Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-08T03:30:53.195Z Has data issue: false hasContentIssue false

11 - Human Adaptation to High Altitude

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

As of 1995, over 140 million people worldwide lived at altitudes exceeding 2500 m (Niermeyer et al.,2001). The effects of hypobaric hypoxia – defined as a low environmental oxygen partial pressure – on cellular metabolic function, growth and development, physical activity, reproduction, and human health have made high altitude a unique setting in which to investigate human adaptation. This is especially true for traits that are directly or indirectly related to oxygen (O2) transport. Following Niermeyer et al. (2001), the term adaptation will be used to refer to a feature of structure, function, or behavior that is beneficial and enables survival in a specific environment. Such features may be genetic in origin, although features that arise via developmental and/or physiological processes may also be termed adaptations if they enable survival (see Chapter 2 of this volume). The term genetic adaptation will refer to a heritable feature that was produced by natural selection (or other force of evolution) altering allele frequencies over time. A developmental adaptation will refer to an irreversible feature that confers survival benefit and is acquired through lifelong exposure to an environmental stress or stressors. Developmental features that arise without clear adaptive benefit will be termed developmental responses. Finally, the term acclimatization will refer to a time-dependent physiological response to high altitude, which may or may not be adaptive.

Around the world, various regional populations show a wide diversity of time-depth exposure to altitude providing a “natural experiment” to test hypotheses of developmental and/or genetic adaptation (Moore, 1990).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldashev, , A. A., Sarybaev, A. S., Sydykov, A. S., et al. (2002). Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. American Journal of Respiratory and Critical Care Medicine, 166, 1396–1402.CrossRefGoogle ScholarPubMed
Appenzeller, O. (1998). Altitude and the nervous system. Archive of Neurology, 55, 1007–1009.CrossRefGoogle Scholar
Baker, P. T. (1969). Human adaptation to high altitude. Science, 163, 1149–1156.CrossRefGoogle ScholarPubMed
Baker, P. T. (1976). Work performance of highland natives. In Man in the Andes: a Multidisciplinary Study of High-Altitude Quechua Natives, Baker, P. T. and Little, M. A. (eds). Stroudsburg, PA: Wowden, Hutchinson, and Ross.Google Scholar
Balke, B. (1964). Work capacity and its limiting factors at high altitude. In The Physiological Effects of Altitude, Weihe, W. H. (ed.). New York: Macmillan, pp. 233–247.CrossRefGoogle Scholar
Banchero, N. and Cruz, J. C. (1970). Hemodynamic changes in the Andean native after two years at sea level. Aerospace Medicine, 41, 849–853.Google ScholarPubMed
Bastien, G. J., Schepens, B., Willems, P. A., et al. (2005). Energetics of load carrying in Nepalese porters. Science, 308, 1755.CrossRefGoogle ScholarPubMed
Beall, C. M. (2000). Tibetan and Andean contrasts in adaptation to high-altitude hypoxia. In Oxygen Sensing: Molecule to Man, Lahiri, S. (ed.). Springer, the Netherlands: Kluwer Academic/Plenum Publishers, pp. 63–74.Google Scholar
Beall, C. M., Strohl, K. P., Blangero, J., et al. (1997a). Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. American Journal of Physical Anthropology, 104, 427–447.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Beall, C. M., Strohl, K. P., Blangero, J., et al. (1997b). Quantitative genetic analysis of arterial oxygen saturation in Tibetan highlanders. Human Biology, an International Record of Research, 69, 597–604.Google ScholarPubMed
Beall, C. M., Brittenham, G. M., Strohl, K. P., et al. (1998). Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. American Journal of Physical Anthropology, 106, 385–400, erratum 107, 421.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Beall, C. M., Laskowski, D., Strohl, K. P., et al. (2001). Pulmonary nitric oxide in mountain dwellers. Nature, 414, 411–412.CrossRefGoogle ScholarPubMed
Beall, C. M., Decker, M. J., Brittenham, G. M., et al. (2002). An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 99, 17215–17218.CrossRefGoogle ScholarPubMed
