Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-15T13:36:32.679Z Has data issue: false hasContentIssue false

14 - DNA Markers of Human Variation

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

Historically, questions relating to human genetics and variation have been addressed by the study of “classical” genetic markers (see Chapter 13 of this volume). Classical genetic markers are polymorphic proteins, which run the gamut from blood group antigens such as the ABO system to enzymes including G6PD. Each of these classical marker loci has characteristics that are useful for addressing questions about human genetic variation. These characteristics usually include an appreciable level of polymorphism (variation) and a methodological ability to consistently detect that polymorphism using techniques such as gel electrophoresis. Often, these variations make clear links between particular alleles and genetic diseases (e.g., the HbS allele of the β-globin gene with sickle cell anemia [Pauling et al., 1949], while at other times, these relationships are statistical (e.g., particular ABO blood type alleles and susceptibilities to diseases [see Chapter 13 of this volume])). The use of classical markers for understanding human genetic variation is reviewed in Chapter 13 of this volume.

In the current chapter, I review the application of more modern “DNA markers” to studies of human variation. A host of methodological advances coalesced in the 1980s that enabled scientists to investigate human variation directly at the level of the genetic material, hence the name “DNA markers.” Because there are several advantages to assaying human genetic diversity directly at the DNA level, a transition to use of these markers followed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akey, J. M. (2009). Constructing genomic maps of positive selection in humans: where do we go from here?Genome Research, 19, 711–722.CrossRefGoogle Scholar
Allen, R. C., Armitage, R. J., Conley, M. E., et al. (1993). CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science, 259, 990–993.CrossRefGoogle ScholarPubMed
Allison, A. C. (1954). Protection afforded by sickle-cell trait against subtertian malarial infection. British Medical Journal, 1, 290–294.CrossRefGoogle Scholar
Allison, A. C. (1961). Genetic factors in resistance to malaria. Annals of the New York Academy of Sciences, 91, 710–729.CrossRefGoogle ScholarPubMed
Alves-Silva, J., Da Silva Santos, M., Guimaraes, P. E., et al. (2000). The ancestry of Brazilian mtDNA lineages. American Journal of Human Genetics, 67, 444–461.CrossRefGoogle ScholarPubMed
Anderson, S., Bankier, A. T., Barrell, B. G., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.CrossRefGoogle ScholarPubMed
Andrews, R. M., Kubacka, I., Chinnery, P. F., et al. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics, 23, 147.CrossRefGoogle ScholarPubMed
Arbiza, L., Dopazo, J. and Dopazo, H. (2006). Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Computational Biology, 2, e38.CrossRefGoogle ScholarPubMed
Armelagos, G. J. and Harper, K. N. (2005). Genomics at the origins of agriculture, part two. Evolutionary Anthropology, 14, 109–121.CrossRefGoogle Scholar
Ayala, F. J. (1995). The myth of Eve: molecular biology and human origins. Science, 270, 1930–1936.CrossRefGoogle ScholarPubMed
Bakewell, M. A., Shi, P. and Zhang, J. (2007). More genes underwent positive selection in chimpanzee evolution than in human evolution. Proceedings of the National Academy of Sciences of the United States of America, 104, 7489–7494.CrossRefGoogle ScholarPubMed
Balloux, F., Handley, L. J., Jombart, T., et al. (2009). Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proceedings of the Royal Society Biological Sciences, 276, 3447–3455.CrossRefGoogle ScholarPubMed
Bamshad, M. and Wooding, S. P. (2003). Signatures of natural selection in the human genome. Nature Reviews Genetics, 4, 99–111.CrossRefGoogle ScholarPubMed
Barbujani, G., Magagni, A., Minch, E., et al. (1997). An apportionment of human DNA diversity. Proceedings of the National Academy of Sciences of the United States of America, 94, 4516–4519.CrossRefGoogle ScholarPubMed
Barreiro, L. B., Patin, E., Neyrolles, O., et al. (2005). The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region. American Journal of Human Genetics, 77, 869–886.CrossRefGoogle ScholarPubMed
Baum, J., Ward, R. H. and Conway, D. J. (2002). Natural selection on the erythrocyte surface. Molecular Biology and Evolution, 19, 223–229.CrossRefGoogle ScholarPubMed
Behar, D. M., Villems, R., Soodyall, H., et al. (2008). The dawn of human matrilineal diversity. American Journal of Human Genetics, 82, 1130–1140.CrossRefGoogle ScholarPubMed
Bejerano, G., Pheasant, M., Makunin, I., et al. (2004). Ultraconserved elements in the human genome. Science, 304, 1321–1325.CrossRefGoogle ScholarPubMed
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., et al. (2004). GenBank: update. Nucleic Acids Research, 32, D23–D26.CrossRefGoogle ScholarPubMed
Bentley, D. R. (2006). Whole-genome re-sequencing. Current Opinion in Genetics and Development, 16, 545–552.CrossRefGoogle ScholarPubMed
Bersaglieri, T., Sabeti, P. C., Patterson, N., et al. (2004). Genetic signatures of strong recent positive selection at the lactase gene. American Journal of Human Genetics, 74, 1111–1120.CrossRefGoogle ScholarPubMed
