Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-09T03:46:22.240Z Has data issue: false hasContentIssue false

6 - Additional methods and materials used to form micro- and nanofibers

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

This chapter covers several additional methods used to form micro- and nanofibers. Some of them have already achieved maturity, such as the island-in-the-sea method discussed in Section 6.1, melt fracture in meltblowing processes (Section 6.2) and the flash spinning process (Section 6.3). Some others are still relatively exotic or under development, like the two methods based on Couette shear flow described in Section 6.4, or the centrifugal spinning method in Section 6.5. Nontraditional materials used for nanofiber formation, discussed in Section 6.6, include liquid crystals, conducting polymers, biopolymers and denatured proteins. Finally, Sections 6.7 and 6.8 discuss the specifics of drawing glass optical fibers, and in particular, polarization-maintaining optical fibers with multilobal cladding (Section 6.8).

Island-in-the-sea multicomponent fibers and nanofibers

Microscopic bi- and multicomponent fibers can be formed using melt spinning (Section 1.2 in Chapter 1), meltblowing (Section 4.1 in Chapter 4), or integrated processes such as spunbonding (Section 1.5 in Chapter 1). The additional polymer components are supplied to the main polymer through separate inner spinnerets inserted into the main outer spinneret similarly to formation of core–shell bicomponent fibers in co-electrospinning (Section 5.8 in Chapter 5) and solution blowing (Section 4.8 in Chapter 4). Cross-sections of such bi- and multicomponent fibers are reminiscent of islands in the sea, which explains the name of this technology (Nakajima 2000). In some cases the islands can merge and form winged structures, as seen in Figure 6.1a.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bejan, A., 1993. Heat Transfer. John Wiley & Sons, New York.Google Scholar
Bernat, V., Yarin, A. L., 1992. Analytical solution for stresses and material birefringence in optical fibers with noncircular cladding. J. Lightwave Technology 10, 413–417. CrossRefGoogle Scholar
Blades, H., White, J. R., 1963. Fibrillated strand. US Patent No. 3081519.
Canejo, J. P., Borges, J. P., Godinho, M. H., Brogueira, P., Teixeira, P. I. C., Terentjev, E. M., 2008. Helical twisting of electrospun liquid crystalline cellulose micro- and nanofibers. Advanced Materials 20, 4821–4825. CrossRefGoogle Scholar
Chhabra, R., Isele, O. E. A., 2007. Coated nanofiber webs. US Patent No. 7291300.
Ciferri, A., Ward, I. M., 1979. Ultra-high Modulus Polymers. Applied Science Publications, London. Google Scholar
Das, K., Gandhi, K. S., 1986. A model for thermal collapse of tubes: applications to optical glass fibers. Chem. Eng. Sci. 41, 73–81.CrossRefGoogle Scholar
Donald, A. M., Windle, A. H., Hanna, S., 2006. Liquid Crystalline Polymers. Cambridge University Press, Cambridge.Google Scholar
Doremus, R. S., 1973. Glass Science. John Wiley & Sons, New York.Google Scholar
Dosunmu, O. O., Chase, G. G., Kataphinan, W., Reneker, D. H., 2006. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 17, 1123–1127. CrossRefGoogle ScholarPubMed
Doupovec, J., Yarin, A. L., 1991. Nonsymmetrical modified chemical vapor deposition (N-MCVD) process. J. Lightwave Technology 9, 695–700. CrossRefGoogle Scholar
Dror, Y, Ziv, T., Makarov, V., Wolf, H., Admon, A., Zussman, E., 2008. Nanofibers made of globular proteins. Biomacromolecules 9, 2749–2754.CrossRefGoogle ScholarPubMed
DuPont, , 2013. Available at . Accessed August 4, 2013.
Durany, A., Anantharamaiah, N., Pourdeyhimi, B., 2009. High surface area nonwovens via fibrillating spunbonded nonwovens comprising islands-in-the-sea bicomponent filaments: Structure–process–property relationships. J. Mater. Sci. 44, 5926–5934.CrossRefGoogle Scholar