Beall, C. M., Song, K., Elston, R. C., et al. (2004). Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4000 m. Proceedings of the National Academy of Sciences of the United States of America, 101,14300–14304.CrossRefGoogle Scholar
Bender, P. R., McCullough, R. E., McCullough, R. G., et al. (1989). Increased exercise SaO2 independent of ventilatory acclimatization at 4300 m. Journal of Applied Physiology, 66, 2733–2738.CrossRefGoogle Scholar
Bennett, A., Sain, S. R., Vargas, E., et al. (2008). Evidence that parent-of-origin affects birth-weight reductions at high altitude. American Journal of Human Biology, 20, 592–597.CrossRefGoogle ScholarPubMed
Bigham, A. W., Kiyamu, M., Leon-Velarde, F, et al. (2008). Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Altitude Medicine and Biology, 9, 167–178.CrossRefGoogle ScholarPubMed
Black, C. P. and Tenney, S. M. (1980). Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respiration Physiology, 39, 217–239.CrossRefGoogle ScholarPubMed
Brutsaert, T. D. (1997). Environmental, developmental, and ancestral (genetic) components of the exercise response of Bolivian high altitude natives. PhD thesis, Cornell University, Ithaca, NY.Google Scholar
Brutsaert, T. D., Soria, R., Caceres, E., et al. (1999a). Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American natives. American Journal of Human Biology, 11, 383–395.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Brutsaert, T. D., Spielvogel, H., Soria, R., et al. (1999b). Effect of developmental and ancestral high-altitude exposure on VO2peak of Andean and European/North American natives. American Journal of Physical Anthropology, 110, 435–455.3.0.CO;2-7>CrossRefGoogle Scholar
Brutsaert, T. D., Araoz, M., Soria, R., et al. (2000). Higher arterial oxygen saturation during submaximal exercise in Bolivian Aymara compared to European sojourners and Europeans born and raised at high altitude. American Journal of Physical Anthropology, 113, 169–181.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Brutsaert, T., Parra, E., Shriver, M., et al. (2003). Spanish genetic admixture is associated with larger V̇O2max decrement from sea level to 4338 m in Peruvan Quechua. Journal of Applied Physiology, 95, 519–528.CrossRefGoogle Scholar
Brutsaert, T. D., Haas, J. D. and Spielvogel, H. (2004). Absence of work efficiency differences during cycle ergometry exercise in Bolivian Aymara. High Altitude Medicine and Biology, 5, 41–59.CrossRefGoogle ScholarPubMed
Brutsaert, T. D., Parra, E. J., Shriver, M. D., et al. (2005). Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(1), R225 –R234.CrossRefGoogle ScholarPubMed
Buskirk, E. R., Kollias, J., Akers, R. F., et al. (1967). Maximal performance at altitude and on return from altitude in conditioned runners. Journal of Applied Physiology, 23, 259–266.CrossRefGoogle ScholarPubMed
Byrne-Quinn, E., Sodal, I. E. and Weil, J. V. (1972). Hypoxic and hypercapnic ventilatory drives in children native to high altitude. Journal of Applied Physiology, 32, 44–46.CrossRefGoogle ScholarPubMed
Chen, Q. H., Ge, R. L., Wang, X. Z., et al. (1997). Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. Journal of Applied Physiology, 83, 661–667.CrossRefGoogle ScholarPubMed
Chiodi, H. (1957). Respiratory adaptations to chronic high altitude hypoxia. Journal of Applied Physiology, 10, 81–87.CrossRefGoogle ScholarPubMed
Cudkowicz, L., Spielvogel, H. and Zubieta, G. (1972). Respiratory studies in women at high altitude (3600 m or 12200 ft and 5200 m or 17 200 ft). Respiration, 29, 393–426.CrossRefGoogle Scholar
Curran, L. S., Zhuang, J., Sun, S. F., et al. (1997). Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3658 m. Journal of Applied Physiology, 83, 2098–2104.CrossRefGoogle Scholar
Curran, L. S., Zhuang, J., Droma, T., et al. (1998). Superior exercise performance in lifelong Tibetan residents of 4400 m compared with Tibetan residents of 3658 m. American Journal of Physical Anthropology, 105, 21–31.3.0.CO;2-G>CrossRefGoogle Scholar
Dempsey, J. A., Reddan, W. G., Birnbaum, M. L., et al. (1971). Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respiration Physiology, 13, 62–89.CrossRefGoogle ScholarPubMed
Dempsey, J. A., Forster, H. V. and Ainsworth, D. M. (eds) (1995). Regulation of Hyperpnea, Hyperventilation, and Respiratory Muscle Recruitment during Exercise. New York: Marcel Dekker.Google Scholar
Desplanches, D., Hoppeler, H., Tuscher, L., et al. (1996). Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia. Journal of Applied Physiology, 81, 1946–1951.CrossRefGoogle ScholarPubMed
