin-1 beta-immunoreactive cells within the corticothalamic projection. Brain Research, 1055, 15–24.CrossRefGoogle Scholar
Cottone, L. A., Adamo, D., & Squires, N. K. (2004). The effect of unilateral somatosensory stimulation on hemispheric asymmetries during slow-wave sleep. Sleep, 27, 63–68.CrossRefGoogle ScholarPubMed
Crick, F., & Mitchinson, G. (1983). The function of dream sleep. Nature, 304, 111–114.CrossRefGoogle ScholarPubMed
Darko, D. F., Miller, J. C., Gallen, C., White, J., Koziol, J., Brown, S. J., et al. (1995). Sleep electroencephalogram delta-frequency amplitude, night plasma levels of tumor necrosis factor alpha, and human immunodeficiency virus infection. Proceedings of the National Academy of Sciences of the United States of America, 92, 12080–12084.CrossRefGoogle ScholarPubMed
De, A., Krueger, J. M., & Simasko, S. M. (2003). Tumor necrosis factor alpha increases cytosolic calcium response AMPA and KCl in primary cultures of rat hippocampal neurons. Brain Research, 981, 133–142.CrossRefGoogle ScholarPubMed
De, A., Krueger, J. M., & Simasko, S. M. (2005). Glutamate induces expression and release of tumor necrosis factor alpha in cultured hypothalamic cells. Brain Research, 1053, 54–61.CrossRefGoogle ScholarPubMed
Dickstein, J. B., Moldofsky, H., Lue, F. A., & Hay, J. B. (1999). Intracerebroventricular injection of TNF-alpha promotes sleep and is recovered in cervical lymph. American Journal of Physiology, 276, R1018–R1022.Google ScholarPubMed
Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., & Bezzi, P. (2006). P2Y1 receptor-evoked glutamate exocytosis from astrocytes control by tumor necrosis factor and prostaglandins. Journal of Biological Chemistry, 281, 30684–30696.CrossRefGoogle ScholarPubMed
Drosopoulos, S., Schulze, C., Fischer, S., & Born, J. (2007). Sleep's function in the spontaneous recovery and consolidation of memories. Journal of Experimental Psychology – General, 136, 169–183.CrossRefGoogle ScholarPubMed
Drummond, S. P. A., Brown, G. G., Stricker, J. L., Buxton, R. B., Wong, E. C., & Gillin, J. C. (1999). Sleep deprivation-induced reduction in cortical functional response to serial subtraction. NeuroReport, 10, 3745–3748.CrossRefGoogle ScholarPubMed
Edelman, G. H. (1987). Neural Darwinism. New York: Basic Books.Google Scholar
Eissner, G., Kolch, W., & Scheurich, P. (2004). Ligands working as receptors; Reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine and Growth Factor Reviews, 15, 353–366.CrossRefGoogle ScholarPubMed
Fang, J., Wang, Y., & Krueger, J. M. (1997). Mice lacking the TNF 55 kD receptor fail to sleep more after TNF alpha treatment. Journal of Neuroscience, 17, 5949–5955.CrossRefGoogle Scholar
Farber, K., & Kettenmann, H. (2006). Purinergic signaling and microglia. Pflügers Archives – European Journal of Physiology, 452, 615–621.CrossRefGoogle ScholarPubMed
Ferrara, M., De Gennaro, L., Curcio, G., Cristiani, R., & Bertini, M. (2002). Interhemispheric asymmetry of human sleep EEG in response to selective slow-wave sleep deprivation. Behavioral Neuroscience, 116, 976–981.CrossRefGoogle ScholarPubMed
Fix, C., Churchill, L., Hall, S., Kirkpatrick, R., Yasuda, T., & Krueger, J. M. (2006). The number of tumor necrosis factor α-immunoreactive cells increases in layer IV of the barrel field in response to whisker deflection in rats. Sleep, 29, A11.Google Scholar
