Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-29T16:45:30.832Z Has data issue: false hasContentIssue false

4 - Melt- and solution blowing

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

This chapter describes the machinery, mechanism and significant experimental and theoretical aspects of melt- and solution blowing. Meltblowing is a popular method of producing polymer micro- and nanofibers en masse in the form of nonwovens via aerodynamic blowing of polymer melt jets (Section 4.1). Its physical aspects were revisited recently. The process involves a complex interplay of the aerodynamics of turbulent gas jets with strong elongational flows of polymer melts, only recently uncovered and explained.

The role of turbulent pulsations (produced by turbulent eddies in the gas jet) in meltblowing is discussed first in Section 4.2 in the framework of a model experimental situation where solid flexible sewing threadlines are used to probe a parallel high-speed gas jet. After that, in Section 4.3, the dynamics of bending and flapping of flexible threadlines in a gas jet is considered. In Section 4.4 the aerodynamically driven stretching of a straight polymer jet is considered. In Section 4.5 it is shown how a severe bending instability leading to strong stretching and thinning of polymer jets can arise. This is done in the framework of a linearized version of the governing equations in the case of small bending perturbations of a single threadline or polymer jet in meltblowing. Then, in Section 4.6 the fully nonlinear case of large-amplitude planar bending perturbations of a single polymer jet is discussed. Both isothermal and non-isothermal cases are considered. In particular, it is shown how the cooling of the surrounding gas jet results in cooling of the polymer jet inside, and in the arrest of the bending perturbation growth due to melt solidification. Section 4.7 is devoted to predictions of three-dimensional configurations of polymer jets in meltblowing from die exit to deposition screen. Not only a single polymer jet, but multiple polymer jets are modeled simultaneously, as well as deposition on a screen moving normally to the principal jet direction being accounted for. The results include prediction of the fiber deposition patterns in lay-down and fiber-size distributions in the resulting nonwovens. The angular distributions in lay-down nonwovens are also predicted. Comparisons with the experimental data suggest that the model captures main trends rather accurately.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, G. N., 1963. The Theory of Turbulent Jets. The MIT Press, Boston.Google Scholar
Ahmed, I., Decker, J., Morris, D., 1994. How Much Does it Take to Make a Gallon of Soydiesel? Report for the National SoyDiesel Development Board, Jefferson, Missouri.Google Scholar
Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresource Technology 99, 1664–1671.CrossRefGoogle ScholarPubMed
Antonia, R. A., Satyaprakash, B. R., Hussain, A. K. M. F., 1980. Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23, 695–700.CrossRefGoogle Scholar
Appel, D. W., Drost, A. D., Lau, J. C., 1988. Slotted melt-blown die head. US Patent No. 4720252.
Argentina, M., Mahadevan, L., 2005. Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci.USA 102, 1829–1834.CrossRefGoogle ScholarPubMed
Bansal, V., Shambaugh, R., 1998. On-line determination of diameter and temperature during meltblowing of polypropylene. Ind. Eng. Chem. Res. 37, 1799–1806.CrossRefGoogle Scholar
Batchelor, G. K., 2002. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.Google Scholar
BCC Research Reports, 2013. Available at . Accessed July 31, 2013.
Begenir, A., 2008. Structure-Process-Property Relationships in Elastic Nonwovens Made from Multi-Block Elastomers. PhD Thesis, Fiber and Polymer Science, North Carolina State University.
Berger, R. M., 1996. Bicomponent fibers and tobacco smoke filters formed therefrom. US Patent No. 5509430.
Breese, R. R., Ko, W. C., 2003. Fiber formation during melt blowing. Int. Nonwovens J. Summer, 21–28.Google Scholar
Breese, R. R., Qureshi, U. A., 2006. Influence of process conditions on melt blown web structure. Part IV – Fiber Diameter. J. Eng. Fibers Fabrics 1, 32–46.Google Scholar
Buehning, P. G., 1991. Melt blowing die. US Patent No. 4986743.
Buntin, R. R., 1976. Battery separators made from polymeric fibers. US Patent No. 3972759.
