Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-31T21:24:19.402Z Has data issue: false hasContentIssue false

4 - Where and why? Wood ant population ecology

Published online by Cambridge University Press:  05 June 2016

Anita C. Risch
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
Samuel Ellis
Affiliation:
University of York, Heslington, York,UK
Hayley Wiswell
Affiliation:
Cairngorms Natural Park Authority, Grantown on Spey,UK
Jenni A. Stockan
Affiliation:
The James Hutton Institute
Elva J. H. Robinson
Affiliation:
University of York
Get access

Summary

Wood ant (Formica rufa group) populations are found across much of the northern hemisphere. However, their distribution is not universal, as there are factors which clearly limit their occurrence in the environment. Even on a local scale, within a particular population; distribution is not even, and some areas have a much higher density of nests than others. This chapter explores the population ecology of wood ants and addresses various factors that influence their distribution at different spatial scales. Specifically, this chapter will discuss: (1) the structure of wood ant mounds and how this influences where nests are found locally and within larger landscapes; (2) how wood ant dispersal strategies affect where populations are found and how they are structured; and (3) the causes and consequences of nest relocation and abandonment by wood ants.

Mound construction, properties and thermoregulation

Most red wood ant nests consist of an aboveground mound composed of organic material and a belowground part that extends into the mineral soil, potentially reaching as far down as the ground water table (e.g. Weber 1935; Gösswald 1989; Bristow et al. 1992). The aboveground part is built from needles, twigs, resin, bark, leaves and grasses collected from the surroundings (Wiśniewski 1967; Gösswald 1989; see Chapter 9). Coarser material is generally found inside the mounds where the breeding chambers are located (Wiśniewski 1967; Gösswald 1989). Finer organic material – for example needles – dominates the much denser outer layers of the mounds (Wiśniewski 1967). Some of the North American species cover only the surface of their mineral soil nests with organic material, sometimes termed ‘thatch’ (Weber 1935; Chapter 10).

Temperatures within red wood ant nests are considerably higher than air temperatures from early spring until late autumn (e.g. Lenoir et al. 2001). This allows the insects to end nest dormancy early and extend the breeding season, thus providing them with a competitive advantage over other ants. Several mechanisms have been suggested to explain how red wood ants manage to heat up their mounds in spring: (1) Forel's ‘Theory des Domes’ (see Seeley and Heinrich 1981); (2) Zahn's 1958 ‘Wärmeträgertheorie’ [heat-carrying theory]; and (3) the production of metabolic heat by either the ants themselves (Kneitz 1964, 1969, 1970; Rosengren et al. 1987; Kadochová and Frouz 2014) or by within-nest microbes (Coenen-Stass et al. 1980).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernasconi, C., Maeder, C., Cherix, D. and Pamilo, P. (2005) Diversity and genetic structure of the wood ant Formica lugubris in unmanaged forests. Annales Zoologici Fennici 42: 189–199.Google Scholar
Borkin, K. M., Summers, R. W. and Thomas, L. (2012) Surveying abundance and stand type associations of Formica aquilonia and F. lugubris (Hymenoptera: Formicidae) nest mounds over an extensive area: trialling a novel method. European Journal of Entomology 109: 47–53.Google Scholar
Breen, B. (1979) Nest sites of Formica lugubris (Hymenoptera, Formicidae) in Irish plantation woods. Journal of Live Sciences 1: 13–32.Google Scholar
Bristow, C. M., Cappaert, D., Campbell, N. J. and Heise, A. (1992) Nest structure and colony cycle of the Allegheny mound ant, Formica exsectoides Forel (Hymenoptera: Formicidae). Insectes Sociaux 39: 385–402.Google Scholar
Ceusters, R. (1979) Données démographiques des diverses colonies polycaliques de Formica polyctena Foerst. C.R. UIEIS-Lausanne: 31–60.