Bird, C. P., Stranger, B. E., Liu, M., et al. (2007). Fast-evolving noncoding sequences in the human genome. Genome Biology, 8, R118.CrossRefGoogle ScholarPubMed
Bolnick, D. A., Bolnick, D. I. and Smith, D. G. (2006). Asymmetric male and female genetic histories among Native Americans from eastern North America. Molecular Biology and Evolution, 23, 2161–2174.CrossRefGoogle ScholarPubMed
Botstein, D., White, R. L., Skolnick, M., et al. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.Google ScholarPubMed
Briggs, A. W., Good, J. M., Green, R. E., et al. (2009). Targeted retrieval and analysis of five Neanderthal mtDNA genomes. Science, 325, 318–321.CrossRefGoogle Scholar
Calafell, F., Roubinet, F., Ramirez-Soriano, A., et al. (2008). Evolutionary dynamics of the human ABO gene. Human Genetics, 124, 123–135.CrossRefGoogle ScholarPubMed
Campbell, M. C. and Tishkoff, S. A. (2008). African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annual Review of Genomics and Human Genetics, 9, 403–433.CrossRefGoogle ScholarPubMed
Cann, R. L., Stoneking, M. and Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature, 325, 31–36.CrossRefGoogle ScholarPubMed
Cann, H. M., Toma, C., Cazes, L. et al. (2002). A human genome diversity cell line panel. Science, 296, 261–262.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., Menozzi, P. and Piazza, A. (1994). The History and Geography of Human Genes. Princeton: Princeton University Press.Google Scholar
Chaix, R., Austerlitz, F., Khegay, T., et al. (2004). The genetic or mythical ancestry of descent groups: lessons from the Y chromosome. American Journal of Human Genetics, 75, 1113–1116.CrossRefGoogle ScholarPubMed
,Chimpanzee Sequencing and Analysis Consortium (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.
Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K., et al. (2002). Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria. Blood, 100, 1172–1176.Google ScholarPubMed
Clark, A. G., Glanowski, S., Nielsen, R., et al. (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science, 302, 1960–1963.CrossRefGoogle ScholarPubMed
Cook, P. J., Robson, E. B., Buckton, K. E., et al. (1978). Segregation of ABO, AK1 and ACONs in families with abnormalities of chromosome 9. Annals of Human Genetics, 41, 365–377.CrossRefGoogle ScholarPubMed
Cox, M. P., Mendez, F. L., Karafet, T. M., et al. (2008). Testing for archaic hominin admixture on the X chromosome: model likelihoods for the modern human RRM2P4 region from summaries of genealogical topology under the structured coalescent. Genetics, 178, 427–437.CrossRefGoogle ScholarPubMed
Currat, M. and Excoffier, L. (2004). Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biology, 2, e421.CrossRefGoogle Scholar
Currat, M., Trabuchet, G., Rees, D., et al. (2002). Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βs Senegal mutation. American Journal of Human Genetics, 70, 207–223.CrossRefGoogle Scholar
Dermitzakis, E. T., Reymond, A., Scamuffa, N., et al. (2003). Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science, 302, 1033–1035.CrossRefGoogle Scholar
Destro-Bisol, G., Donati, F., Coia, V., et al. (2004). Variation of female and male lineages in sub-Saharan populations: the importance of sociocultural factors. Molecular Biology and Evolution, 21, 1673–1682.CrossRefGoogle ScholarPubMed
Di Rienzo, A. and Wilson, A. C. (1991). Branching pattern in the evolutionary tree for human mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 88, 1597–1601.CrossRefGoogle ScholarPubMed
Dillehay, T. D. (2009). Probing deeper into first American studies. Proceedings of the National Academy of Sciences of the United States of America, 106, 971–978.CrossRefGoogle ScholarPubMed
Drake, J. A., Bird, C., Nemesh, J., et al. (2006). Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nature Genetics, 38, 223–227.CrossRefGoogle Scholar
Enard, W., Przeworski, M., Fisher, S. E., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.CrossRefGoogle ScholarPubMed
Evans, P. D., Anderson, J. R., Vallender, E. J., et al. (2004). Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Human Molecular Genetics, 13, 489–494.CrossRefGoogle Scholar
Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., et al. (2006). Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proceedings of the National Academy of Sciences of the United States of America, 103, 18178–18183.CrossRefGoogle ScholarPubMed
Excoffier, L. and Schneider, S. (1999). Why hunter-gatherer populations do not show signs of pleistocene demographic expansions. Proceedings of the National Academy of Sciences of the United States of America, 96, 10597–10602.CrossRefGoogle Scholar
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.Google ScholarPubMed
Fagundes, N. J., Ray, N., Beaumont, M., et al. (2007). Statistical evaluation of alternative models of human evolution. Proceedings of the National Academy of Sciences of the United States of America, 104, 17614–17619.CrossRefGoogle ScholarPubMed
Feibel, C. S., Brown, F. H. and Mcdougall, I. (1989). Stratigraphic context of fossil hominids from the Omo group deposits: northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology, 78, 595–622.CrossRefGoogle ScholarPubMed
