Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T12:24:44.049Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2014

Petr Šmilauer
Affiliation:
University of South Bohemia, Czech Republic
Jan Lepš
Affiliation:
University of South Bohemia, Czech Republic
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26: 32–46.Google Scholar
Anderson, M. J. & ter Braak, C. J. F. (2003) Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73: 85–113.CrossRefGoogle Scholar
Anderson, M. J. & Willis, T. J. (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84: 511–525.CrossRefGoogle Scholar
Batterbee, R. W. (1984) Diatom analysis and the acidification of lakes. Philosophical Transactions of the Royal Society of London, Series B, 305: 451–477.CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57: 289–300.Google Scholar
Benot, M. L., Mony, C., Lepš, J., Penet, L., & Bonis, A. (2013) Are clonal traits and their response to defoliation good predictors of grazing resistance?Botany, 91: 62–68.CrossRefGoogle Scholar
Birks, H. J. B. (2012) Overview of numerical methods in paleolimnology. In: Birks, H. J. B, Lother, A. F., Juggins, S., & Smol, J. P. (eds.) Tracking Environmental Change Using Lake Sediments, Volume 5: Data Handling and Numerical Techniques. Dordrecht: Springer, pp. 19–92.CrossRefGoogle Scholar
Blanchet, F. G., Legendre, P., & Borcard, D. (2008) Forward selection of explanatory variables. Ecology, 89: 2623–2632.CrossRefGoogle ScholarPubMed
Bonin, A., Ehrich, D., & Manel, S. (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16: 3737–3758.CrossRefGoogle ScholarPubMed
Borcard, D. & Legendre, P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 51–68.CrossRefGoogle Scholar
Borcard, D., Legendre, P., Avois-Jacquet, C., & Tuomisto, H. (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85: 1826–1832.CrossRefGoogle Scholar
Borcard, D., Legendre, P., & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73: 1045–1055.CrossRefGoogle Scholar
Bray, R. J. & Curtis, J. T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27: 325–349.CrossRefGoogle Scholar
Cabin, R. J. & Mitchell, R. J. (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Bulletin of the Ecological Society of America, 81: 246–248.Google Scholar
Chambers, J. M. & Hastie, T. J. (1992) Statistical Models in S. Pacific Grove: Wadsworth & Brooks.Google Scholar
Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecology Letters, 8: 148–159.CrossRefGoogle Scholar
Chao, A., Chiu, C. H., & Hsieh, T. C. (2012) Proposing a resolution to debates on diversity partitioning. Ecology, 93: 2037–2051.CrossRefGoogle ScholarPubMed
Clarke, K. R. (1993) Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18: 117–143.CrossRefGoogle Scholar
Cleveland, W. S. & Devlin, S. J. (1988) Locally-weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83: 597–610.CrossRefGoogle Scholar
Colwell, R. K. (2011) EstimateS, version 8.2: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User's Guide). Freeware for Windows and Mac OS. University of Connecticut.Google Scholar
Cox, T. F. & Cox, M. A. A. (1994) Multidimensional Scaling. London: Chapman & Hall.Google Scholar
De'ath, G. (2002) Multivariate regression trees: a new technique for constrained classification analysis. Ecology, 83: 1103–1117.Google Scholar
de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastia, M. T., & Lepš, J. (2013) Which trait dissimilarity for functional diversity: trait means or trait overlap?Journal of Vegetation Science, 24: 807–819.CrossRefGoogle Scholar
de Bello, F., Lepš, J., & Sebastià, M. T. (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. Journal of Applied Ecology, 42: 824–833.CrossRefGoogle Scholar
de Bello, F., Lepš, J., & Sebastià, M. T. (2006) Variations in species and functional diversity along climatic and grazing gradients. Ecography, 29: 801–810.CrossRefGoogle Scholar
de Bello, F., Thuiller, W., Lepš, J. et al. (2009) Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20: 475–486.CrossRefGoogle Scholar