Chapuisat, M. and Keller, L. (1999) Extended family structure in the ant Formica paralugubris: the role of the breeding system. Behavioral Ecology and Sociobiology 46: 405–412.Google Scholar
Chapuisat, M., Goudet, J. and Keller, L. (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51: 475–482.Google Scholar
Chen, Y. H. and Robinson, E. J. H (2015) The relationship between canopy cover and colony size of the wood ant Formica lugubris: implications for the thermal effects on a keystone ant species. PLoS One 9(2): e116113.Google Scholar
Cherix, D. (1980) Note prelimiaire sur la structure, la phénologie et le régime alimentaire d'une super-colonie de Formica lugubris Zett. Insectes Sociaux 27: 236–266.Google Scholar
Cherix, D. (1987) Relation between diet and polyethism in Formica colonies. In Pasteels, J. M. and Deneubourg, J.-L. (eds), Experimenta Supplementum 54. Basel, Switzerland: Birkhäuser, pp. 93–115.
Cherix, D. and Bourne, J. D. (1980) A field-study on a super-colony of the red wood ant Formica lugubris Zett. in relation to other predatory arthropodes (spiders, harvestmen and ants). Revue Suisse de Zoologie 87: 955–973.Google Scholar
Cherix, D., Devenoges, A., Freitag, A., Bernasconi, C. and Maeder, A. (2007) Premier recensement des fourmis de bois (groupe Formica rufa) au Parc National Suisse. Nationalpark-Forschung in der Schweiz 94: 69–79.Google Scholar
Coenen-Stass, D., Schaarschmidt, B. and Lamprecht, I. (1980) Temperature distribution and calorimetric determination of heat production in the nest of the wood ants, Formica polyctena (Hymenoptera, Formicidae). Ecology 61: 238–244.Google Scholar
Conway, J. R. (1996) A field study of the nesting ecology of the thatching ant, Formica obscuripes Forel, at high altitude in Colorado. Great Basin Naturalist 56: 326–332.Google Scholar
Conway, J. R. (1997) Foraging activity, trails, food sources and predators of Formica obscuripes Forel (Hymenoptera: Fomicidae) at high altitude in Colorado. Pan-Pacific Entomologist 73: 172–183.Google Scholar
Domisch, T., Finér, L. and Jurgensen, M. F. (2005) Red wood ant mound densities in managed boreal forests. Annales Zoologici Fennici 42: 277–282.Google Scholar
Domisch, T., Ohashi, M., Finér, L., et al. (2008) Decomposition of organic matter and nutrient mineralisation in wood ant (Formica rufa group) mounds in boreal coniferous forests of different age. Biology and Fertility of Soils 44: 539–545.Google Scholar
Domisch, T., Neuvonen, S., Sundström, L., et al. (2011) Sources of variation in the incidence of ant–aphid mutualism in boreal forests. Agricultural and Forest Entomology 13: 239–245.Google Scholar
Dornhaus, A., Franks, N. R., Hawkins, R. M. and Shere, H. N. S. (2004) Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behaviour 67: 959–963.Google Scholar
Eichhorn, O. (1963) Die höhen- und waldtypenmässige Verbreitung der nützlichen Waldameisen in den Ostalpen. Waldhygiene 5: 129–135.Google Scholar
Eichhorn, O. (1964) Zur Verbreitung und Ökologie der hügelbauenden Waldameisen in den Ostalpen. Zeitschrift für angewandte Entomologie 54: 253–289.Google Scholar
Ellis, S. and Robinson, E. J. H. (2014) Polydomy in red wood ants. Insectes Sociaux 61: 111–122.Google Scholar
Finér, L., Jurgensen, M. F., Domisch, T., et al. (2013) The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 16: 196–208.Google Scholar
Finnegan, R. J. (1975) Introduction of a predacious red wood ant, Formica lugubris (Hymenoptera: Formicidae), from Italy to eastern Canada. Canadian Entomology 107: 1271–1274.Google Scholar
Francoeur, A. and Pépin, D. (1975) Productivité de la fourmi Formica dakotensis dans la pressière tourbeuse. 1. Densité observée et densité estimée des colonies. Insectes Sociaux 22: 135–150.Google Scholar
Freitag, A. and Cherix, D. (2009) Distribution des fourmis des bois et espèces apparentées (Hymenoptera, Formicidae, genre Formica) da le canton der Vaud. Entomo Helvetica 2: 83–95.Google Scholar