Fiberio, , 2013. Available at . Accessed August 4, 2013.
Geyling, F. T., Walker, K. L., Csentits, R., 1983. The viscous collapse of thick-walled tubes. Proceedings of the ASME Applied Mechanics, Bioengineering and Fluids Engineering Conference, Houston, TX, Paper 83-APM-27.
Glicksman, L. R., 1968. The dynamics of a heated free jet of variable viscosity liquid at low Reynolds numbers. Trans. ASME, J.Basic Eng., Series D 90, 343–354.CrossRefGoogle Scholar
Grigor’yants, V. V., Entov, V. M., Ivanov, G. E., Chamorovskii, Y. K., Yarin, A. L., 1989. Formation of two-layer preforms for optical fibers with shaped cores. Soviet Physics Doklady 34, 368–370. Google Scholar
Happel, J., Brenner, H., 1991. Low Reynolds Number Hydrodynamics. Kluwer, Dordrecht.Google Scholar
Hassan, M. A., Yeom, B. Y., Wilkie, A., Pourdeyhimi, B., Khan, S. A., 2013. Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membrane Science 427, 336–344.CrossRefGoogle Scholar
Huynh, B. P., Tanner, R. I., 1983. Study of the non-isothermal glass fibre drawing. Rheol. Acta 22, 482–499.CrossRefGoogle Scholar
Kaminow, I. P., Ramaswamy, V., 1979. Single polarization optical fibers and methods of fabrication. US Patent No. 4179189.
Khansari, S., Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2012. Stress-strain dependence for soy-protein nanofiber mats. J. Appl. Phys. 111, 044906.CrossRefGoogle Scholar
Kowalczyk, T., Nowicka, A., Elbaum, D., Kowalewski, T. A., 2008. Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules 9, 2087–2090.CrossRefGoogle ScholarPubMed
Krause, S., Dersch, R., Wendorff, J. H., Finkelmann, H., 2007. Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol. Rapid Comm. 28, 2062–2068.CrossRefGoogle Scholar
Lewis, J. A., 1977. The collapse of a viscous tube. J. Fluid Mech. 81, 129–135.CrossRefGoogle Scholar
Luo, C. J., Stoyanov, S. D., Stride, E., Pelan, E., Edirisinghe, M., 2012. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem. Soc. Rev. 41, 4708–4735.CrossRefGoogle ScholarPubMed
MacDiarmid, A. G., 2002. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 40, 2581–2590. Also in Synth. Metals 125, 11–22.3.0.CO;2-2>CrossRefGoogle Scholar
MacDiarmid, A. G, Jones, Jr., W. E., Norris, I. D., Gao, J., Johnson, Jr., A. T., Pinto, N. J., Hone, J., Han, B., Ko, F. K., Okuzaki, H., Llaguno, M., 2001. Electrostatically- generated nanofibers of electronic polymers. Synth. Metals 119, 27–30.CrossRefGoogle Scholar
Medeiros Araujo, T., Sinha-Ray, S., Pegoretti, A., Yarin, A. L., 2013. Electrospinning of blend of liquid crystalline polymer with poly(ethylene oxide): vectran nanofiber mats and their mechanical properties. J. Mater. Chem. C 1, 351–358.Google Scholar
Morey, G. W., 1954. The Properties of Glass. Reinhold Publishers, New York.Google Scholar
Nakajima, T. (Editor), 2000. Advanced Fiber Spinning Technology. Woodhead Publishing Ltd., Cambridge.
Nakashima, K., Tsuboi, K., Matsumoto, H., Ishige, R., Tokita, M., Watanabe, J., Tanioka, A., 2010. Control over internal structure of liquid crystal polymer nanofibers by electrospinning. Macromol. Rapid Comm. 31, 1641–1645.CrossRefGoogle ScholarPubMed
Norris, I. D., Shaker, M. M., Ko, F. K., MacDiarmid, A. G., 2000. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth. Metals 114, 109–114.CrossRefGoogle Scholar
Oh, S. M., 1979. Cooling rates of optical fibers during drawing. Ceramic Bull. 58, 1108–1110.Google Scholar
Paek, U. C., Runk, R. B., 1978. Physical behavior of the neck-down region during furnace drawing of silica fibers. J. Appl. Phys. 49, 4417–4422.CrossRefGoogle Scholar
Pegoretti, A., Traina, M., 2009. Liquid crystalline organic fibres and their mechanical behavior. In Handbook of Tensile Properties of Textile and Technical Fibres. (Ed. Bunsell, A. R.), Woodhead Publishing Ltd, Cambridge, UK, 354–436. CrossRefGoogle Scholar