Dem, F. F., Stewart, A. J. A., Gibson, A., Weiblen, G. D., & Novotný, V. (2013) Low host specificity in species-rich assemblages of xylem- and phloem-feeding herbivores (Auchenorrhyncha) in a New Guinea lowland rain forest. Journal of Tropical Ecology, 29: 467–476.CrossRef
Desdevises, Y., Legendre, P., Azouzi, L., & Morand, S. (2003) Quantifying phylogenetically structured environmental variation. Evolution, 57: 2647–2652.CrossRefGoogle ScholarPubMed
Diamond, J. (1986) Overview: Laboratory experiments, field experiments, and natural experiments. In: Diamond, J., & Case, T. J. (eds.) Community Ecology. New York: Harper & Row, pp. 3–22.Google Scholar
Doledec, S., Chessel, D., ter Braak, C. J. F., & Champely, S. (1996) Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics, 3: 143–166.CrossRefGoogle Scholar
Dray, S., Chessel, D., & Thioulouse, J. (2003) Co-inertia analysis and the linking of ecological data tables. Ecology, 84: 3078–3089.CrossRefGoogle Scholar
Dray, S. & Legendre, P. (2008) Testing the species traits environment relationships: the fourth-corner problem revisited. Ecology, 89: 3400–3412.CrossRefGoogle ScholarPubMed
Dray, S., Legendre, P., & Peres-Neto, P. R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196: 483–493.CrossRefGoogle Scholar
Ellenberg, H. (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18: 1–248.Google Scholar
Eubank, R. L. (1988) Smoothing Splines and Parametric Regression. New York: Marcel Dekker.Google Scholar
Ezekiel, M. (1930) Methods of Correlation Analysis. New York: John Wiley and Sons.Google Scholar
Flinders, C. A. & Magoulick, D. D. (2002) Partitioning variance in lotic crayfish community structure based on a spatial scale hierarchy. unpublished manuscript.
Garnier, E., Cortez, J., Billès, G. et al. (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85: 2630–2637.CrossRefGoogle Scholar
Götzenberger, L., de Bello, F., Brathen, K. A. et al. (2012) Ecological assembly rules in plant communities – approaches, patterns and prospects. Biological Reviews, 97: 111–127.CrossRefGoogle Scholar
Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53: 325–338.CrossRefGoogle Scholar
Gower, J. C. & Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3: 5–48.CrossRefGoogle Scholar
Graffelman, J. & Van Eeuwijk, F. (2005) Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research. Biometrical Journal, 47: 863–879.CrossRefGoogle ScholarPubMed
Grassle, J. F. & Smith, W. (1976) A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities. Oecologia, 25: 13–22.CrossRefGoogle ScholarPubMed
Green, R. H. (1979) Sampling Design and Statistical Methods for Environmental Biologists. New York: John Wiley and Sons.Google Scholar
Greenacre, M. (2007) Correspondence Analysis in Practice, 2nd Edn. London: Chapman and Hall/CRC.CrossRefGoogle Scholar
Grime, J. P. (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86: 902–910.CrossRefGoogle Scholar
Grime, J. P., Hodgson, J. G., & Hunt, R. (1988) Comparative Plant Ecology. London: Unwin Hyman.CrossRefGoogle Scholar
Grubb, P. J. (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52: 107–145.CrossRefGoogle Scholar
Hájek, M., Hekera, P., & Hájková, P. (2002) Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica, 37: 205–224.CrossRefGoogle Scholar
Hallgren, E., Palmer, M. W., & Milberg, P. (1999) Data diving with cross-validation: an investigation of broad-scale gradients in Swedish weed communities. Journal of Ecology, 87: 1037–1051.CrossRefGoogle Scholar
Harvey, P. H. & Pagel, M. D. (1991) The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press, 239 pp.Google Scholar
Hastie, T. J. & Tibshirani, R. J. (1990) Generalized Additive Models. London: Chapman and Hall.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2002) The Elements of Statistical Learning. Data Mining, Inference, and Prediction. New York: Springer-Verlag.Google Scholar
Hennekens, S. M. & Schaminee, J. H. J. (2001) TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science, 12: 589–591.CrossRefGoogle Scholar
Hill, M. O. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology, 54: 427–432.CrossRefGoogle Scholar
Hill, M. O. (1979) TWINSPAN. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca: Ecology and Systematics, Cornell University.