Chabba, S., Netravali, A. N., 2005. ‘Green’ composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J. Mater. Sci. 40, 6275–6282.CrossRefGoogle Scholar
Cheremisinoff, N. P., 1998. Advanced Polymer Processing Operations. Noyes Publications, Saddle River, New Jersey.Google Scholar
Cho, D., Nnadi, O., Netravali, A., Joo, Y. L., 2010. Electrospun hybrid soy protein/PVA fibers. Macromol. Mater. Eng. 295, 763–773.CrossRefGoogle Scholar
Courant, R., Friedrichs, K. O., 1948. Supersonic Flow and Shock Waves. Interscience Publications, New York.Google Scholar
Debye, P., Daen, J., 1959. Stability considerations of nonviscous jets exhibiting surface or body tension. Phys. Fluids 2, 416–421.CrossRefGoogle Scholar
Doi, M., 1980. Molecular rheology of concentrated polymer systems. J. Polymer Sci., Polym. Phys. Ed. 18, 1005–1020.CrossRefGoogle Scholar
Dror, Y., Salalha, W., Avrahami, R., Zussman, E., Yarin, A. L., Dersch, R., Greiner, A., Wendorff, J. H., 2007. One-step production of polymeric micro-tubes via co-electrospinning. Small 3, 1064–1073.CrossRefGoogle Scholar
Entov, V. M., Kestenboim, Kh. S., 1987. Mechanics of fiber formation. Fluid Dynamics 22, 677–686.CrossRefGoogle Scholar
Fabbricante, A., Ward, G., Fabbricante, T., 2000. Micro-denier nonwovens materials made using modular die units. US Patent No. 6114017.
Frost, W., Moulden, T. H. (Editors), 1977. Handbook of Turbulence, Volume 1. Plenum Press, New York.CrossRef
Fung, W., Yuen, K., Liong, M., 2010. Characterization of fibrous residues from agrowastes and the production of nanofibers. J. Agri. Food Chem. 58, 8077–8084.CrossRefGoogle ScholarPubMed
Gennadios, A., Brandenburg, A. H., Weller, C. L., Testin, R. F., 1993. Effect of pH on properties of wheat gluten and soy protein isolate films. J. Agric. Food Chem. 41, 1835–1839.CrossRefGoogle Scholar
Greene, J., 2007. Biodegradation of compostable plastics in green yard-waste compost environment. J. Polym. Environ. 15, 269–273.CrossRefGoogle Scholar
Han, T., Yarin, A. L., Reneker, D. H., 2008. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658.CrossRefGoogle Scholar
Hettiarachchy, N. S., Kalapathy, U., Myers, D. J., 1995. Alkali-modified soy protein with improved adhesive and hydrophobic properties. J. Am. Oil Chem. Soc. 72, 1461–1464.CrossRefGoogle Scholar
Howard, R. E., Young, J., 1993. Nonwoven webs of microporous fibers and filaments. US Patent No. 5230949.
Huang, X., Netravali, A. A. N., 2007. Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. J. Compos. Sci. Technol. 67, 2005–2014.CrossRefGoogle Scholar
Huang, X., Netravali, A. A. N., 2008. Environmentally friendly green materials from plant-based resources: Modification of soy protein using gellan and micro/nano-fibrillated cellulose. J. Macromol. Sci., Part A: Pure Appl. Chem. 45, 899–906.CrossRefGoogle Scholar
Johnson, L. A., Myers, D. J., Burden, D., 1984. Early uses of soy protein in Far East. US Inform 3, 282–284.Google Scholar
Joseph, D. D., 1990. Fluid Dynamics of Viscoelastic Liquids. Springer, New York.CrossRefGoogle Scholar
Kalapathy, U., Hettiarachchy, N. S., Myers, D., Hanna, M. A., 1995. Modification of soy proteins and their adhesive properties on wood. J. Am. Oil Chem. Soc. 72, 507–510.CrossRefGoogle Scholar
Kanno, T., Matsushima, Y., Suzuki, M., 1992. High-strength non-woven fabric, method of producing same and battery separator constituted thereby. US Patent No. 5089360.
