We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Element explores the topics of terrorism, counterterrorism, and the US government's war on terror following the September 11, 2001 terror attacks. It draw on insights from Austrian and public choice economics. First, the foundations of the economics of terrorism are discussed emphasizing that the behaviors of terrorists and counter-terrorists are purposeful and goal-oriented. Then, the economics of counterterrorism policies and the importance of institutional change is considered. Next, the three dilemmas facing liberal societies as it relates to counterterrorism efforts is focused on. The Element then provides an assessment of the US government's war on terror. It discusses the origins of the war, discuss whether it can be judged a success or failure, and consider some of the main effects both abroad and within the United States. The final chapter concludes with a discussion of several areas for future research.
Many clinical trials leverage real-world data. Typically, these data are manually abstracted from electronic health records (EHRs) and entered into electronic case report forms (CRFs), a time and labor-intensive process that is also error-prone and may miss information. Automated transfer of data from EHRs to eCRFs has the potential to reduce data abstraction and entry burden as well as improve data quality and safety.
Methods:
We conducted a test of automated EHR-to-CRF data transfer for 40 participants in a clinical trial of hospitalized COVID-19 patients. We determined which coordinator-entered data could be automated from the EHR (coverage), and the frequency with which the values from the automated EHR feed and values entered by study personnel for the actual study matched exactly (concordance).
Results:
The automated EHR feed populated 10,081/11,952 (84%) coordinator-completed values. For fields where both the automation and study personnel provided data, the values matched exactly 89% of the time. Highest concordance was for daily lab results (94%), which also required the most personnel resources (30 minutes per participant). In a detailed analysis of 196 instances where personnel and automation entered values differed, both a study coordinator and a data analyst agreed that 152 (78%) instances were a result of data entry error.
Conclusions:
An automated EHR feed has the potential to significantly decrease study personnel effort while improving the accuracy of CRF data.
There are numerous examples of translational science innovations addressing challenges in the translational process, accelerating progress along the translational spectrum, and generating solutions relevant to a wide range of human health needs. Examining these successes through an education lens can identify core principles and effective practices that lead to successful translational outcomes. The National Center for Advancing Translational Sciences (NCATS) is identifying and teaching these core principles and practices to a broad audience via online courses in translational science which teach from case studies of NCATS-led or supported research initiatives. In this paper, we share our approach to the design of these courses and offer a detailed description of our initial course, which focused on a preclinical drug discovery and development project spanning academic and government settings. Course participants were from a variety of career stages and institutions. Participants rated the course high in overall value to them and in providing a unique window into the translational science process. We share our model for course development as well as initial findings from the course evaluation with the goal of continuing to stimulate development of novel education activities teaching foundational principles in translational science to a broad audience.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.