Dill, D. B., Edwards, H. T., Oberg, S. A., et al. (1931). Adaptations to the organism to changes in oxygen pressure. Journal de physiologie, 71, 47–63.CrossRefGoogle ScholarPubMed
Dua, G. L. and Sen Gupta, J. (1980). A study of physical work capacity of sea level residents on prolonged stay at high altitude and comparison with high altitude native residents. Indian Journal of Physiology and Pharmacology, 24, 15–24.Google ScholarPubMed
Easton, D. F., Pooley, K. A., Dunning, A. M., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.CrossRefGoogle ScholarPubMed
Eeles, R. A., Kote-Jarai, Z., Giles, G. G., et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genetics, 40, 316–321.CrossRefGoogle ScholarPubMed
Elsner, R. W., Blostad, A. and Forno, C. (1964). Maximum oxygen consumption of Peruvian Indians native to high altitude. In The Physiological Effects of High Altitude, Weihe, W. H. (ed.). New York: Pergamon Press, pp. 217–223.CrossRefGoogle Scholar
Farber, C. R. and Lusis, A. J. (2008). Integrating global gene expression analysis and genetics. Advances in Genetics, 60, 571–601.Google ScholarPubMed
Favier, R., Spielvogel, H., Desplanches, D., et al. (1995). Maximal exercise performance in chronic hypoxia and acute normoxia in high-altitude natives. Journal of Applied Physiology, 78, 1868–1874.CrossRefGoogle ScholarPubMed
Forster, H. V., Dempsey, J. A., Birnbaum, M. L., et al. (1971). Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. Journal of Applied Physiology, 31, 586–592.CrossRefGoogle Scholar
Frisancho, A. R. (1969). Human growth and pulmonary function of a high altitude Peruvian Quechua population. Human Biology, 41, 365–379.Google ScholarPubMed
Frisancho, A. R., Martinez, C., Velasquez, T., et al. (1973). Influence of developmental adaptation on aerobic capacity at high altitude. Journal of Applied Physiology, 34, 176–180.CrossRefGoogle ScholarPubMed
Frisancho, A. R., Frisancho, H. G., Milotich, M., et al. (1995). Developmental, genetic, and environmental components of aerobic capacity at high altitude. American Journal of Physical Anthropology, 96, 431–442.CrossRefGoogle ScholarPubMed
Frisancho, A. R., Frisancho, H. G., Albalak, R., et al. (1997). Developmental, genetic and environmental components of lung volumes at high altitude. American Journal of Human Biology, 9, 191–203.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Gamboa, A., Leon-Velarde, F., Rivera-Ch, M., et al. (2003). Selected contribution: acute and sustained ventilatory responses to hypoxia in high-altitude natives living at sea level. Journal of Applied Physiology, 94, 1255–1262, discussion 1253–1254.CrossRefGoogle ScholarPubMed
Garruto, R. M., Chin, C. T., Weitz, C. A., et al. (2003). Hematological differences during growth among Tibetans and Han Chinese born and raised at high altitude in Qinghai, China. American Journal of Physical Anthropology, 122, 171–183.CrossRefGoogle ScholarPubMed
Ge, R. L., Chen, Q. H. and He, L. G. (1994a). [Characteristics of hypoxic ventilatory response in Tibetan living at moderate and high altitudes.]Chung Hua Chieh Ho Ho Hu Hsi Tsa Chih, 17, 364–366, 384.Google Scholar
Ge, R. L., Chen, Q. H., Wang, L. H., et al. (1994b). Higher exercise performance and lower V̇O2max in Tibetan than Han residents at 4700 m altitude. Journal of Applied Physiology, 77, 684–691.CrossRefGoogle Scholar
Ge, R. L., He Lun, G. W., Chen, Q. H., et al. (1995). Comparisons of oxygen transport between Tibetan and Han residents at moderate altitude. Wilderness and Environmental Medicine, 6, 391–400.CrossRefGoogle Scholar
Gelfi, C., Palma, S., Ripamonti, M., et al. (2004). New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB Journal, 18, 612–614.CrossRefGoogle ScholarPubMed
Gesang, L., Liu, G., Cen, W., et al. (2002). Angiotensin-converting enzyme gene polymorphism and its association with essential hypertension in a Tibetan population. Hypertension Research, 25, 481–485.CrossRefGoogle Scholar
Gold, B., Kirchhoff, T., Stefanov, S., et al. (2008). Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proceedings of the National Academy of Sciences of the United States of America, 105, 4340–4345.CrossRefGoogle ScholarPubMed
Green, H. J., Sutton, J. R., Cymerman, A., et al. (1989). Operation Everest II: adaptations in human skeletal muscle. Journal of Applied Physiology, 66, 2454–2461.CrossRefGoogle ScholarPubMed
Greksa, L. P. (2006). Growth and development of Andean high altitude residents. High Altitude Medicine and Biology, 7, 116–124.CrossRefGoogle ScholarPubMed