Floyd, R. A., & Krueger, J. M. (1997). Diurnal variations of TNF alpha in the rat brain. NeuroReport, 8, 915–918.CrossRefGoogle Scholar
Foltenyi, K., Greenspan, R. J., & Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neuroscience, 10, 1160–1167.CrossRefGoogle ScholarPubMed
Fontaine, V., Mohand-Said, S., Hanoteau, S., Fuchs, C., Pfizenmaier, K., & Eisel, U. (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: Opposite roles of TNF receptor 1 and TNF receptor 2. Journal of Neuroscience, 22, RC216.CrossRefGoogle ScholarPubMed
Frank, M. G., Issa, N. P., & Stryker, M. P. (2001). Sleep enhances plasticity in the developing visual cortex. Neuron, 30, 275–287.CrossRefGoogle ScholarPubMed
Franken, P., Thomason, R., Heller, H. C., & O'Hara, B. F. (2007). A non-circadian role for clock genes in sleep homeostasis: A strain comparison. BMC Neuroscience, 8, 87.CrossRefGoogle ScholarPubMed
Franklin, C. M. (1999). Clinical experience with soluble TNF p75 receptor in rheumatoid arthritis. Seminars in Arthritis and Rheumatism, 29, 171–181.CrossRefGoogle ScholarPubMed
Gabel, C. A. (2007). P2 purinergic receptor modulation of cytokine production. Purinergic Signalling, 3, 27–38.CrossRefGoogle ScholarPubMed
Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., et al. (2000). Rest in Drosophila is a sleep-like state. Neuron, 26, 295–298.Google Scholar
Hide, I., Tanaka, M., Inoué, A., Nakajima, K., Kohsaka, S., Inoué, K., et al. (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. Journal of Neurochemistry, 75, 965–972.CrossRefGoogle ScholarPubMed
Huber, R., Ghilardi, M. F., Massimini, M., & Tononi, G. (2004). Local sleep and learning. Nature, 430, 78–81.CrossRefGoogle Scholar
Inoué, S. (1989). Biology of sleep substances. Boca Raton, FL: CRC Press, Inc.Google Scholar
Iwasaki, N., Karashima, A., Tamakawa, Y., Katayama, N., & Nakao, M. (2004). Sleep EEG dynamics in rat barrel cortex associated with sensory deprivation. NeuroReport, 15, 2681–2684.CrossRefGoogle ScholarPubMed
Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.CrossRefGoogle ScholarPubMed
Jones, B. (2003). Arousal systems. Frontiers in Bioscience, 8, S438–S451.CrossRefGoogle ScholarPubMed
Jouvet, M. (1984). Neuromediateurs et facteurs hypnogenes [Neurotransmitters and hypnogenetic factors]. Revue Neurologique (Paris), 140, 389–400.Google Scholar
Kataoka, T., Enomoto, F., Kim, R., Yokoi, H., Fujimori, M., Sakai, Y., et al. (2004). The effect of surgical treatment of obstructive sleep apnea syndrome on the plasma TNF-alpha levels. Tohoku Journal of Experimental Medicine, 204, 267–272.CrossRefGoogle ScholarPubMed
Kattler, H., Dijk, D. J., & Borbely, A. A. (1994). Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. Journal of Sleep Research, 3, 1599–1604.CrossRefGoogle ScholarPubMed
Kavanau, J. L. (1994). Sleep and dynamic stabilization of neural circuitry: A review and synthesis. Behavioral Brain Research, 63, 111–126.CrossRefGoogle ScholarPubMed
Kavanau, J. L. (2005). Evolutionary approaches to understanding sleep. Sleep Medicine Reviews, 9, 141–152.CrossRefGoogle Scholar
Kavanau, J. L. (2006). Is sleep's “supreme mystery” unraveling? An evolutionary analysis of sleep encounters no mystery; nor does life's earliest sleep, recently discovered in jellyfish. Medical Hypotheses, 66, 3–9.CrossRefGoogle ScholarPubMed