Flint, J., Hill, A. V. S., Bowden, D. K., et al. (1986). High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature, 321, 744–750.CrossRefGoogle ScholarPubMed
Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66, 95–107.CrossRefGoogle Scholar
Friedlaender, J. S., Friedlaender, F. R., Reed, F. A., et al. (2008). The genetic structure of Pacific Islanders. PLoS Genetics, 4, e19.CrossRefGoogle ScholarPubMed
Gabunia, L., Vekua, A., Lordkipanidze, D., et al. (2000). Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science, 288, 1019–1025.CrossRefGoogle Scholar
Garrigan, D. and Hammer, M. F. (2006). Reconstructing human origins in the genomic era. Nature Reviews Genetics, 7, 669–680.CrossRefGoogle ScholarPubMed
Garrigan, D., Mobasher, Z., Kingan, S. B., et al. (2005a). Deep haplotype divergence and long-range linkage disequilibrium at Xp21.1 provide evidence that humans descend from a structured ancestral population. Genetics, 170, 1849–1856.CrossRefGoogle ScholarPubMed
Garrigan, D., Mobasher, Z., Severson, T., et al. (2005b). Evidence for archaic Asian ancestry on the human X chromosome. Molecular Biology and Evolution, 22, 189–192.CrossRefGoogle ScholarPubMed
Goldstein, D. B., Ruiz Linares, A., Cavalli-Sforza, L. L., et al. (1995). Genetic absolute dating based on microsatellites and the origin of modern humans. Proceedings of the National Academy of Sciences of the United States of America, 92, 6723–6727.CrossRefGoogle ScholarPubMed
Gonder, M. K., Mortensen, H. M., Reed, F. A., et al. (2007). Whole-mtDNA genome sequence analysis of ancient African lineages. Molecular Biology and Evolution, 24, 757–768.CrossRefGoogle ScholarPubMed
Green, R. E., Krause, J., Ptak, S. E., et al. (2006). Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–336.CrossRefGoogle ScholarPubMed
Green, R. E., Malaspinas, A. S., Krause, J., et al. (2008). A complete Neanderthal mitochondrial genome sequence determined by high-throughput sequencing. Cell, 134, 416–426.CrossRefGoogle Scholar
Hammer, M. F. (1995). A recent common ancestry for human Y chromosomes. Nature, 378, 376–378.CrossRefGoogle ScholarPubMed
Hammer, M. F., Karafet, T., Rasanayagam, A., et al. (1998). Out of Africa and back again: nested cladistic analysis of human Y chromosome variation. Molecular Biology and Evolution, 15, 427–441.CrossRefGoogle ScholarPubMed
Hammer, M. F., Blackmer, F., Garrigan, D., et al. (2003). Human population structure and its effects on sampling Y chromosome sequence variation. Genetics, 164, 1495–1509.Google ScholarPubMed
Hammer, M. F., Mendez, F. L., Cox, M. P., et al. (2008). Sex-biased evolutionary forces shape genomic patterns of human diversity. PLoS Genetics, 4, e1000202.CrossRefGoogle ScholarPubMed
Hanchard, N., Elzein, A., Trafford, C., et al. (2007). Classical sickle β-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations. BMC Genetics, 8, 52.CrossRefGoogle ScholarPubMed
Harding, R. M., Fullerton, S. M., Griffiths, R. C., et al. (1997). Archaic African and Asian lineages in the genetic ancestry of modern humans. American Journal of Human Genetics, 60, 772–789.Google ScholarPubMed
Harpending, H. and Rogers, A. (2000). Genetic perspectives on human origins and differentiation. Annual Review of Genomics and Human Genetics, 1, 361–385.CrossRefGoogle Scholar
Harpending, H. C., Sherry, S. T., Rogers, A. R., et al. (1993). Structure of ancient human populations. Current Anthropology, 34, 483–496.CrossRefGoogle Scholar
Harpending, H. C., Batzer, M. A., Gurven, M., et al. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences of the United States of America, 95, 1961–1967.CrossRefGoogle ScholarPubMed
Harris, E. E. and Hey, J. (1999a). Human demography in the Pleistocene: do mitochondrial and nuclear genes tell the same story?Evolutionary Anthropology, 8, 81–86.3.0.CO;2-4>CrossRefGoogle Scholar
Harris, E. E. and Hey, J. (1999b). X chromosome evidence for ancient human histories. Proceedings of the National Academy of Sciences of the United States of America, 96, 3320–3324.CrossRefGoogle ScholarPubMed
Harris, E. E. and Meyer, D. (2006). The molecular signature of selection underlying human adaptations. American Journal of Physical Anthropology, 43(Suppl.), 89–130.CrossRefGoogle ScholarPubMed
Helgason, A., Lalueza-Fox, C., Ghosh, S., et al. (2009). Sequences from first settlers reveal rapid evolution in Icelandic mtDNA pool. PLoS Genetics, 5, e1000343.CrossRefGoogle ScholarPubMed
Hey, J. (1997). Mitochondrial and nuclear genes present conflicting portraits of human origins. Molecular Biology and Evolution, 14, 166–172.CrossRefGoogle ScholarPubMed
Hill, A. V. S. (2006). Aspects of genetic susceptibility to human infectious diseases. Annual Review of Genetics, 40, 469–486.CrossRefGoogle ScholarPubMed
Hosoi, E. (2008). Biological and clinical aspects of ABO blood group system. Journal of Medical Investigation, 55, 174–182.CrossRefGoogle ScholarPubMed
Hunley, K. L., Healy, M. E. and Long, J. C. (2009). The global pattern of gene identity variation reveals a history of long-range migrations, bottlenecks, and local mate exchange: implications for biological race. American Journal of Physical Anthropology, 139, 35–46.CrossRefGoogle ScholarPubMed
Ingman, M., Kaessmann, H., Pääbo, S., et al. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708–713.CrossRefGoogle ScholarPubMed
,International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.