Kaplan, D. L. (Editor), 1998. Biopolymers from Renewable Resources. Springer, Berlin.CrossRef
Kim, C. W., Frey, M. W., Marquez, M., Joo, Y. L., 2005. Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J. Polym. Sci., Part B: Polym. Phys. 43, 1673–1683.CrossRefGoogle Scholar
Kim, C. W., Frey, M. W., Marquez, M., Joo, Y. L., 2006. Structural studies of electrospun cellulose nanofibers. Polymer 47, 5097–5107.CrossRefGoogle Scholar
Klass, D. L., 1998. Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, New York.Google Scholar
Komatsu, M., Narukawa, K., Yamamoto, N., 1988. Process for producing hydrophilic polyolefin nonwoven fabric. US Patent No. 4743494.
Kwok, K. C., Bolyard, Jr., E. W., Riggan, Jr., L. E., 1999. Meltblowing method and system. US Patent No. 5904298.
Landau, L. D., Lifshitz, E. M., 1987. Fluid Mechanics. Pergamon Press, New York.Google Scholar
Lau, J. C., Haynes, B. D., 1998. Apparatus for the production of fibers and materials having enhanced characteristics. US Patent No. 5711970.
Lee, K. H., Ryu, H. S., Rhee, K. C., 2003. Protein solubility characteristics of commercial soy protein products. J. Am. Oil Chem. Soc. 80, 85–90.CrossRefGoogle Scholar
Loitsyanskii, L. G., 1966. Mechanics of Liquids and Gases. Pergamon Press, Oxford (the English translation of the 2nd Russian edition), and the 3rd Russian edition published by Nauka, Moscow, 1970.Google Scholar
Marheineke, N., Wegener, R., 2007. Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68, 1–23.CrossRefGoogle Scholar
Mattheij, R. M. M., Rienstra, S. W., ten Thije Boonkkamp, J. H. M., 2005. Partial Differential Equations. SIAM, Philadelphia.CrossRefGoogle Scholar
McCulloch, J. G., 1999. The history of the development of melt blowing technology. Int. Nonwovens J. 8, 66–72.Google Scholar
Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., Mattoso, L. H. C., 2009. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113, 2322–2330.CrossRefGoogle Scholar
Mende, T., Sakai, T., 1991. Melt-blowing die. US Patent No. 5017112.
Mende, T., Sakai, T., 1992. Melt-blowing method having notches on the capillary tips. US Patent No. 5171512.
Midkiff, D. G., 2001. Filtration media and articles incorporating the same. US Patent No. 6322604.
Mozelack, B., Schmitt, R. J., Barboza, S. D., Jana, P., Nguyen, S. N., Gschwandtner, R. R., Connor, R. D., Yingling, T. W., 2003. Apparatus for making melt-blown filter cartridges. US Patent No. 6662842.
Nishioi, H., Ogata, S., Tsujiyama, Y., 1994. Microfibers-generating fibers and a woven or non-woven fabric of microfibers. US Patent No. 5290626.
Pall, D. B., 1996. Melt-blown fibrous web. US Patent No. 5582907.
Phiriyawirut, M., Rodchanacheewa, N., Nensiri, N., Supaphol, P. 2008. Morphology of electrospun mats of soy protein isolate and its blend. Adv. Mat. Res. 55–57, 733–736.Google Scholar
Pope, S. B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Prentice, J. S., 1978. Laminated non-woven sheet. US Patent No. 4078124.
Rangavajhyala, N., Ghorpade, V., Hanna, M., 1997. Solubility and molecular properties of heat-cured soy protein films. J. Agric. Food Chem. 45, 4204–4208.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., 2000. Bending instability of electrically charged liquid jets of polymer solutions in electospinning. J. Appl. Phys. 87, 4531–4547.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.CrossRefGoogle Scholar
Rhim, J. W., Ng, P. K. W., 2007. Natyral biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 47, 411–433.CrossRefGoogle ScholarPubMed
Rubhausen, A., Roock, D., 1993. Apparatus for blow-extruding filaments for making a fleece. US Patent No. 5248247.
Schwartz, E., 1983. Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby. US Patent No. 4380570.
Schwartz, E., 1995. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices. US Patent No. 5476616.