Koch, C. (2004). The quest for consciousness. Englewood, CO: Roberts and Company.Google Scholar
Kristiansen, K., & Courtois, G. (1949). Rhythmic activity from isolated cerebral cortex EEG. Clinical Neurophysiology, 1, 265–272.CrossRefGoogle Scholar
Krueger, J. M., & Obál, F. (1994). Sleep Factors. In Saunders, N. A. & Sullivan, C. E. (Eds.), Sleep and breathing (pp. 79–112). New York: Marcel Dekker, Inc.Google Scholar
Krueger, J. M., & Obál, F.. (1993). A neuronal group theory of sleep function. Journal of Sleep Research, 2, 63–69.CrossRefGoogle ScholarPubMed
Krueger, J. M., & Obál, F. (2003). Sleep function. Frontiers in Bioscience, 8, 511–519.CrossRefGoogle ScholarPubMed
Krueger, J. M., Rector, D. M., & Churchill, L. (2007). Sleep and cytokines. Sleep Medicine Clinics, 2, 161–170.CrossRefGoogle ScholarPubMed
Kubota, T., Fang, J., Guan, Z., Brown, R. A., & Krueger, J. M. (2001). Vagotomy attenuates tumor necrosis factor-alpha-induced sleep and EEG delta-activity in rats. American Journal of Physiology, 280, R1213–R1220.Google ScholarPubMed
Kubota, T., Kushikata, T., Fang, J., & Krueger, J. M. (2000). Nuclear factor kappa B (NFκB) inhibitor peptide inhibits spontaneous and interleukin-1β-induced sleep. American Journal of Physiology, 279, R404–R413.Google Scholar
Kubota, T., Li, N., Guan, Z., Brown, R. A., & Krueger, J. M. (2002). Intrapreoptic microinjection of TNF-alpha enhances non-REMS in rats. Brain Research, 932, 37–44.CrossRefGoogle Scholar
Kushikata, T., Fang, J., Chen, Z., Wang, Y., & Krueger, J. M. (1998). Epidermal growth factor (EGF) enhances spontaneous sleep in rabbits. American Journal of Physiology, 275, R509–R514.Google ScholarPubMed
Ledgerwood, E. C., Pober, J. S., & Bradley, J. R. (1999). Recent advances in the molecular basis of TNF signal transduction. Laboratory Investigation, 79, 1041–1050.Google ScholarPubMed
Mahowald, M. W., & Schenck, C. H. (2005). Insights from studying human sleep disorders. Nature, 437, 1279–1285.CrossRefGoogle ScholarPubMed
Majde, J. A., & Krueger, J. M. (2005). Links between the innate immune system and sleep. Journal of Allergy & Clinical Immunology, 116, 1188–1198.CrossRefGoogle ScholarPubMed
Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.CrossRefGoogle ScholarPubMed
Maquet, P. (2004). A role for sleep in the processing of memory traces. Contribution of functional neuroimaging in humans. Bulletin et mémories de l'Académie royale de médicine de Belgique, 159, 167–170.Google ScholarPubMed
Maquet, P. (2001). The role of sleep in learning and memory. Science, 294, 1048–1052.CrossRefGoogle ScholarPubMed
Marks, G. A., & Shaffery, J. P., Oksenberg, A., Speciale, S. G., Roffwarg, H. P. (1995). A functional role for REM sleep in brain maturation. Behav Brain Res, 69, 1–11.CrossRefGoogle ScholarPubMed
Mascetti, G. G., Rugger, M., Vallortigara, G., Boddo, D. (2007). Monocular-unihemispheric sleep and visual discrimination learning in the domestic chick. Exp Brain Res 176, 70–84.CrossRefGoogle ScholarPubMed
McGinty, D., Szymusiak, R. (2003). Hypothalamic regulation of sleep and arousal. Front Biosci 8, d1074–d1083.CrossRefGoogle ScholarPubMed
Miller, T. B., Goodrich, C. A., Pappenheimer, J. R. (1967). Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci USA 58, 513–517.Google Scholar