Greksa, L. P. and Haas, J. D. (1982). Physical growth and maximal work capacity in preadolescent boys at high-altitude. Human Biology, 54, 677–695.Google ScholarPubMed
Greksa, L. P., Spielvogel, H. and Paredes-Fernandez, L. (1985). Maximal exercise capacity in adolescent European and Amerindian high-altitude natives. American Journal of Physical Anthropology, 67, 209–216.CrossRefGoogle ScholarPubMed
Greksa, L. P., Spielvogel, H., Paz-Zamora, M., et al. (1988). Effect of altitude on the lung function of high altitude residents of European ancestry. American Journal of Physical Anthropology, 75, 77–85.CrossRefGoogle ScholarPubMed
Grover, R. F., Reeves, J. T., Grover, E. B., et al. (1967). Muscular exercise in young men native to 3100 m altitude. Journal of Applied Physiology, 22, 555–564.CrossRefGoogle ScholarPubMed
Groves, B. M., Droma, T., Sutton, J. R., et al. (1993). Minimal hypoxic pulmonary hypertension in normal Tibetans at 3658 m. Journal of Applied Physiology, 74, 312–318.CrossRefGoogle Scholar
Gudmundsson, J., Sulem, P., Manolescu, A., et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genetics, 39, 631–637.CrossRefGoogle ScholarPubMed
Gudmundsson, J., Sulem, P., Rafnar, T., et al. (2008). Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 40, 281–283.CrossRefGoogle ScholarPubMed
Haas, J. D., Frongillo, E. J., Stepcik, C., et al. (1980). Altitude, ethnic, and sex differences in birth weight and length in Bolivia. Human Biology, 52, 459–477.Google Scholar
Haas, J. D., Greksa, L. P., Leatherman, T. L., et al. (1983). Submaximal work performance of native and migrant preadolescent boys at high altitude. Human Biology, 55, 517–527.Google ScholarPubMed
Hackett, P. H., Reeves, J. T., Reeves, C. D., et al. (1980). Control of breathing in Sherpas at low and high altitude. Journal of Applied Physiology, 49, 374–379.CrossRefGoogle ScholarPubMed
Heath, D., Smith, P., Williams, D., et al. (1974). The heart and pulmonary vasculature of the llama (Lama glama). Thorax, 29, 463–471.CrossRefGoogle Scholar
Hochachka, P. W. and Rupert, J. L. (2003). Fine tuning the HIF-1 “global” O2 sensor for hypobaric hypoxia in Andean high-altitude natives. Bioessays, 25, 515–519.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Stanley, C., Matheson, G. O., et al. (1991). Metabolic and work efficiencies during exercise in Andean natives. Journal of Applied Physiology, 70, 1720–1730.CrossRefGoogle ScholarPubMed
Hoit, B. D., Dalton, N. D., Erzurum, S. C., et al. (2005). Nitric oxide and cardio-pulmonary hemodynamics in Tibetan highlanders. Journal of Applied Physiology, 99, 1796–1801.CrossRefGoogle Scholar
Hoppeler, H., Kleinert, E., Schlegel, C., et al. (1990). Morphological adaptations of human skeletal muscle to chronic hypoxia. International Journal of Sports Medicine, 11(suppl. 1), S3–S9.CrossRefGoogle ScholarPubMed
Hoppeler, H., Vogt, M., Weibel, E. R., et al. (2003). Response of skeletal muscle mitochondria to hypoxia. Experimental Physiology, 88, 109–119.CrossRefGoogle ScholarPubMed
Howald, H., Pette, D., Simoneau, J. A., et al. (1990). Effect of chronic hypoxia on muscle enzyme activities. International Journal of Sports Medicine, 11(suppl. 1), S10–S14.CrossRefGoogle ScholarPubMed
Huang, S. Y., Alexander, J. K., Grover, R. F., et al. (1984). Hypocapnia and sustained hypoxia blunt ventilation on arrival at high altitude. Journal of Applied Physiology, 56, 602–606.CrossRefGoogle ScholarPubMed
Hulme, C. W., Ingram, T. E. and Lonsdale-Eccles, D. A. (2003). Electrocardiographic evidence for right heart strain in asymptomatic children living in Tibet – a comparative study between Han Chinese and ethnic Tibetans. Wilderness and Environmental Medicine, 14, 222–225.CrossRefGoogle ScholarPubMed
Hunter, D. J., Kraft, P., Jacobs, K. B., et al. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 39, 870–874.CrossRefGoogle ScholarPubMed
Hurtado, A. (1932). Respiratory adaptation in the Indian natives of the Peruvian Andes. Studies at high altitude. American Journal of Physical Anthropology, 17, 137–165.CrossRefGoogle Scholar
Hurtado, A. (1964). Animals at high altitudes: resident man. In Handbook of Physiology, Section 4, Adaptation and Environment, Dill, D. B., Adolph, E. F. and Wiber, C. G. (eds). Washington, DC: American Physiological Society, pp. 843–860.Google Scholar
Johnson, R. L., Cassidy, S. S., Grover, R. F., et al. (1985). Functional capacities of lungs and thorax in beagles after prolonged residence at 3100 m. Journal of Applied Physiology, 59, 1773–1782.CrossRefGoogle ScholarPubMed