Hill, M. O. & Gauch, H. G. (1980) Detrended correspondence analysis, an improved ordination technique. Vegetatio, 42: 47–58.CrossRefGoogle Scholar
Hill, M. O. & Šmilauer, P. (2005) TWINSPAN for Windows Version 2.3. Huntingdon & Ceske Budejovice: Centre for Ecology and Hydrology & University of South Bohemia.Google Scholar
Holm, S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistic, 6: 65–70.Google Scholar
Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24: 417–441, 498–520.CrossRefGoogle Scholar
Hurlbert, S. H. (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54: 187–211.CrossRefGoogle Scholar
Hutchinson, G. E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427.CrossRefGoogle Scholar
Ives, A. R. & Helmus, M. R. (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs, 81: 511–525.CrossRefGoogle Scholar
Jaccard, P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37: 547–579.Google Scholar
Jackson, D. A. (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74: 2204–2214.CrossRefGoogle Scholar
Jamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2013) Selecting traits that explain species-environment relationships: a generalized linear mixed model approach. Journal of Vegetation Science, 24: 988–1000.CrossRef
Jongman, R. H. G., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (1987) Data Analysis in Community and Landscape Ecology. Wageningen, The Netherlands: Pudoc. Reissued in 1995 by Cambridge: Cambridge University Press.Google Scholar
Jost, L. (2006) Entropy and diversity. Oikos, 113: 363–369.CrossRefGoogle Scholar
Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88: 2427–2439.CrossRefGoogle ScholarPubMed
Kattge, J., Díaz, S., Lavorel, S. et al. (2011) TRY – a global database of plant traits. Global Change Biology, 17: 2905–2935.CrossRefGoogle Scholar
Kissling, W. D., Baker, W. J., Balslev, H. et al. (2012) Quaternary and pre-Quaternary historical legacise in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21: 909–921.CrossRefGoogle Scholar
Kleyer, M, Bekker, R. M., Knevel, I. C. et al. (2008) The LEDA Traitbase: a database of life history traits of the Northwest European flora. Journal of Ecology, 96: 1266–1274.CrossRefGoogle Scholar
Kleyer, M., Dray, S., De Bello, F. et al. (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science, 23: 805–821.CrossRefGoogle Scholar
Knox, R. G. (1989) Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy. Vegetatio, 83: 129–136.CrossRefGoogle Scholar
Kovář, P. & Lepš, J. (1986) Ruderal communities of the railway station Ceska Trebova (Eastern Bohemia, Czechoslovakia) – remarks on the application of classical and numerical methods of classification. Preslia, 58: 141–163.Google Scholar
Kruskal, J. B. (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29: 115–129.CrossRefGoogle Scholar
Kühn, I., Durka, W., & Klotz, S. (2004) BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distributions, 10: 363–365.Google Scholar
Lande, R. (1996) Statistics and partitioning of species diversity and similarity among multiple communities. Oikos, 76: 5–13.CrossRefGoogle Scholar
Legendre, P. (1993) Spatial autocorrelation: trouble or new paradigm?Ecology, 74: 1659–1673.CrossRefGoogle Scholar
Legendre, P. (2007) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1: 3–8.CrossRefGoogle Scholar
Legendre, P. & Anderson, M. J. (1999) Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecological Monographs, 69: 1–24.CrossRefGoogle Scholar
Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75: 435–450.CrossRefGoogle Scholar
Legendre, P. & Fortin, M. J. (2010) Comparsion of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10: 831–844.CrossRefGoogle Scholar
Legendre, P. & Gallagher, E. D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271–280.CrossRefGoogle ScholarPubMed
Legendre, P. & Legendre, L. (2012) Numerical Ecology, Third English Edn. Amsterdam: Elsevier B. V.Google Scholar
Legendre, P., Oksanen, J., & ter Braak, C. J. F. (2011) Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2: 269–277.CrossRefGoogle Scholar
Lepš, J. (1999) Nutrient status, disturbance and competition: an experimental test of relationship in a wet meadow. Journal of Vegetation Science, 10: 219–230.CrossRefGoogle Scholar
Lepš, J. & Buriánek, V. (1990) Pattern of interspecific associations in old field succession. In: Krahulec F., Agnew A. D. Q., Agnew, S., & Willems, J. H. (eds.): Spatial Processes in Plant Communities. SPB Publishers, pp. 13–22.