,International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef
,International SNP Map Working Group (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.
Irshaid, N. M., Chester, M. A. and Olsson, M. L. (1999). Allele-related variation in minisatellite repeats involved in the transcription of the blood group ABO gene. Transfusion Medicine (Oxford, England), 9, 219–226.CrossRefGoogle ScholarPubMed
Jablonski, N. G. and Chaplin, G. (2000). The evolution of human skin coloration. Journal of Human Evolution, 39, 57–106.CrossRefGoogle ScholarPubMed
Jakobsson, M., Scholz, S. W., Scheet, P., et al. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451, 998–1003.CrossRefGoogle ScholarPubMed
Jaruzelska, J., Zietkiewicz, E. and Labuda, D. (1999). Is selection responsible for the low level of variation in the last intron of the ZFY locus?Molecular Biology and Evolution, 16, 1633–1640.CrossRefGoogle ScholarPubMed
Jorde, L. B., Watkins, W. S., Bamshad, M. J., et al. (2000). The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. American Journal of Human Genetics, 66, 979–988.CrossRefGoogle ScholarPubMed
Kaessmann, H., Heißig, F., Haeseler, A., et al. (1999). DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genetics, 22, 78–81.CrossRefGoogle Scholar
Kaessmann, H., Wiebe, V., Weiss, G., et al. (2001). Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genetics, 27, 155–156.CrossRefGoogle ScholarPubMed
Katzmarzyk, P. T. and Leonard, W. R. (1998). Climatic influences on human body size and proportions: ecological adaptations and secular trends. American Journal of Physical Anthropology, 106, 483–503.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Kayser, M., Choi, Y., Oven, M., et al. (2008a). The impact of the Austronesian expansion: evidence from mtDNA and Y chromosome diversity in the Admiralty Islands of Melanesia. Molecular Biology and Evolution, 25, 1362–1374.CrossRefGoogle ScholarPubMed
Kayser, M., Lao, O., Saar, K., et al. (2008b). Genome-wide analysis indicates more Asian than Melanesian ancestry of Polynesians. American Journal of Human Genetics, 82, 194–198.CrossRefGoogle ScholarPubMed
Kazazian, H. H., Waber, P. G., Boehm, C. D., et al. (1984). Hemoglobin E in Europeans: further evidence for multiple origins of the β1-globin gene. American Journal of Human Genetics, 36, 212–217.Google Scholar
Keinan, A., Mullikin, J. C., Patterson, N., et al. (2009). Accelerated genetic drift on chromosome X during the human dispersal out of Africa. Nature Genetics, 41, 66–70.CrossRefGoogle ScholarPubMed
Kelley, J. L., Turkheimer, K., Haney, M., et al. (2009). Targeted resequencing of two genes, RAGE and POLL, confirms findings from a genome-wide scan for adaptive evolution and provides evidence for positive selection in additional populations. Human Molecular Genetics, 18, 779–784.CrossRefGoogle ScholarPubMed
Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002). The human genome browser at UCSC. Genome Research, 12, 996–1006.CrossRefGoogle ScholarPubMed
Kimmel, M., Chakraborty, R., King, J. P., et al. (1998). Signatures of population expansion in microsatellite repeat data. Genetics, 148, 1921–1930.Google ScholarPubMed
Kimura, M. (1977). Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature, 267, 275–276.CrossRefGoogle ScholarPubMed
King, M. C. and Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.CrossRefGoogle ScholarPubMed
Kivisild, T., Shen, P., Wall, D. P., et al. (2006). The role of selection in the evolution of human mitochondrial genomes. Genetics, 172, 373–387.CrossRefGoogle ScholarPubMed
Kosiol, C., Vinař, T., Da Fonseca, R. R., et al. (2008). Patterns of positive selection in six mammalian genomes. PLoS Genetics, 4, e1000144.CrossRefGoogle ScholarPubMed
Kouprina, N., Pavlicek, A., Mochida, G. H., et al. (2004). Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biology, 2, e126.CrossRefGoogle ScholarPubMed
Kreitman, M. (2000). Methods to detect selection in populations with applications to the human. Annual Review of Genomics and Human Genetics, 1, 539–559.CrossRefGoogle ScholarPubMed
Krings, M., Stone, A., Schmitz, R. W., et al. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90, 19–30.CrossRefGoogle ScholarPubMed
Krings, M., Geisert, H., Schmitz, R. W., et al. (1999). DNA sequence of the mitochondrial hypervariable region II from the Neanderthal type specimen. Proceedings of the National Academy of Sciences of the United States of America, 96, 5581–5585.CrossRefGoogle Scholar
Kulozik, A. E., Wainscoat, J. S., Serjeant, G. R., et al. (1986). Geographical survey of βs-globin gene haplotypes: evidence for an independent Asian origin of the sickle-cell mutation. American Journal of Human Genetics, 39, 239–244.Google Scholar
Kumar, V., Langstieh, B. T., Madhavi, K. V., et al. (2006). Global patterns in human mitochondrial DNA and Y-chromosome variation caused by spatial instability of the local cultural processes. PLoS Genetics, 2, e53.CrossRefGoogle ScholarPubMed