Julian, C. G., Vargas, E., Armaza, J. F., et al. (2007). High-altitude ancestry protects against hypoxia-associated reductions in fetal growth. Archives of Disease in Childhood. Fetal and Neonatal Edition, 92, F372–F377.CrossRefGoogle ScholarPubMed
Kashiwazaki, H., Dejima, Y., Orias-Rivera, J., et al. (1995). Energy expenditure determined by the doubly labeled water method in Bolivian Aymara living in a high altitude agropastoral community. The American Journal of Clinical Nutrition, 62, 901–910.CrossRefGoogle Scholar
Kayser, B., Hoppeler, H., Claassen, H., et al. (1991). Muscle structure and performance capacity of Himalayan Sherpas. Journal of Applied Physiology, 70, 1938–1942.CrossRefGoogle ScholarPubMed
Kayser, B., Marconi, C., Amatya, T., et al. (1994). The metabolic and ventilatory response to exercise in Tibetans born at low altitude. Respiratory Physiology, 98, 15–26.CrossRefGoogle ScholarPubMed
Kayser, B., Hoppeler, H., Desplanches, D., et al. (1996). Muscle ultrastructure and biochemistry of lowland Tibetans. Journal of Applied Physiology, 81, 419–425.CrossRefGoogle ScholarPubMed
Keyes, L. E., Armaza, J. F., Niermeyer, S., et al. (2003). Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatric Research, 54, 20–25.CrossRefGoogle ScholarPubMed
Kollias, J., Buskirk, E. R., Akers, R. F., et al. (1968). Work capacity of long-time residents and newcomers to altitude. Journal of Applied Physiology, 24, 792–799.CrossRefGoogle ScholarPubMed
Lahiri, S. (1968). Alveolar gas pressures in man with life-time hypoxia. Respiratory Physiology, 4, 373–386.CrossRefGoogle ScholarPubMed
Lahiri, S. and Milledge, J. S. (1966). Muscular exercise in the Himalayan high-altitude residents. Federation Proceedings, 25, 1392–1396.Google ScholarPubMed
Lahiri, S., Milledge, J. S., Chattopadhyay, H. P., et al. (1967). Respiration and heart rate of Sherpa highlanders during exercise. Journal of Applied Physiology, 23, 545–554.CrossRefGoogle ScholarPubMed
Lahiri, S., Kao, F. F., Velasquez, T., et al. (1969). Irreversible blunted respiratory sensitivity to hypoxia in high altitude natives. Respiratory Physiology, 6, 360–374.CrossRefGoogle ScholarPubMed
Leon-Velarde, F., Vargas, M., Monge, C. C., et al. (1996). Alveolar Pco2 and Po2 of high-altitude natives living at sea level. Journal of Applied Physiology, 81, 1605–1609.CrossRefGoogle ScholarPubMed
Leon-Velarde, F., Maggiorini, M., Reeves, J. T., et al. (2005). Consensus statement on chronic and subacute high altitude diseases. High Altitude Medicine and Biology, 6, 147–157.CrossRefGoogle ScholarPubMed
Lundby, C., Calbet, J. A., Hall, G., et al. (2004). Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 weeks of acclimatization to 4100 m and in high-altitude Aymara natives. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R1202–R1208.CrossRefGoogle Scholar
Lundby, C., Sander, M., Hall, G., et al. (2006). Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives. Journal of Physiology, 573, 535–547.CrossRefGoogle ScholarPubMed
Lynch, T. F. (1990). Glacial-age man in South America? A critical review. American Antiquity, 55, 12–36.CrossRefGoogle Scholar
MacNeish, R. S. and Berger, R. P. (1970). Megafauna and man from Ayacucho, highland Peru. Science, 166, 8975–8977.Google Scholar
Marconi, C., Marzorati, M., Grassi, B., et al. (2004). Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. Journal of Physiology, 556, 661–671.CrossRefGoogle ScholarPubMed
Marconi, C., Marzorati, M., Sciuto, D., et al. (2005). Economy of locomotion in high-altitude Tibetan migrants exposed to normoxia. Journal of Physiology, 569, 667–675.CrossRefGoogle ScholarPubMed
Maresh, C. M., Noble, B. J., Robertson, K. L., et al. (1983). Maximal exercise during hypobaric hypoxia (447 Torr) in moderate-altitude natives. Medicine and Science in Sports and Exercise, 15, 360–365.CrossRefGoogle Scholar
Martin, I. H. and Costa, L. E. (1992). Reproductive function in female rats submitted to chronic hypobaric hypoxia. Archives internationales de physiologie, de biochimie et de biophysique, 100, 327–330.CrossRefGoogle ScholarPubMed
Mazess, R. B. (1969a). Exercise performance at high altitude in Peru. Federation Proceedings, 28, 1301–1306.Google ScholarPubMed
Mazess, R. B. (1969b). Exercise performance of Indian and white high altitude residents. Human Biology, 41, 494–518.Google ScholarPubMed
Mazess, R. B. (ed.) (1978). Adaptation: a Conceptual Framework. The Hague, the Netherlands: Mouton.