Lepš, J., de Bello, F., Lavorel, S., & Berman, S. (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78: 481–501.Google Scholar
Lepš, J., de Bello, F., Šmilauer, P., & Doležal, J. (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography, 34: 856–863.CrossRefGoogle Scholar
Lepš, J. & Hadincová, V. (1992) How reliable are our vegetation analyses? Journal of Vegetation Science, 3: 119–124.CrossRefGoogle Scholar
Lepš, J., Novotný, V., & Basset, Y. (2001) Habitat and successional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. Journal of Ecology, 89: 186–199.CrossRefGoogle Scholar
Lepš, J., Prach, K., & Slavíková, J. (1985) Vegetation analysis along the elevation gradient in the Nízké Tatry Mountains (Central Slovakia). Preslia, 57: 299–312.Google Scholar
Lepš, J. & Šmilauer, P. (2007) Subjectively sampled vegetation data: don't throw out the baby with the bath water. Folia Geobotanica, 42: 169–178.CrossRefGoogle Scholar
Lindsey, J. K. (1993) Models for Repeated Measurement. Oxford: Oxford University Press.Google Scholar
Little, R. J. A. & Rubin, D. B. (1987) Statistical Analysis with Missing Data. New York: John Wiley and Sons.Google Scholar
Ludwig, J. A. & Reynolds, J. F. (1988) Statistical Ecology. New York: John Wiley and Sons.Google Scholar
Maccherini, S. & Santi, E. (2012) Long-term experimental restoration in a calcareous grassland: identifying the most effective restoration strategies. Biological Conservation, 146: 123–135.CrossRefGoogle Scholar
McCullagh, P. & Nelder, J. A. (1989) Generalized Linear Models. Second edn. London: Chapman and Hall.CrossRefGoogle Scholar
McCune, B. & Mefford, M. J. (1999) PC-ORD. Multivariate Analysis of Ecological Data, Version 4. Gleneden Beach: MjM Software Design.
Mielke, P. W. & Berry, K. J. (2007) Permutation Methods: A Distance Function Approach. Second edition, Springer.Google Scholar
Moravec, J. (1973) The determination of the minimal area of phytocenoses. Folia Geobotanica Phytotaxonomica, 8: 429–434.CrossRefGoogle Scholar
Morisita, M. (1959) Measuring of interspecific association and similarity between communities. Memoirs Fac. Sci. Kyushu Univ., Ser E., 3: 65–80.Google Scholar
Mouillot, D., Stubbs, W., Faure, M. et al. (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145: 345–353.CrossRefGoogle ScholarPubMed
Mueller-Dombois, D. & Ellenberg, H. (1974) Aims and Methods of Vegetation Ecology. New York: John Wiley and Sons.Google Scholar
Nakagawa, S. (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology, 15: 1044–1045.CrossRefGoogle Scholar
Novotný, V. & Basset, Y. (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos, 89: 564–572.CrossRefGoogle Scholar
Okland, R. H. (1999) On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science, 10: 131–136.CrossRefGoogle Scholar
Oksanen, L. (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue?Oikos, 94: 27–38.CrossRefGoogle Scholar
Orloci, L. (1967) An agglomerative method for classification of plant communities. Journal of Ecology, 55: 193–205.CrossRefGoogle Scholar
Orloci, L. (1978) Multivariate Analysis in Vegetation Research. Second edn. The Hague: W. Junk B. V.Google Scholar
Pakeman, R. J., Garnier, E., Lavorel, S. et al. (2008) Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology, 96: 355–366.CrossRefGoogle Scholar
Pakeman, R. J. & Quested, H. M. (2007) Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science, 10: 93–98.CrossRefGoogle Scholar
Pélissier, R. & Couteron, P. (2007) An operational, additive framework for species diversity partitioning and beta-diversity analysis. Journal of Ecology, 95: 294–300.CrossRefGoogle Scholar
Pélissier, R., Couteron, P., Dray, S., & Sabatier, D. (2003) Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology, 84: 242–251.CrossRefGoogle Scholar
Peres-Neto, P. R. & Legendre, P. (2010) Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19: 174–184.CrossRefGoogle Scholar
Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87: 2614–2625.CrossRefGoogle ScholarPubMed
Pielou, E. C. (1977) Mathematical Ecology. New York: John Wiley and Sons.Google Scholar