Pourdeyhimi, B, Chappas, W. J., 2008. High surface area fiber and textiles made from the same. US Patent Publication 2008/0108265.
Pourdeyhimi, B, Chappas, W. J., 2012. High surface area fiber and textiles made from the same. US Patent No. 8129019.
Pourdeyhimi, B, Chappas, W. J., 2013. Composite filter media with high surface area fibers. US Patent No. 8410006.
Pourdeyhimi, B., Fedorova, N., Sharp, S., 2008. High strength, durable micro and nano-fiber fabrics by fibrillating bicomponent islands in the sea fibers. US Patent Publication 2008/0108265.
Reneker, D. H., Chun, I., Ertley, D., 2002. Process and apparatus for the production of nanofibers. US Patent No. 6382526.
Reneker, D. H., Yarin, A. L., 2008. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.CrossRefGoogle Scholar
Rosner, D. E., 2000. Transport Processes in Chemically Reacting Flow Systems. Dover Publications, New York.Google Scholar
Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., Lozano, K., 2010. Electrospinning to ForcespinningTM. Mater. Today 13, 12–14.CrossRefGoogle Scholar
Scholze, H., 1991. Glass: Nature, Structure and Properties. Springer, New York.CrossRefGoogle Scholar
Shercliff, J. A., 1981. Reflections of a new editor. J. Fluid Mech. 106, 349–356.CrossRefGoogle Scholar
Sinha-Ray, S., Zhang, Y., Yarin, A. L., Davis, S. C., Pourdeyhimi, B., 2011. Solution blowing of soy protein fibers. Biomacromolecules 12, 2357–2363.CrossRefGoogle ScholarPubMed
Srinivasan, G., 1994. Structure and Morphology of Electrospun Polymer Fibers. PhD thesis. Department of Polymer Science, The University of Akron.
Srinivasan, G., Reneker, D. H., 1995. Sructure and morphology of small diameter electrospun Aramid fibers. Polym. Int. 36, 195–201.CrossRefGoogle Scholar
Taylor, G. I., 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. A 223, 289–343.CrossRefGoogle Scholar
Textile World, 2011. Available at . Accessed August 4, 2013.
Torobin, L., Findlow, R. C., 2001. Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby. US Patent No. 6183670.
Velev, O. D., Smoukov, S., Geisen, P., Wright, M., Gangwal, S., 2011. A continuous process for nanofiber fabrication based on shear and antisolvent-based polymer precipitation. Invention Disclosure, North Carolina State University.Google Scholar
Yarin, A. L., 1982. Stationary configurations of fibres formed under nonisothermal conditions. J. Applied Mechanics and Technical Physics 23, 865–870.CrossRefGoogle Scholar
Yarin, A. L., 1990. Hydrodynamic analysis of the process of making three-layer optical fibers and calculation of the field of elastic stresses and birefringence. J. Applied Mechanics and Technical Physics 31, 361–367.CrossRefGoogle Scholar
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.Google Scholar
Yarin, A. L., 1995. Surface-tension-driven low Reynolds number flows arising in optoelectronic technology. J. Fluid Mech. 286, 173–200.CrossRefGoogle Scholar
Yarin, A. L., Bernat, V., Doupovec, J., Miklos, P., 1993. The viscous collapse of radial nonsymmetric composite tubes. J. Lightwave Technology 11, 198–204.CrossRefGoogle Scholar
Yarin, A. L., Rusinov, V., Gospodinov, P.Radev, S., 1989. Quasi one-dimensional model of drawing of glass microcapillaries and approximate solutions. Theor. Appl. Mech. (Bulg. Acad. Sci.) 20, 55–62.Google Scholar
Zhang, Y., Yarin, A. L., 2011. Carbon nanofibers decorated with poly(furfuryl alcohol)- derived carbon nanoparticles and tetraethylorthosilicate-derived silica nanoparticles. Langmuir 27, 14627–14631.CrossRefGoogle ScholarPubMed
Ziabicki, A., 1976. Fundamentals of Fibre Formation. John Wiley & Sons, London.Google Scholar
Zwijnenburg, A., Pennings, A. J., 1976. Longitudinal growth of polymer crystals from flowing solutions. Colloid Polymer Sci. 254, 868–881.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×