Kwiatkowski, D. P. (2005). How malaria has affected the human genome and what human genetics can teach us about malaria. American Journal of Human Genetics, 77, 171–192.CrossRefGoogle ScholarPubMed
Kwok, P. Y. and Chen, X. (2003). Detection of single nucleotide polymorphisms. Current Issues in Molecular Biology, 5, 43–60.Google ScholarPubMed
Levy, J., Espanol-Boren, T., Thomas, C., et al. (1997). Clinical spectrum of X-linked hyper-IgM syndrome. Journal of Pediatrics, 131, 47–54.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1972). The apportionment of human diversity. Evolutionary Biology, 6, 381–398.Google Scholar
Li, J. Z., Absher, D. M., Tang, H., et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100–1104.CrossRefGoogle ScholarPubMed
Liu, H., Prugnolle, F., Manica, A., et al. (2006). A geographically explicit genetic model of worldwide human-settlement history. American Journal of Human Genetics, 79, 230–237.CrossRefGoogle ScholarPubMed
Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distributions in West Africa. American Anthropologist, 60, 533–562.CrossRefGoogle Scholar
Livingstone, F. B. (1984). The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Human Biology, 56, 413–425.Google ScholarPubMed
Long, J. C., Li, J. and Healy, M. E. (2009). Human DNA sequences: more variation and less race. American Journal of Physical Anthropology, 139, 23–34.CrossRefGoogle ScholarPubMed
Manica, A., Prugnolle, F. and Balloux, F. (2005). Geography is a better determinant of human genetic differentiation than ethnicity. Human Genetics, 118, 366–371.CrossRefGoogle ScholarPubMed
Marlowe, F. W. (2004). Marital residence among foragers. Current Anthropology, 45, 277–284.CrossRefGoogle Scholar
Mekel-Bobrov, N., Posthuma, D., Gilbert, S. L., et al. (2007). The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Human Molecular Genetics, 16, 600–608.CrossRefGoogle Scholar
Mendis, K., Sina, B. J., Marchesini, P., et al. (2001). The neglected burden of Plasmodium vivax malaria. American Journal of Tropical Medicine and Hygiene, 64, 97–106.CrossRefGoogle ScholarPubMed
Merriwether, D. A., Clark, A. G., Ballinger, S. W., et al. (1991). The structure of human mitochondrial DNA variation. Journal of Molecular Evolution, 33, 543–555.CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F., et al. (1976). The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. New England Journal of Medicine, 295, 302–304.CrossRefGoogle Scholar
Miyata, T., Yasunaga, T. and Nishida, T. (1980). Nucleotide sequence divergence and functional constraint in mRNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 77, 7328–7332.CrossRefGoogle ScholarPubMed
Modiano, D., Luoni, G., Sirima, B. S., et al. (2001). Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–308.CrossRefGoogle ScholarPubMed
Mullis, K. B. and Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350.CrossRefGoogle Scholar
Murdock, G. P. (1967). Ethnographic Atlas. Pittsburgh, PA: University of Pittsburgh.Google Scholar
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.Google Scholar
Nielsen, R., Bustamante, C., Clark, A. G. et al. (2005). A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biology 3, e170.CrossRefGoogle ScholarPubMed
Noonan, J. P., Coop, G., Kudaravalli, S. et al. (2006). Sequencing and analysis of Neanderthal genomic DNA. Science, 314, 1113–1118.CrossRefGoogle ScholarPubMed
Nordborg, M. (1998). On the probability of Neanderthal ancestry. American Journal of Human Genetics, 63, 1237–1240.CrossRefGoogle ScholarPubMed
Norton, H. L., Kittles, R. A., Parra, E., et al. (2007). Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Molecular Biology and Evolution, 24, 710–722.CrossRefGoogle ScholarPubMed
Ohashi, J., Naka, I., Patarapotikul, J., et al. (2004). Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection. American Journal of Human Genetics, 74, 1198–1208.CrossRefGoogle ScholarPubMed
Oota, H., Settheetham-Ishida, W., Tiwawech, D., et al. (2001). Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nature Genetics, 29, 20–21.CrossRefGoogle ScholarPubMed
Pääbo, S., Poinar, H., Serre, D., et al. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645–679.CrossRefGoogle ScholarPubMed
Pagnier, J., Mears, J. G., Dunda-Belkhodja, O., et al. (1984). Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proceedings of the National Academy of Sciences of the United States of America, 81, 1771–1773.CrossRefGoogle ScholarPubMed
Pakendorf, B. and Stoneking, M. (2005). Mitochondrial DNA and human evolution. Annual Review of Genomics and Human Genetics, 6, 165–183.CrossRefGoogle ScholarPubMed
Pauling, L., Itano, H. A., Singer, S. J., et al. (1949). Sickle cell anemia: a molecular disease. Science, 110, 543–548.CrossRefGoogle ScholarPubMed
Plagnol, V. and Wall, J. D. (2006). Possible ancestral structure in human populations. PLoS Genetics, 2, e105.CrossRefGoogle ScholarPubMed