Prentice, H. C. & Cramer, W. (1990) The plant community as a niche bioassay: environmental correlates of local variation in Gypsohila fastigiata. Journal of Ecology, 78: 313–325.CrossRefGoogle Scholar
Pyšek, P. & Lepš, J. (1991) Response of a weed community to nitrogen fertilization: a multivariate analysis. Journal of Vegetation Science, 2: 237–244.CrossRefGoogle Scholar
R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar
Rao, C. R. (1982) Diversity and dissimilarity coefficients – a unified approach. Theoretical Population Biology, 21: 24–43.CrossRefGoogle Scholar
Rao, C. R. (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió (Quaderns d’Estadística i Investigació Operativa), 19: 23–63.Google Scholar
Reckhow, K. H. (1990) Bayesian inference in non-replicated ecological studies. Ecology, 71: 2053–2059.CrossRefGoogle Scholar
Rice, W. R. (1989) Analyzing tables of statistical tests. Evolution, 43: 223–225.CrossRefGoogle ScholarPubMed
Ricotta, C. & Moretti, M. (2011) CWM and Rao's quadratic diversity: a unified framework for functional ecology. Oecologia, 167: 181–188.CrossRefGoogle ScholarPubMed
Robinson, P. M. (1973) Generalized canonical analysis for time series. Journal of Multivariate Analysis, 3: 141–160.CrossRefGoogle Scholar
Schönemann, P. H. (1966) A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31: 1–10.CrossRefGoogle Scholar
Shan, H., Kattge, J., Reich, P. et al. (2012) Gap filling in the plant kingdom: trait prediction using hierarchical probabilistic matrix factorization. Edinburgh: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 1303–1310.
Sharma, S., Legendre, P., de Caceres, M., & Boisclair, D. (2011) The role of environmental and spatial processes in structuring native and non-native fish communities across thousands of lakes. Ecography, 34: 762–771.CrossRefGoogle Scholar
Shepard, R. N. (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika, 27: 125–139.CrossRefGoogle Scholar
Siepelski, A. M. & McPeek, M. A. (2013) Niche versus neutrality in structuring the beta diversity of damselfly assemblages. Freshwater Biology, 58: 758–768.CrossRefGoogle Scholar
Silvertown, J. W. & Lovett Doust, J. (1993) Introduction to Plant Population Biology. Third edn. Oxford: Blackwell Scientific Publications.
Sneath, P. H. A. (1966) A comparison of different clustering methods as applied to randomly-spaced points. Classification Society Bulletin, 1: 2–18.Google Scholar
Sokal, R. R. & Michener, C. D. (1958) A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38: 1409–1438.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1995) Biometry. Third edn., New York: W. H. Freeman.Google Scholar
Sørensen, T. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species contents and its application to analysis of the vegetation on Danish commons. Biologiska Skrifter (Copenhagen), 5: 1–34.Google Scholar
Spitzer, K., Novotný, V., Tonner, M., & Lepš, J. (1993) Habitat preferences distribution and seasonality of the butterflies (Lepidoptera, Papilionoidea) in a montane tropical rain forest of Vietnam. Journal of Biogeography, 20: 109–121.CrossRefGoogle Scholar
Špačková, I., Kotorová, I., & Lepš, J. (1998) Sensitivity of seedling recruitment to moss, litter and dominant removal in an oligotrophic wet meadow. Folia Geobotanica, 33: 17–30.CrossRefGoogle Scholar
Stewart-Oaten, A., Murdoch, W. W., & Parker, K. P. (1986) Environmental impact assessment: ‘pseudoreplication’ in time? Ecology, 67: 929–940.CrossRefGoogle Scholar
ter Braak, C. J. F. (1994) Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, 1: 127–140.CrossRefGoogle Scholar
ter Braak, C. J. F., Cormont, A., & Dray, S. (2012) Improved testing of species traits-environment relationships in the fourth corner problem. Ecology, 93: 1525–1526.CrossRefGoogle Scholar
ter Braak, C. J. F. & Prentice, I. C. (1988) A theory of gradient analysis. Advances in Ecological Research, 18: 93–138.Google Scholar
ter Braak, C. J. F. & Schaffers, A. P. (2004) Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology, 85: 834–846.CrossRefGoogle Scholar
ter Braak, C. J. F. & Šmilauer, P. (2012) Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.0). Ithaca: Microcomputer Power.