Frouz, J., Šantrůčková, H. and Kalčík, J. (1997) The effect of wood ants (Formica polyctena Foerst.) on the transformation of phosphorous in a spruce plantation. Pedobiologia 41: 437–447.Google Scholar
Gibb, H. and Johansson, T. (2010) Forest succession and harvesting of Hemipteran honeydew by boreal ants. Annales Zoologici Fennici 47: 99–110.Google Scholar
Gibb, H. and Hochuli, D. F. (2003) Nest relocation in the golden spiny ant Polyrhachis ammon: environmental cues and temporal castes. Insectes Sociaux 50: 323–329.Google Scholar
Gibb, H. and Hochuli, D. F. (2004) Removal experiment reveals limited effects of a behaviourally dominant species on ant assemblages. Ecology 85: 648–657.Google Scholar
Glaser, F. (2008) Verbreitung, Nestdichten und Ökologie hügelbauender Waldameisen der Gattung Formica im Tiroler Wald. Mitteilung der deutschen Gesellschaft für allgemeine angewandte Entomologie 16: 143–148.Google Scholar
Gösswald, K. (1989) Die Waldameise. Band 1. Biologische Grundlagen, Ökologie und Verhalten. Wiesbaden, Germany: AULA.
Gris, G. and Cherix, D. (1977) Les grandes colonies de fourmis des bois du Jura (groupe Formica rufa). Bulletin de la Société Entomologique Suisse 50: 249–250.Google Scholar
Gyllenstrand, N. and Seppä, P. (2003) Conservation genetics of the wood ant, Formica lugubris, in a fragmented landscape. Molecular Ecology 12: 2931–2940.Google Scholar
Heikkinen, M. W. (1999) Negative effects of the western thatching ant (Formica obscuripes) on spiders (Araneae) inhabiting big sagebrush (Artemisia tridentate). Great Basin Naturalist 59: 380–385.Google Scholar
Heimann, M. (1963) Zum Wärmehaushalt der Kleinen Roten Waldameise (Formica polyctena Förster.). Waldhygiene 5: 1–21.Google Scholar
Highashi, S. (1976) Nest proliferation by budding and nest growth pattern in Formica (Formica) yessensis in Inshikari shore. Journal of the Faculty of Science Hokkaido University, Series VI Zoology 20: 359–398.Google Scholar
Horstmann, K. (1990) Zur Entstehung des Wärmezentrums in Waldameisennestern (Formica polyctena Förster; Hymenoptera, Formicidae). Zoologische Beiträge der Naturforschung 33: 105–124.Google Scholar
Hughes, I. G. (1975) Changing altitude and habitat preferences of two species of wood-ant (Formica rufa and F. lugubris) in North Wales and Salop. Transactions of the Royal Entomological Society of London 127: 227–239.Google Scholar
Jenks, K. and Reithel, J. (2004) Impact of the western thatching ant (Formica obscur-ipes) on invertebrate abundance and diversity. URBEE 1. Available at: http://www.urbee.org/vol1/iss1/art3Google Scholar
Jurgensen, M. F., Storer, A. J. and Risch, A. C. (2005) Red wood ants in North America. Annales Zoologici Fennici 42: 235–242.Google Scholar
Kilpeläinen, J., Punttila, P., Finér, L., et al. (2008) Distribution of ant species and mounds (Formica) in different-aged managed spruce stands in eastern Finland. Journal of Applied Entomology 132: 315–325.Google Scholar
Kilpeläinen, J., Niemelä, P. and Kuuluvainen, T. (2011) A review of the study of Oinonnen (1956) on ants on rocks and their contribution to forest regeneration in Southern Finland. Scandinavian Journal of Forest Research 26: 72–80.Google Scholar
Kadochová, S. and Frouz, J. (2014) Red wood ants Formica polyctena switch off active thermoregulation of the nest in autumn. Insectes Sociaux 61: 297–306.Google Scholar
Klimetzek, D. (1970) Zur Bedeutung des Kleinstandortes für die Verbreitung hügelbauender Waldameisen der Formica rufa-Gruppe (Hymenoptera: Formicidae). Zeitschrift für angewandte Entomologie 66 45–48.Google Scholar
Kneitz, G. (1964) Untersuchungen zum Aufbau und zur Erhaltung des Nestwärmehaushaltes bei Formica polyctena Först. (Hym. Formicidae). Dissertation, University of Würzburg, Würzburg, Germany.