Miyamoto, H., Katagiri, H., & Hensch, T. (2003). Experience-dependent slow-wave sleep development. Nat Neurosci 6, 553–554.CrossRefGoogle ScholarPubMed
Montagna, P. (2005). Fatal familial insomnia: A model disease in sleep physiopathology. Sleep Med Rev 9, 339–353.CrossRefGoogle ScholarPubMed
Mukhametov, L. M., (1984). Sleep in marine mammals. Expt Brain Res 8, 227–238.Google Scholar
Mullington, J., Korth, C., Hermann, D. M., Orth, A., Galanos, C., Holsboer, F., et al. (2003). Biochemical regulation of non-rapid eye movement sleep. Frontiers in Bioscience, 8, 520–550.Google Scholar
Mullington, J., Korth, C., Hermann, D. M., Orth, A., Galanos, C., Holsboer, F., et al. (2000). Dose-dependent effects of endotoxin on human sleep. American Journal of Physiology, 278, R947–R955.Google ScholarPubMed
Obál, F., & Krueger, J. M. (2003). Biochemical regulation of non-rapid eye movement sleep. Frontiers in Bioscience, 8, 520–550.Google ScholarPubMed
Opp, M. R. (2005). Cytokines and sleep. Sleep Medicine Reviews, 9, 355–364.CrossRefGoogle ScholarPubMed
Puccioni-Sohler, M., Rieckmann, P., Kitze, B., Lange, P., Albrecht, M., & Flegenhauer, K. (1995). A soluble form of tumor necrosis factor receptor in cerebrospinal fluid and serum of HTVLV-1-associated myelopathy and other neurological diseases. Neurology, 242, 239–242.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2001). Unilateral eye closure and interhemispheric EEG asymmetry during sleep in the pigeon (Columba livia). Brain, Behavior & Evolution, 58, 323–332.CrossRefGoogle Scholar
Rector, D. M., Topchiy, I., & Rojas, M. (2005a). Local cortical column activity states and localized delta wave differences. Sleep, 28, A26.Google Scholar
Rector, D. M., Topchiy, I. A., Carter, K. M., & Rojas, M. J. (2005b). Local functional state differences between rat cortical columns. Brain Research, 1047, 45–55.CrossRefGoogle ScholarPubMed
Rehman, A., Taishi, P., Fang, J., Majde, J. A., & Krueger, J. M. (2001). The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine, 13, 8–17.CrossRefGoogle ScholarPubMed
Riha, R. L., Brander, P., Vennelle, M., McArdle, N., Kerr, S. M., Anderson, N. H., et al. (2005). Tumour necrosis factor-alpha (-308) gene polymorphism in obstructive sleep apnoea-hypopnoea syndrome. European Respiratory Journal, 26, 673–678.CrossRefGoogle ScholarPubMed
Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437, 1257–1263.CrossRefGoogle ScholarPubMed
Sauer, S., Herrmann, E., & Kaiser, W. (2004). Sleep deprivation in honeybees. Journal of Sleep Research, 13, 145–152.CrossRefGoogle Scholar
Sauer, S., Kinkelin, M., Herrmann, E., & Kaiser, W. (2003). The dynamics of sleep-like behaviour in honeybees. Journal of Comparative Physiology, Series A, 189, 599–607.CrossRefGoogle Scholar
Shoham, S., Davenne, D., Cady, A. B., Dinarello, C. A., & Krueger, J. M. (1987). Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. American Journal of Physiology, 253, R142–R149.Google ScholarPubMed
Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437, 1264–1271.CrossRefGoogle ScholarPubMed
Sookoian, S. C., Gonzalez, C., & Pirola, C. J. (2005). Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obesity Research, 13, 2122–2131.CrossRefGoogle ScholarPubMed