Shambaugh, R. L., 1988. A macroscopic view of the melt-blowing process for producing microfibers. Ind. Eng. Chem. Res. 27, 2363–2372.CrossRefGoogle Scholar
Shipp, Jr., P. W., Vogt, C. M., 1987. Melt-blown material with depth fiber size gradient. US Patent No. 4714647.
Sinha-Ray, S., Lee, M. W., Sinha-Ray, S., An, S., Pourdeyhimi, B., Yoon, S. S., Yarin, A. L., 2013b. Supersonic nanoblowing: A new ulta-stiff phase of nylon 6 in 20–50 nm confinement. J. Mater. Chem. C 1, 3491–3498.CrossRefGoogle Scholar
Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2010a. Meltblowing: I-Basic physical mechanisms and threadline model. J. Appl. Phys. 108, 034912.CrossRefGoogle Scholar
Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2010b. The production of 100/400 nm inner/outer diameter carbon tubes by solution blowing and carbonization of core–shell nanofibers. Carbon 48, 3575–3578.CrossRefGoogle Scholar
Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2013a. Prediction of angular and mass distribution in meltblown polymer laydown. Polymer 54, 860–872.CrossRefGoogle Scholar
Sinha-Ray, S., Zhang, Y., Yarin, A. L., Davis, S. C., Pourdeyhimi, B., 2011. Solution blowing of soy protein fibers. Biomacromolecules 12, 2357–2363.CrossRefGoogle ScholarPubMed
Srikar, R., Yarin, A. L., Megaridis, C. M., Bazilevsky, A. V., Kelley, E., 2008. Desorption-limited mechanism of release from polymer nanofibers. Langmuir 24, 965–974.CrossRefGoogle ScholarPubMed
Terakawa, T., Nakajima, S., 1996. Spinneret device for conjugate melt-blow spinning. US Patent No. 5511960.
Thompson, C. J., Chase, G. G., Yarin, A. L., Reneker, D. H., 2007. Effect of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 6913–6922.CrossRefGoogle Scholar
Tikhonov, A. N., Arsenin, V. Y., 1977. Solutions of Ill-Posed Problems. Winston, New York.Google Scholar
Vega-Lugo, A., Lim, L., 2009. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42, 933–940.CrossRefGoogle Scholar
Weber, C., 1931. Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154.CrossRefGoogle Scholar
Wente, V. A., 1954. Manufacture of Superfine Organic Fibers. US Department of Commerce, Office of Technical Services Report No. PBI 11437, Naval Research Laboratory, Report 4364.CrossRefGoogle Scholar
Wente, V. A., 1956. Superfine thermoplastic fibers. Industrial and Engineering Chemistry 48, 1342–1346.CrossRefGoogle Scholar
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.Google Scholar
Yarin, A. L., 2007. Self-similarity. Section 2.3 in Springer Handbook of Experimental Fluid Mechanics (Ed. Tropea, C., Yarin, A. L., Foss, J.). Springer, Berlin, pp. 57–82.Google Scholar
Yarin, A. L., Koombhongse, S., Reneker, D. H., 2001. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026.CrossRefGoogle Scholar
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2010. Meltblowing: II-Linear and nonlinear waves on viscoelastic polymer jets. J. Appl. Phys. 108, 034913.CrossRefGoogle Scholar
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2011. Meltblowing: Multiple jets and fiber-size distribution and lay-down patterns. Polymer 52, 2929–2938.CrossRefGoogle Scholar
Yu, G., Fan, Y., 2008. Preparation of poly(D, L-lactic acid) scaffolds using alginate particles. J. Biomater. Sci. Polym. 19, 87–98.CrossRefGoogle ScholarPubMed
Zhang, X., Min, B. G., Kumar, S., 2003. Solution spinning and characterization of poly(vinyl alcohol)/soybean protein blend fibers. J. Appl. Polym. Sci. 90, 716–721.CrossRefGoogle Scholar
Ziabicki, A., 1976. Fundamentals of Fibre Formation. John Wiley & Sons, London.Google Scholar
Ziabicki, A., Kawai, H. (Editors), 1985. High-Speed Fiber Spinning. John Wiley & Sons, New York.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×