Kneitz, G. (1965) Formica-Arten mit vegetabilischem Nestbau in den Gurktaler Alpen (Kärnten). Waldhygiene 5: 240–250.Google Scholar
Kneitz, G. (1969) Temperaturprofile in Waldameisennestern. Proceedings of the VI Congress IUSSI 15–20 September 1969, Bern, Switzerland.
Kneitz, G. (1970) Saisonale Veränderungen des Nestwärmehaushaltes bei Ameisen in Abhängigkeit von der Konstitution und dem Verhalten der Arbeiterinnen als Beispiel vorteilhafter Anpassung eines Insektenstaates an das Jahreszeitenklima. Verhandlungen der Deutschen Zoologischen Gesellschaft 64: 318–322.Google Scholar
Laakso, J. and Setälä, H. (1998) Composition and trophic structure of detrital food web in ant nest mounds of Formica aquilonia and in the surrounding forest soil. Oikos 81: 266–278.Google Scholar
Lafleur, B., Parson, W. F. J., Bradley, R.L. and Francoeur, A. (2006) Ground-nesting ant assemblages and their relationships to habitat factors along a chronosequence of post-fire-regenerated lichen-spruce woodland. Environmental Entomology 35: 1515–1524.Google Scholar
Laine, K. J. and Niemelä, P. (1989) Nests and nest sites of red wood ants (Hymenoptera, Formicidae) in subarctic Finland. Annales Entomologici Fennici 55: 81–87.Google Scholar
Lenoir, L., Persson, T. and Bengtsson, J. (2001) Wood ant nests as potential hot spots for carbon and nitrogen mineralization. Biology and Fertility of Soils 34: 235–240.Google Scholar
Mabelis, A. A. (1979) Nest splitting by the red wood ant (Formica polyctena). Netherlands Journal of Zoology 21: 109–125.Google Scholar
Mabelis, A. A. (1991) Wood ants in fragmented woodlands. Proceedings of the 4th European Congress of Entomology and the XIII International Symposium für die Entomofaunistik Mitteleuropas: 757–761.
Mabelis, A. A. (1994) Flying as a survival strategy for wood ants in a fragmented landscape. Memorabilia Zoololgica 48: 147–170.Google Scholar
Mäki-Petäys, H., Zakharov, A., Viljakainen, J., Corander, J. and Pamilo, P. (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Molecular Ecology 14: 733–742.Google Scholar
McCahon, T. J. and Lookwood, J. A. (1990) Nest architecture and pedoturbation of Formica obscuripes Forel (Hymenoptera: Formicidae). Pan-Pacific Entomologist 66: 147–156.Google Scholar
McGlynn, T. P., Carr, R. A., Carson, J. H. and Buma, J. (2004) Frequent nest relocation in the ant Aphaenogaster araneoides: resources, competition, and natural enemies. Oikos 106: 611–621.Google Scholar
McIver, J. D. and Loomis, C. (1993) A size-distance relation in Homoptera-tending thatch ants (Formica obscuripes, Formica planipilis). Insectes Sociaux 40: 207–218.Google Scholar
McIver, J. D. and Steen, T. (1994) Use of secondary nest in great basin desert thatch ants (Formica obscuripes Forel). Great Basin Naturalist 54: 359–365.Google Scholar
McIver, J. D. and Yandell, K. (1998) Honeydew harvest in the western thatching ant (Hymenoptera: Formicidae). American Entomologist Spring: 30–35.Google Scholar
McIver, J. D., Torgersen, T. R. and Cimon, N. J. (1997) A supercolony of the thatch ant Formica obscuripes Forel (Hymenoptera: Formicidae) from the Blue Mountains of Oregon. Northwest Science 71: 18–29.Google Scholar
Nageleisen, L-M. (1999) Etude de la densité et du rôle bioindicateur des fourmis rousses dans les foréts du nord-est. Revue Foréstiere Française 4: 487–495.Google Scholar
O'Neil, K. M. and Kemp, W. P. (1990) Worker response to thermal constraints in the ant Formica obscuripes (Hymenoptera: Formicidae). Journal of Thermal Biology 15: 133–140.Google Scholar
Pamilo, P., Zhu, D., Fortelius, W., Rosengren, R., Seppä, P. and Sundström, L. (2005) Genetic patchwork of network-building wood ant populations. Annales Zoologici Fennici 42: 179–187.Google Scholar
Pimenov, Y. P. and Pokarzhevskij, A. D. (1975) Microflora abundance in nests of Formica. In Ants and Forest Protection, Proceedings of the 5th All-Union Symposium, Moscow, 1975, pp. 109–111. [In Russian.]