McAuliffe, F., Kametas, N., Krampl, E., et al. (2001). Blood gases in pregnancy at sea level and at high altitude. BJOG: An International Journal of Obstetrics and Gynaecology, 108, 980–985.Google ScholarPubMed
McCarthy, M. I., Abecasis, G. R., Cardon, L. R., et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews. Genetics, 9, 356–369.CrossRefGoogle ScholarPubMed
McKenzie, D. C., Goodman, L. S., Nath, C., et al. (1991). Cardiovascular adaptations in Andean natives after 6 week of exposure to sea level. Journal of Applied Physiology, 70, 2650–2655.CrossRefGoogle Scholar
Monge, C. (1948). Acclimatization in the Andes. Baltimore: The Johns Hopkins University Press.Google Scholar
Moore, L. G. (1990). Maternal O2 transport and fetal growth in Colorado, Peru, and Tibet high-altitude residents. American Journal of Human Biology, 2, 627–637.CrossRefGoogle ScholarPubMed
Moore, L. G. (2000). Comparative human ventilatory adaptation to high altitude. Respiratory Physiology, 121, 257–276.CrossRefGoogle ScholarPubMed
Moore, L. G. (2001). Human genetic adaptation to high altitude. High Altitude Medicine and Biology, 2, 257–279.CrossRefGoogle ScholarPubMed
Moore, L. G. (2003). Fetal growth restriction and maternal oxygen transport during high altitude pregnancy. High Altitude Medicine and Biology, 4, 141–156.CrossRefGoogle ScholarPubMed
Moore, L. G., Curran-Everett, L., Droma, T. S., et al. (1992). Are Tibetans better adapted?International Journal of Sports Medicine, 13 (suppl. 1), S86–S88.CrossRefGoogle ScholarPubMed
Moore, L. G., Asmus, L. and Curran, L. (1998). Chronic Mountain Sickness: Gender and Geographic Variation: Progress in Mountain Medicine and High Altitude Physiology. Japan: Matsumoto, pp. 114–119.Google Scholar
Moore, L. G., Zamudio, S., Zhuang, J., et al. (2001). Oxygen transport in Tibetan women during pregnancy at 3658 m. American Journal of Physical Anthropology, 114, 42–53.3.0.CO;2-B>CrossRefGoogle Scholar
Moore, L. G., Zamudio, S., Zhuang, J., et al. (2002). Analysis of the myoglobin gene in Tibetans living at high altitude. High Altitude Medicine and Biology, 3, 39–47.CrossRefGoogle ScholarPubMed
Moore, L. G., Shriver, M., Bemis, L., et al. (2004). Maternal adaptation to high-altitude pregnancy: an experiment of nature – a review. Placenta, 25, S60–S71.CrossRefGoogle ScholarPubMed
Niermeyer, S., Yang, , , P., Shanmina, , et al. (1995). Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet. New England Journal of Medicine, 333, 1248–1252.CrossRefGoogle ScholarPubMed
Niermeyer, S., Zamudio, S. and Moore, L. G. (eds) (2001). The People. New York: Marcel Dekker.Google Scholar
Niu, W., Wu, Y., Li, B., et al. (1995). Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. European Journal of Applied Physiology, 71, 543–548.CrossRefGoogle ScholarPubMed
Palmer, S. K., Moore, L. G., Young, D., et al. (1999). Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 m) in Colorado. American Journal of Obstetrics and Gynecology, 180, 1161–1168.CrossRefGoogle Scholar
Patel, S., Woods, D. R., Macleod, N. J., et al. (2003). Angiotensin-converting enzyme genotype and the ventilatory response to exertional hypoxia. The European Respiratory Journal, 22, 755–760.CrossRefGoogle ScholarPubMed
Penaloza, D., Banchero, N., Sime, F., et al. (1963). The heart in chronic hypoxia. Biochemical Clinics, 2, 283–298.Google ScholarPubMed
Remmers, J. E. and Mithoefer, J. C. (1969). The carbon monoxide diffusing capacity in permanent residents at high altitude. Respiratory Physiology, 6, 233–244.CrossRefGoogle Scholar
Reynafarje, B. (1962). Myoglobin content and enzymatic activity of muscle and altitude adaptation. Journal of Applied Physiology, 17, 301–305.CrossRefGoogle ScholarPubMed
Reynafarje, B. and Velasquez, T. (1966). Metabolic and physiological aspects of exercise at high altitude. I. Kinetics of blood lactate, oxygen consumption and oxygen debt during exercise and recovery breathing air. Federation Proceedings, 25, 1397–1399.Google ScholarPubMed
Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human diseases [see comments]. Science, 273, 1516–1517.CrossRefGoogle Scholar
Rupert, J. L. and Koehle, M. S. (2006). Evidence for a genetic basis for altitude-related illness. High Altitude Medicine and Biology, 7, 150–167.CrossRefGoogle ScholarPubMed