Pollard, K. S., Salama, S. R., Lambert, N., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172.CrossRefGoogle ScholarPubMed
Prabhakar, S., Noonan, J. P., Pääbo, S, et al. (2006). Accelerated evolution of conserved noncoding sequences in humans. Science, 314, 786.CrossRefGoogle ScholarPubMed
Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., et al. (1999). Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and Evolution, 16, 1791–1798.CrossRefGoogle ScholarPubMed
Prugnolle, F., Manica, A. and Balloux, F. (2005). Geography predicts neutral genetic diversity of human populations. Current Biology, 15, R159–R160.CrossRefGoogle ScholarPubMed
Przeworski, M., Hudson, R. R. and Di Rienzo, A. (2000). Adjusting the focus on human variation. Trends in Genetics, 16, 296–302.CrossRefGoogle ScholarPubMed
Quintana-Murci, L., Chaix, R., Wells, R. S., et al. (2004). Where West meets East: the complex mtDNA landscape of the Southwest and Central Asian corridor. American Journal of Human Genetics, 74, 827–845.CrossRefGoogle ScholarPubMed
Ramachandran, S., Rosenberg, N. A., Zhivotovsky, L. A., et al. (2004). Robustness of the inference of human population structure: a comparison of X-chromosomal and autosomal microsatellites. Human Genomics, 1, 87–97.Google ScholarPubMed
Ramachandran, S., Deshpande, O., Roseman, C. C., et al. (2005). Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America, 102, 15942–15947.CrossRefGoogle ScholarPubMed
Ray, N., Currat, M., Berthier, P., et al. (2005). Recovering the geographic origin of early modern humans by realistic and spatially explicit simulations. Genome Research, 15, 1161–1167.CrossRefGoogle ScholarPubMed
Reed, F. A. and Tishkoff, S. A. (2006). African human diversity, origins and migrations. Current Opinion in Genetics and Development, 16, 597–605.CrossRefGoogle ScholarPubMed
Reich, D. E. and Goldstein, D. B. (1998). Genetic evidence for a Paleolithic human population expansion in Africa. Proceedings of the National Academy of Sciences of the United States of America, 95, 8119–8123.CrossRefGoogle ScholarPubMed
Relethford, J. H. (2001). Genetics and the Search for Modern Human Origins. New York: Wiley-Liss.Google Scholar
Relethford, J. H. (2004). Global patterns of isolation by distance based on genetic and morphological data. Human Biology, 76, 499–513.CrossRefGoogle ScholarPubMed
,Rhesus Macaque Genome Sequencing and Analysis Consortium (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316, 222–234.
Roberts, R. J., Vincze, T., Posfai, J., et al. (2005). REBASE – restriction enzymes and DNA methyltransferases. Nucleic Acids Research, 33, D230–D232.CrossRefGoogle ScholarPubMed
Rogers, A. R. and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.Google ScholarPubMed
Rosenberg, N. A., Pritchard, J. K., Weber, J. L., et al. (2002). Genetic structure of human populations. Science, 298, 2381–2385.CrossRefGoogle ScholarPubMed
Rosenberg, N. A., Mahajan, S., Ramachandran, S., et al. (2005). Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genetics, 1, e70.CrossRefGoogle ScholarPubMed
Ruitberg, C. M., Reeder, D. J. and Butler, J. M. (2001). STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Research, 29, 320–322.CrossRefGoogle Scholar
Ruiz-Pesini, E., Mishmar, D., Brandon, M., et al. (2004). Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223–226.CrossRefGoogle ScholarPubMed
Ruvolo, M. (1996). A new approach to studying modern human origins: hypothesis testing with coalescence time distributions. Molecular Phylogenetics and Evolution, 5, 202–219.CrossRefGoogle ScholarPubMed
Ruvolo, M. (1997). Genetic diversity in hominoid primates. Annual Review of Anthropology, 26, 515–540.CrossRefGoogle Scholar
Ruvolo, M., Zehr, S., Dornum, M., et al. (1993). Mitochondrial COII sequences and modern human origins. Molecular Biology and Evolution, 10, 1115–1135.Google ScholarPubMed
Ryman, N., Chakraborty, R. and Nei, M. (1983). Differences in the relative distribution of human gene diversity between electrophoretic and red and white cell antigen loci. Human Heredity, 33, 93–102.CrossRefGoogle ScholarPubMed
Sabeti, P., Usen, S., Farhadian, S., et al. (2002a). CD40L association with protection from severe malaria. Genes and Immunity, 3, 286–291.CrossRefGoogle ScholarPubMed
Sabeti, P. C., Reich, D. E., Higgins, J. M., et al. (2002b). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837.CrossRefGoogle ScholarPubMed
Sabeti, P. C., Schaffner, S. F., Fry, B., et al. (2006). Positive natural selection in the human lineage. Science, 312, 1614–1620.CrossRefGoogle ScholarPubMed
Sabeti, P. C., Varilly, P., Fry, B., et al. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913–918.CrossRefGoogle ScholarPubMed
Schlötterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma, 109, 365–371.CrossRefGoogle ScholarPubMed
Sebastianelli, A., Sen, T. and Bruce, I. J. (2008). Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Letters in Applied Microbiology, 46, 488–491.CrossRefGoogle ScholarPubMed
