This paper investigates the kinematics and the optimization of a generic robotic structure composed by N serial rotary joints and actuated with a mono-directional tendon system. In the first part of the paper, the specific case that brought us to develop this study is introduced; the main motivations and the scenario with its specific constraints and design choices have been described.
Since a complete and detailed analysis of an n-R serial structure with this kind of characteristics could not be found in the literature, the study of the kinematics and the parameter optimization of such a structure is treated as generally as possible, in order to make the procedure and the results applicable for any similar structure. Finally, in the last part, through the introduction of specific constraints and the definition of the parameters, the general analysis has been applied to the specific case of study: the preliminary study of a finger exoskeleton for an astronaut suit.