Pokarzhevskij, A. D. (1981) The distribution and accumulation of nutrients in nests of ant Formica polyctena (Hymenoptera, Formicidae). Pedobiologia 21: 117–124.Google Scholar
Punttila, P. (1996) Succession, forest fragmentation, and the distribution of wood ants. Oikos 75: 291–298.Google Scholar
Punttila, P. and Kilpeläinen, J. (2009) Distribution of mound-building ant species (Formica spp., Hymenoptera) in Finland: preliminary results of a national survey. Annales Zoologici Fennici 46: 1–15.Google Scholar
Punttila, P., Haila, Y., Pajunen, T. and Tukia, H. (1991) Colonisation of clearcut forests by ants in the southern Finnish taiga: a quantitative survey. Oikos 61: 250–262.Google Scholar
Risch, A. C., Jurgensen, M. F., Schuetz, M. and Page-Dumroese, D. S. (2005) The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests. Ecology 86: 419–430.Google Scholar
Risch, A. C., Jurgensen, M. F., Storer, A. J., Hyslop, M. D and Schuetz, M. (2008) Abundance and distribution of organic mound-building ants of the Formica rufa group in Yellowstone National Park. Journal of Applied Entomology 132: 326–336.Google Scholar
Robinson, N. A. and Robinson, E. J. H. (2008) The red wood ant Formica rufa (Hymenoptera: Formicidae) at Gait Barrows National Nature reserve, Lancashire, England, 1986–2006: longevity and multiplication of nests and the effect of management. British Journal of Entomology and Natural History 21: 225–241.Google Scholar
Robinson, N. A. and Woodgate, J. N. (2004) A study of the wood ant Formica lugubris Zetterstedt (Hymenoptera: Formicidae) in Ashness woods, Borrowdale, Cumbria, England in 2001 and 2003. British Journal of Entomology and Natural History 17: 1253.1–1253.9.Google Scholar
Rosengren, R., Sundström, L. and Fortelius, W. (1993) Monogyny and polygyny in Formica ants: the result of alternative dispersal tactics. In Keller, L. (ed), Queen Number and Sociality in Insects. Oxford, UK: Oxford University Press, pp. 308–333.
Rosengren, R. and Pamilo, P. (1983) The evolution of polygyny and polydomy in mound building Formica ants. Acta Entomologica Fennica 42: 65–77.Google Scholar
Rosengren, R., Vepsäläinen, K. and Wuorenrinne, H. (1979) Distribution, nest densities, and ecological significance of wood ants (the Formica rufa group) in Finland. Organisation international de lute biologique contre des animaux et les plantes nuisibles, Section regionale oust palearctique 2: 183–213.Google Scholar
Rosengren, R., Fortelius, W., Lindström, K. and Luther, A. (1987) Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Annales Zoologici Fennici 24: 147–155.Google Scholar
Seeley, T. D. and Heinrich, B. (1981) Regulation of temperature in the nests of social insects. In Heninrich, B. (ed.), Insect Thermoregulation. New York: New York Press.