Ségurel, L., Martinez-Cruz, B., Quintana-Murci, L. et al. (2008). Sex-specific genetic structure and social organization in Central Asia: insights from a multi-locus study. PLoS Genetics, 4, e1000200.CrossRefGoogle ScholarPubMed
Seielstad, M. T., Minch, E. and Cavalli-Sforza, L. L. (1998). Genetic evidence for a higher female migration rate in humans. Nature Genetics, 20, 278–280.CrossRefGoogle ScholarPubMed
Serjeantson, S., Bryson, K., Amato, D., et al. (1977). Malaria and hereditary ovalocytosis. Human Genetics, 37, 161–167.CrossRefGoogle ScholarPubMed
Serre, D. and Pääbo, S. (2004). Evidence for gradients of human genetic diversity within and among continents. Genome Research, 14, 1679–1685.CrossRefGoogle ScholarPubMed
Serre, D., Langaney, A., Chech, M., et al. (2004). No evidence of Neanderthal mtDNA contribution to early modern humans. PLoS Biology, 2, e57.CrossRefGoogle Scholar
Sherry, S. T., Rogers, A. R., Harpending, H., et al. (1994). Mismatch distributions of mtDNA reveal recent human population expansions. Human Biology, 66, 761–775.Google ScholarPubMed
Sherry, S. T., Ward, M. H., Kholodov, M., et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29, 308–311.CrossRefGoogle ScholarPubMed
Shimada, M. K., Panchapakesan, K., Tishkoff, S. A., et al. (2007). Divergent haplotypes and human history as revealed in a worldwide survey of X-linked DNA sequence variation. Molecular Biology and Evolution, 24, 687–698.CrossRefGoogle Scholar
Stratton, M. (2008). Genome resequencing and genetic variation. Nature Biotechnology, 26, 65–66.CrossRefGoogle ScholarPubMed
Stringer, C. (2002). Modern human origins: progress and prospects. Philosophical Transactions of the Royal Society of London. Series B, 357, 563–579.CrossRefGoogle ScholarPubMed
Stringer, C. B. and Andrews, P. (1988). Genetic and fossil evidence for the origin of modern humans. Science, 239, 1263–1268.CrossRefGoogle ScholarPubMed
Swallow, D. M. (2003). Genetics of lactase persistence and lactose intolerance. Annual Review of Genetics, 37, 197–219.CrossRefGoogle ScholarPubMed
Swisher, C. C., Curtis, G. H., Jacob, T., et al. (1994). Age of the earliest known hominids in Java, Indonesia. Science, 263, 1118–1121.Google ScholarPubMed
Takahata, N. (1993). Allelic genealogy and human evolution. Molecular Biology and Evolution, 10, 2–22.Google ScholarPubMed
Takahata, N., Lee, S. H. and Satta, Y. (2001). Testing multiregionality of modern human origins. Molecular Biology and Evolution, 18, 172–183.CrossRefGoogle ScholarPubMed
Templeton, A. R. (2007). Genetics and recent human evolution. Evolution, 61, 1507–1519.CrossRefGoogle ScholarPubMed
Thomas, M. G., Parfitt, T., Weiss, D. A., et al. (2000). Y chromosomes traveling south: the cohen modal haplotype and the origins of the Lemba – the “Black Jews of Southern Africa.”American Journal of Human Genetics, 66, 674–686.CrossRefGoogle Scholar
Thomson, R., Pritchard, J. K., Shen, P., et al. (2000). Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proceedings of the National Academy of Sciences of the United States of America, 97, 7360–7365.CrossRefGoogle ScholarPubMed
Timpson, N., Heron, J., Smith, G. D., et al. (2007). Comment on papers by Evans et al. and Mekel-Bobrov et al. on evidence for positive selection of MCPH1 and ASPM. Science, 317, 1036, author reply 1036.CrossRefGoogle Scholar
Tishkoff, S. A. and Verrelli, B. C. (2003). Patterns of human genetic diversity: implications for human evolutionary history and disease. Annual Review of Genomics and Human Genetics, 4, 293–340.CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Dietzsch, E., Speed, W., et al. (1996). Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science, 271, 1380–1387.CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., et al. (2001). Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science, 293, 455–462.CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Reed, F. A., Ranciaro, A., et al. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39, 31–40.CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Reed, F. A., Friedlaender, F. R., et al. (2009). The genetic structure and history of Africans and African Americans. Science, 324, 1035–1044.CrossRefGoogle ScholarPubMed
Underhill, P. A. and Kivisild, T. (2007). Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annual Review of Genetics, 41, 539–564.CrossRefGoogle ScholarPubMed
Underhill, P. A., Passarino, G., Lin, A. A., et al. (2001). The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Annals of Human Genetics, 65, 43–62.CrossRefGoogle ScholarPubMed
Untergasser, A., Nijveen, H., Rao, X., et al. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35, W71–W74.CrossRefGoogle ScholarPubMed
Varki, A. and Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research, 15, 1746–1758.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.CrossRefGoogle ScholarPubMed