ter Braak, C. J. F. & Verdonschot, P. F. M. (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57: 255–289.CrossRefGoogle Scholar
Trekels, H., Van de Meutter, F., & Stoks, R. (2011) Habitat isolation shapes the recovery of aquatic insect communities from a pesticide pulse. Journal of Applied Ecology, 48: 1480–1489.CrossRefGoogle Scholar
Underwood, A. J. (1997) Experiments in Ecology. Cambridge: Cambridge University Press.Google Scholar
Van den Brink, P. J. & ter Braak, C. J. F. (1998) Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquatic Ecology, 32: 163–178.CrossRefGoogle Scholar
Van den Brink, P. J. & ter Braak, C. J. F. (1999) Principal Response Curves: Analysis of timedependent multivariate responses of a biological community to stress. Environmental Toxicology and Chemistry, 18: 138–148.CrossRefGoogle Scholar
Van der Maarel, E. (1979) Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio, 38: 97–114.Google Scholar
Van der Maarel, E. & Franklin, J. (2013) Vegetation ecology: Historical notes and outline. In: van der Maarel E. & Franklin J. (eds.): Vegetation Ecology, 2nd edn. Chichester: John Wiley and Sons, pp. 1–27.CrossRef
Veen, G. F. & Olff, H. (2011) Interactive effects of soil-dwelling ants, ant mounds and simulated grazing on local plant community composition. Basic and Applied Ecology, 12: 703–712.Google Scholar
Verberk, W. C. E. P., van Noordwijk, C. G. E., & Hildrew, A. G. (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science, 32: 531–547.CrossRefGoogle Scholar
Verhoeven, K. J. F., Simonsen, K. L., & McIntyre, L. M. (2005) Implementing false discovery rate control: increasing your power. Oikos, 108: 643–647.CrossRefGoogle Scholar
Von Ende, C. N. (1993) Repeated measures analysis: growth and other time-dependent measures. In: Scheiner S. M. & Gurevitch J. (eds.): Design and Analysis of Ecological Experiments. New York: Chapman and Hall, pp. 113–117.
Vos, P., Hogers, R., Bleeker, M. et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407–4414.CrossRefGoogle ScholarPubMed
Wagner, H. H., Wildi, O., & Ewald, K. C. (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology, 15: 219–227.CrossRefGoogle Scholar
Wartenberg, D., Ferson, S., & Rohlf, F. J. (1987) Putting things in order: a critique of detrended correspondence analysis. American Naturalist, 129: 434–448.CrossRefGoogle Scholar
Wessels, K. J., van Jaarsveld, A. S., Grimbeek, J. D., & van der Linde, M. J. (1998) An evaluation of the gradsect biological survey method. Biodiversity and Conservation, 7: 1093–1121.CrossRefGoogle Scholar
Westoby, M. (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227.CrossRefGoogle Scholar
Whittaker, R. H. (1960) Vegetation of Siskiyou Mountains, Oregon and California. Ecological Monographs, 30: 279–338.CrossRefGoogle Scholar
Whittaker, R. H. (1967) Gradient analysis of vegetation. Biological Review (Camb.), 42: 207–264.CrossRefGoogle ScholarPubMed
Whittaker, R. H. (1975) Communities and Ecosystems. New York: MacMillan.Google Scholar
Williams, W. T. & Lambert, J. M. (1959) Multivariate methods in plant ecology. I. Association analysis in plant communities. Journal of Ecology, 49: 717–729.CrossRefGoogle Scholar
Wright, S. P. (1992) Adjusted P-values for simultaneous inference. Biometrics, 48: 1005–1013.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Petr Šmilauer, University of South Bohemia, Czech Republic, Jan Lepš, University of South Bohemia, Czech Republic
  • Book: Multivariate Analysis of Ecological Data using CANOCO 5
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139627061.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Petr Šmilauer, University of South Bohemia, Czech Republic, Jan Lepš, University of South Bohemia, Czech Republic
  • Book: Multivariate Analysis of Ecological Data using CANOCO 5
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139627061.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Petr Šmilauer, University of South Bohemia, Czech Republic, Jan Lepš, University of South Bohemia, Czech Republic
  • Book: Multivariate Analysis of Ecological Data using CANOCO 5
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139627061.026
Available formats
×