Spiegel, K., Knutson, K., Leproult, R., Tasali, E., & Van Cauter, E. (2005). Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes. Journal of Applied Physiology, 99, 2008–2019.CrossRefGoogle ScholarPubMed
Stellwagen, D., & Malenka, R. C. (2006). Synaptic scaling mediated by glial TNF-alpha. Nature, 440, 1054–1059.CrossRefGoogle ScholarPubMed
Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience, 8, d878–d899.CrossRefGoogle ScholarPubMed
Suzuki, T., Hide, I., Ido, K., Kohsaka, S., Inoué, K., & Nakata, Y. (2004). Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. Journal of Neuroscience, 24, 1–7.CrossRefGoogle ScholarPubMed
Taishi, P., Churchill, L., Wang, M., Kay, D., Davis, C. J., Guan, X., et al. (2007). TNFα siRNA reduces brain TNF and EEG delta wave activity in rats. Brain Research, 1156, 125–132.CrossRefGoogle ScholarPubMed
Taishi, P., Gardi, J., Chen, Z., Fang, J., & Krueger, J. M. (1999). Sleep deprivation increases the expression of TNF alpha mRNA and TNF 55kD receptor mRNA in rat brain. The Physiologist, 42, A4.Google Scholar
Takahashi, S., & Krueger, J. M. (1997). Inhibition of tumor necrosis factor prevents warming-induced sleep responses in rabbits. American Journal of Physiology, 272, R1325–R1329.Google ScholarPubMed
Terao, A., Matsumura, H., Yoneda, H., & Saito, M. (1998). Enhancement of slow-wave sleep by tumor necrosis factor-alpha is mediated by cyclo-oxygenase-2 in rats. NeuroReport, 9, 3791–3796.CrossRefGoogle Scholar
Tobler, I. (2005). Phylogeny of sleep regulation. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 70–90). Philadelphia: Elsevier.Google Scholar
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10, 49–62.CrossRefGoogle ScholarPubMed
Vgontzas, A. N., Zoumakis, E., Lin, H. M., Bixler, E. O., Trakada, G., & Chrousos, G. P. (2004). Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-α antagonist. Journal of Clinical Endocrinology & Metabolism, 89, 4409–4413.CrossRefGoogle ScholarPubMed
Vyazovskiy, V., Borbély, A. A., & Tobler, I. (2000). Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. Journal of Sleep Research, 9, 367–371.CrossRefGoogle ScholarPubMed
Walker, A. J., Topchiy, I., Kouptsov, K., & Rector, D. M. (2005). ERP differences during conditioned lick response in the rat. Sleep, 28, A15.Google Scholar
Williams, J. A., Sathyanarayanan, S., Hendricks, J. C., & Sehgal, A. (2007). Interaction between sleep and the immune response in Drosophila: A role for the NFkB relish. Sleep, 30, 389–401.CrossRefGoogle Scholar
Yang, L., Lindholm, K., Konishi, Y., Li, R., & Shen, Y. (2002). Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. Journal of Neuroscience, 22, 3025–3032.CrossRefGoogle ScholarPubMed
Yasuda, T., Yasuda, K., Brown, R. A., & Krueger, J. M. (2005). State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats. American Journal of Physiology: Regulatory, Integrative & Comparative Physiology, 289, R1083–R1089.Google ScholarPubMed
Yoshida, H., Peterfi, Z., Garcia-Garcia, F., Garcia-Garcia, F., Kirkpatrick, R., Yasuda, T., et al. (2004). State-specific asymmetries in EEG slow-wave activity induced by local application of TNF alpha. Brain Research, 1009, 129–136.CrossRefGoogle Scholar
Yu, Z., Cheng, G., Wen, X., Wu, G. D., Lee, W. T., & Pleasure, D. (2002). Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiology of Disorders, 11, 199–213.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×