Vigilant, L., Stoneking, M., Harpending, H., et al. (1991). African populations and the evolution of human mitochondrial DNA. Science, 253, 1503–1507.CrossRefGoogle ScholarPubMed
Voight, B. F., Kudaravalli, S., Wen, X., et al. (2006). A map of recent positive selection in the human genome. PLoS Biology, 4, e72.CrossRefGoogle ScholarPubMed
Wall, J. D. (2000). Detecting ancient admixture in humans using sequence polymorphism data. Genetics, 154, 1271–1279.Google ScholarPubMed
Wall, J. D. and Hammer, M. F. (2006). Archaic admixture in the human genome. Current Opinion in Genetics and Development, 16, 606–610.CrossRefGoogle ScholarPubMed
Wall, J. D. and Kim, S. K. (2007). Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genetics, 3, 1862–1866.CrossRefGoogle ScholarPubMed
Wall, J. D. and Przeworski, M. (2000). When did the human population size start increasing?Genetics, 155, 1865–1874.Google ScholarPubMed
Wall, J. D., Cox, M. P., Mendez, F. L., et al. (2008). A novel DNA sequence database for analyzing human demographic history. Genome Research, 18, 1354–1361.CrossRefGoogle ScholarPubMed
Wang, D. G., Fan, J. B., Siao, C. J., et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280, 1077–1082.CrossRefGoogle ScholarPubMed
Wilder, J. A., Kingan, S. B., Mobasher, Z., et al. (2004a). Global patterns of human mitochondrial DNA and Y-chromosome structure are not influenced by higher migration rates of females versus males. Nature Genetics, 36, 1122–1125.CrossRefGoogle Scholar
Wilder, J. A., Mobasher, Z. and Hammer, M. F. (2004b). Genetic evidence for unequal effective population sizes of human females and males. Molecular Biology and Evolution, 21, 2047–2057.CrossRefGoogle ScholarPubMed
Wilder, J. A., Stone, J. A., Preston, E. G., et al. (2009). Molecular population genetics of SLC4A1 and Southeast Asian ovalocytosis. Journal of Human Genetics, 54, 182–187.CrossRefGoogle ScholarPubMed
Wilkins, J. F. and Marlowe, F. W. (2006). Sex-biased migration in humans: what should we expect from genetic data?Bioessays, 28, 290–300.CrossRefGoogle ScholarPubMed
Wolpoff, , M. H., Wu, X. and Thorne, A. G. (1984). Modern Homo sapiens origins: a general theory of hominid evolution involving the fossil evidence from East Asia. In The Origins of Modern Humans: a World Survey of the Fossil Evidence, Smith, F. H. and Spencer, F. (eds). New York: Liss, pp. 411–483.Google Scholar
Wood, E. T., Stover, D. A., Slatkin, M., et al. (2005). The β-globin recombinational hotspot reduces the effects of strong selection around HbC, a recently arisen mutation providing resistance to malaria. American Journal of Human Genetics, 77, 637–642.CrossRefGoogle ScholarPubMed
Woolfe, A., Goodson, M., Goode, D. K., et al. (2005). Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biology, 3, e7.CrossRefGoogle ScholarPubMed
,World Health Organization (2008). World Malaria Report. Geneva: World Health Organization.
Xing, J., Witherspoon, D. J., Ray, D. A., et al. (2007). Mobile DNA elements in primate and human evolution. American Journal of Physical Anthropology, 45(Suppl.), 2–19.CrossRefGoogle ScholarPubMed
Yamamoto, F., Clausen, H., White, T., et al. (1990). Molecular genetic basis of the histo-blood group ABO system. Nature, 345, 229–233.CrossRefGoogle ScholarPubMed
Yamamoto, F., Mcneill, P. D. and Hakomori, S. (1995). Genomic organization of human histo-blood group ABO genes. Glycobiology, 5, 51–58.CrossRefGoogle ScholarPubMed
Yu, N. and Li, W. (2000). No fixed nucleotide difference between Africans and non-Africans at the pyruvate dehydrogenase E1 α-subunit locus. Genetics, 155, 1481–1483.Google ScholarPubMed
Yu, N., Zhao, Z., Fu, Y. X., et al. (2001). Global patterns of human DNA sequence variation in a 10-kb region on chromosome 1. Molecular Biology and Evolution, 18, 214–222.CrossRefGoogle Scholar
Yu, N., Chen, F. C., Ota, S., et al. (2002a). Larger genetic differences within Africans than between Africans and Eurasians. Genetics, 161, 269–274.Google ScholarPubMed
Yu, N., Fu, Y. X. and Li, W. H. (2002b). DNA polymorphism in a worldwide sample of human X chromosomes. Molecular Biology and Evolution, 19, 2131–2141.CrossRefGoogle Scholar
Zhang, J. (2003). Evolution of the human ASPM gene, a major determinant of brain size. Genetics, 165, 2063–2070.Google ScholarPubMed
Zhao, Z., Jin, L., Fu, Y. X., et al. (2000). Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proceedings of the National Academy of Sciences of the United States of America, 97, 11354–11358.CrossRefGoogle Scholar
Zhao, Z., Yu, N., Fu, Y. X., et al. (2006). Nucleotide variation and haplotype diversity in a 10-kb noncoding region in three continental human populations. Genetics, 174, 399–409.CrossRefGoogle Scholar
Zhivotovsky, L. A., Bennett, L., Bowcock, A. M., et al. (2000). Human population expansion and microsatellite variation. Molecular Biology and Evolution, 17, 757–767.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×