Rupert, J. L., Devine, D. V., Monsalve, M. V., et al. (1999). Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population. Annals of Human Biology, 26, 375–380.CrossRefGoogle ScholarPubMed
Saltin, B., Nygaard, E. and Rasmussen, B. (1980). Skeletal muscle adaptations in man following prolonged exposure to high altitude. Acta Physiologica Scandinavica, 109, 31A.Google Scholar
Samaja, M., Veicsteinas, A. and Cerretelli, P. (1979). Oxygen affinity of blood in altitude Sherpas. Journal of Applied Physiology, 47, 337–341.CrossRefGoogle ScholarPubMed
Santolaya, R. B., Lahiri, S., Alfaro, R. T., et al. (1989). Respiratory adaptation in the highest inhabitants and highest Sherpa mountaineers. Respiratory Physiology, 77, 253–262.CrossRefGoogle ScholarPubMed
Saxena, R., Voight, B. F., Lyssenko, V., et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 316, 1331–1336.Google ScholarPubMed
Schoene, R. B., Roach, R. C., Lahiri, S., et al. (1990). Increased diffusion capacity maintains arterial saturation during exercise in the Quechua Indians of the Chilean Altiplano. American Journal of Human Biology, 2, 663–668.CrossRefGoogle ScholarPubMed
Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341–1345.CrossRefGoogle ScholarPubMed
Severinghaus, J. W. (1979). Simple, accurate equations for human blood O2 dissociation computations. Journal of Applied Physiology, 46, 599–602.CrossRefGoogle ScholarPubMed
Severinghaus, J. W., Bainton, C. R. and Carcelen, A. (1966). Respiratory insensitivity to hypoxia in chronically hypoxic man. Respiratory Physiology, 1, 308–334.CrossRefGoogle ScholarPubMed
Shriver, M. D., Mei, R., Bigham, A., et al. (2006). Finding the genes underlying adaptation to hypoxia using genomic scans for genetic adaptation and admixture mapping. Advances in Experimental Medicine and Biology, 588, 89–100.CrossRefGoogle ScholarPubMed
Sladek, R., Rocheleau, G., Rung, J., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.CrossRefGoogle ScholarPubMed
Smith, C., Dempsey, J. and Hornbein, T. (2001). Control of breathing at high altitude. In High Altitude: an Exploration of Human Adaptation, Hornbein, T. and Schoene, R. (eds). New York: Marcel Dekker, pp. 139–173.Google Scholar
Sorensen, S. C. and Severinghaus, J. W. (1968a). Irreversible respiratory insensitivity to acute hypoxia in man born at high altitude. Journal of Applied Physiology, 25, 217–220.CrossRefGoogle ScholarPubMed
Sorensen, S. C. and Severinghaus, J. W. (1968b). Respiratory sensitivity to acute hypoxia in man born at sea level living at high altitude. Journal of Applied Physiology, 25, 211–216.CrossRefGoogle ScholarPubMed
Stacey, S. N., Manolescu, A., Sulem, P., et al. (2007). Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genetics, 39, 865–869.CrossRefGoogle ScholarPubMed
Stacey, S. N., Manolescu, A., Sulem, P., et al. (2008). Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genetics, 40, 703–706.CrossRefGoogle ScholarPubMed
Sun, S. F., Droma, T. S., Zhang, J. G., et al. (1990a). Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Respiratory Physiology, 79, 151–161.CrossRefGoogle Scholar
Sun, S. F., Huang, S. Y., Zhang, J. G., et al. (1990b). Decreased ventilation and hypoxic ventilatory responsiveness are not reversed by naloxone in Lhasa residents with chronic mountain sickness. American Review of Respiratory Diseases, 142, 1294–1300.CrossRefGoogle Scholar
Suzuki, K., Kizaki, T., Hitomi, Y., et al. (2003). Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Medical Hypotheses, 61, 385–389.CrossRefGoogle ScholarPubMed
Thomas, G., Jacobs, K. B., Yeager, M., et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nature Genetics, 40, 310–315.CrossRefGoogle Scholar
Torroni, A., Miller, J. A., Moore, L. G., et al. (1994). Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. American Journal of Physical Anthropology, 93, 189–199.CrossRefGoogle ScholarPubMed
Tsianos, G., Eleftheriou, K. I., Hawe, E., et al. (2005). Performance at altitude and angiotensin I-converting enzyme genotype. European Journal of Applied Physiology, 93, 630–633.CrossRefGoogle ScholarPubMed
Unoki, H., Takahashi, A., Kawaguchi, T., et al. (2008). SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nature Genetics, 40, 1098–1102.CrossRefGoogle ScholarPubMed
Vargas, M., Vargas, E., Julian, C. G., et al. (2007). Determinants of blood oxygenation during pregnancy in Andean and European residents of high altitude. American Journal of Physiology, 293, R1303–R1312.Google ScholarPubMed