Seifert, B. (1991) The phenotypes of the Formica rufa complex in East Germany. Abhandlungen der Beratungskommission des Naturkundemuseums Görlitz 65: 1–27.Google Scholar
Seppä, P., Sundström, L. and Punttila, P. (1995) Facultative polygyny and habitat succession in boreal ants. Biological Journal of the Linnean Society 56: 533–551.Google Scholar
Smallwood, J. (1982) Nest relocations in ants. Insectes Sociaux 29: 138–147.Google Scholar
Smallwood, J. and Culver, D. (1979) Colony movements of some North American ants. Journal of Animal Ecology 48: 373–382.Google Scholar
Sorvari, J. and Hakkarainen, H. (2005) Deforestation reduces nest mound size and decreases the production of sexual offspring in the wood ant Formica aquilonia. Annales Zoologici Fennici 42: 259–267.Google Scholar
Sorvari, J. and Hakkarainen, H. (2007) Wood ants are wood ants: deforestation causes population declines in the polydomous wood ant Formica aquilonia. Ecological Entomology 32: 707–711.Google Scholar
Stebayeva, S. K., Andreyeva, I. S. and Reznikova, Z. I. (1977) Populations of microorganisms and collembolans (Collembola) in nests of meadow ant Formica pratensis. In Ethological Problems of Insect Ecology of Siberia, Novosibirsk, pp. 7–38. [In Russian.]
Sudd, J. H., Douglas, M., Gaynard, T., Murray, D. M. and Stockdale, J. M. (1977) The distribution of wood-ants (Formica lugubris Zetterstedt) in a northern English forest. Ecological Entomology 2: 301–313.Google Scholar
Sundström, L. (1993) Genetic population structure and sociogenetic organisation in Formica truncorum (Hymenoptera; Formicidae). Behavioral Ecology and Sociobiology 33: 345–354.Google Scholar
Sundström, L., Seppä, P. and Pamilo, P. (2005) Genetic population structure and dispersal patterns in Formica ants: a review. Annales Zoologici Fennici 42: 163–177.Google Scholar
Talbot, M. (1963) Nest structure and flights of the ant Formica obscuriventris Mayr. Animal Behaviour 12: 154–158.Google Scholar
Torossian, C., Ruques, L. and Gion, J. S. (1979) Les fourmis du groupe Formica rufa des Hautes-Alps. C.R. UIEIS-Lausanne: 87–99.
Travan, J. (1998) Über den Einfluss von Standortsfaktoren auf die Besiedlung des bayerischen Hochgebirges durch Waldameisen (Formica spp.) (Hymen., Formicidae). Anzeiger für Schädlingskunde, Pflanzenschutz und Umweltschutz 71: 05–109.Google Scholar
Vepsäläinen, K., Savolainen, R., Tiainen, J. and Vilén, J. (2000) Successional changes of ant assemblages: from virgin and ditched bogs to forests. Annales Zoologici Fennici 37: 135–149.Google Scholar
Weber, N. A. (1935) The biology of the thatching ant. Ecological Monograph 5: 165–206.Google Scholar
Wellenstein, G. (1967) Zur Frage der Standortansprüche hügelbauender Waldameisen (Formica rufa-Gruppe). Zeitschrift für Angewandte Zoologie 54: 139–166.Google Scholar
Wiśniewski, J. 1967. Die Zusammensetzung des Baumaterials der Nesthügel von Formica polyctena in Kiefernwäldern. Waldhygiene, 7(3/4): 117–121.Google Scholar
Wiśniewski, J. (1976) The occurrence rate of ants from the Formica rufa-group in various phytosociologic associations. Oecologia 25: 193–198.Google Scholar
Zahn, M. (1958) Temperatursinn, Wärmehaushalt und Bauweise der roten Waldameise (Formica rufa L.). Zoologische Beiträge 3: 127–194.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×