Velasquez, T. (1966). Acquired Acclimatization to Sea-Level: Life at High Altitudes. Washington, DC: Pan American Health Organization Scientific Publications, pp. 58–63.Google Scholar
Vincent, J., Hellot, M. F., Vargas, E., et al. (1978). Pulmonary gas exchange, diffusing capacity in natives and newcomers at high altitude. Respiratory Physiology, 34, 219–231.CrossRefGoogle ScholarPubMed
Vitzthum, V. J. and Wiley, A. S. (2003). The proximate determinants of fertility in populations exposed to chronic hypoxia. High Altitude Medicine and Biology, 4, 125–139.CrossRefGoogle ScholarPubMed
Vogel, J. A., Hartley, L. H. and Cruz, J. C. (1974). Cardiac output during exercise in altitude natives at sea level and high altitude. Journal of Applied Physiology, 36, 173–176.CrossRefGoogle ScholarPubMed
Wagner, P. D., Araoz, M., Boushel, R., et al. (2002). Pulmonary gas exchange and acid-base state at 5260 m in high-altitude Bolivians and acclimatized lowlanders. Journal of Applied Physiology, 92, 1393–1400.CrossRefGoogle ScholarPubMed
Way, A. B. (1976). Exercise capacity of high altitude Peruvian Quechua Indians migrant to low altitude. Human Biology, 48, 175–191.Google ScholarPubMed
Weil, J. V., Byrne-Quinn, E., Sodal, I. E., et al. (1971). Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. Journal of Clinical Investigation, 50, 186–195.CrossRefGoogle ScholarPubMed
Weitz, C. A. and Garruto, R. M. (2007). A comparative analysis of arterial oxygen saturation among Tibetans and Han born and raised at high altitude. High Altitude Medicine and Biology, 8, 13–26.CrossRefGoogle ScholarPubMed
Wenger, R. H. and Gassmann, M. (1997). Oxygen(es) and the hypoxia-inducible factor-1. Biological Chemistry, 378, 609–616.Google ScholarPubMed
Wilson, M. J., Lopez, M., Vargas, M., et al. (2007). Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents. American Journal of Physiology, 293, R1313–R1324.Google ScholarPubMed
Winslow, R. M., Monge, C. C., Statham, N. J., et al. (1981). Variability of oxygen affinity of blood: human subjects native to high altitude. Journal of Applied Physiology, 51, 1411–1416.CrossRefGoogle ScholarPubMed
Winslow, R. M., Monge, C. C., Brown, E. G., et al. (1985). Effects of hemodilution on O2 transport in high-altitude polycythemia. Journal of Applied Physiology, 59, 1495–1502.CrossRefGoogle ScholarPubMed
Winslow, R. M., Chapman, K. W., Gibson, C. C., et al. (1989). Different hematologic responses to hypoxia in Sherpas and Quechua Indians. Journal of Applied Physiology, 66, 1561–1569.CrossRefGoogle ScholarPubMed
Woods, D. R. and Montgomery, H. E. (2001). Angiotensin-converting enzyme and genetics at high altitude. High Altitude Medicine and Biology, 2, 201–210.CrossRefGoogle ScholarPubMed
Woods, D. R., Pollard, A. J., Collier, D. J., et al. (2002). Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and arterial oxygen saturation at high altitude. American Journal of Respiratory and Critical Care Medicine, 166, 362–366.CrossRefGoogle ScholarPubMed
Wu, T., Wang, X., Wei, C., et al. (2005). Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. Journal of Applied Physiology, 98, 598–604.CrossRefGoogle ScholarPubMed
Yamaya, Y., Bogaard, H. J., Wagner, P. D., et al. (2002). Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia. Journal of Applied Physiology, 92, 162–168.CrossRefGoogle ScholarPubMed
Yasuda, K., Miyake, K., Horikawa, Y., et al. (2008). Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nature Genetics, 40, 1092–1097.CrossRefGoogle ScholarPubMed
Yeager, M., Orr, N., Hayes, R. B., et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genetics, 39, 645–649.CrossRefGoogle ScholarPubMed
Zamudio, S. (2003). The placenta at high altitude. High Altitude Medicine and Biology, 4, 171–191.CrossRefGoogle ScholarPubMed
Zhimin, A. (1982). Paleoliths and microliths from Shenja and Shuanghu, Northern Tibet. Current Anthropology, 23, 493–499.Google Scholar
Zhuang, J., Droma, T., Sun, S., et al. (1993). Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3658 m. Journal of Applied Physiology, 74, 303–311.CrossRefGoogle Scholar
Zhuang, J., Droma, T., Sutton, J. R., et al. (1996). Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respiratory Physiology, 103, 75–82.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×