We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the level of knowledge and utilization of colorectal cancer (CRC) and prostate cancer (PCa) early detection measures (EDMs) over a period of 12 years in general practice from the patient’s perspective.
Background:
The role of general practitioners (GPs) in EDMs for CRC and PCa in Germany is not well-documented with comprehensive data.
Methods:
We conducted a patient-centric survey in the German federal state of Berlin-Brandenburg at a 12-year interval to examine the role of GPs in EDMs for CRC and PCa. In 2009, 55 GPs were tasked with informing 50 consecutive male patients, each aged over 35, about participating in a survey study (study phase 1/SP1). To evaluate changes over 12 years, a new survey involving 50 male patients from each of 150 GPs was conducted from October 2021 to March 2022 (SP2).
Findings:
We thoroughly reviewed the questionnaires of 890 patients, with 755 in SP1 and 135 in SP2. Patients showed greater awareness of recommendations regarding colonoscopy compared to prostate-specific antigen (PSA) testing. GPs were the most frequently reported source of information for both EDMs in our cohort. Comparing the two study phases, no significant difference in specific awareness of colonoscopy or PSA testing was found among men eligible for EDMs. However, there was a notable increase in the role of health insurance companies as a source of information about colonoscopy over time. Nearly 60% of included patients underwent colonoscopy and/or PSA testing as EDMs.
Conclusion:
The number of EDMs performed among study participants did not increase over time. Our study confirms that GPs remain the primary source of information about EDMs among the study participants.
The 5th generation new radio (5G NR) standards create both enormous challenges and potential to address the spatio-spectral-temporal agility of wireless transmission. In the framework of a research unit at TU Ilmenau, various concepts were studied, including both approaches toward integrated circuits and distributed receiver front-ends (FEs). We report here on the latter approach, aiming at the proof-of-principle of the constituting FEs suitable for later modular extension. A millimeter-wave agile multi-beam FE with an integrated 4 by 1 antenna array for 5G wireless communications was designed, manufactured, and verified by measurements. The polarization is continuously electronically adjustable and the directions of signal reception are steerable by setting digital phase shifters. On purpose, these functions were realized by analog circuits, and digital signal processing was not applied. The agile polarization is created inside the analog, real-time capable FE in a novel manner and any external circuitry is omitted. The microstrip patch antenna array integrated into this module necessitated elaborate measurements within the scope of FE characterization, as the analog circuit and antenna form a single entity and cannot be assessed separately. Link measurements with broadband signals were successfully performed and analyzed in detail to determine the error vector magnitude contributions of the FE.
Enzymes can be a renewable source of catalytic agents and thus be interesting for sustainable approaches to create and modify functional materials. Here, thin hydrogel layers were prepared as thin coatings on hard substrates by immobilized horseradish peroxidase. Hydrophilic 4-arm star shaped telechelics from oligo(ethylene glycol) bearing on average 55% end groups derived from aromatic amino acids served as monomers and enzymatic substrates. Shifts of the contact angle from 84° to 62° for the wetting process and of zeta potential towards the neutral range illustrated an alteration of physicochemical properties of the model surfaces by a hydrophilic shielding. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), quartz crystal microbalance and atomic force microscopy (AFM) experiments enabled the qualitative and quantitative proof of hydrogel deposition at the interface with thicknesses in the medium nanometer size range. Conceptually, as the immobilized enzyme becomes entrapped in the hydrogel and the crosslinking mechanism bases on a radical reaction after enzymatic activation of the monomers with a limited diffusivity and lifetime, the formed network material can be assumed to be inhomogeneous on the molecular level. On the macroscale, however, relative homogeneity of the coating was observed via ToF-SIMS and AFM mapping. As an exemplary functional evaluation in view of bioanalytical applications, the thrombogenicity of the coating was studied in static tests with human blood from several donors. In the future, this “coating-from” approach may be explored for cell culture substrate coatings, for protein/biofilm repellence in technical applications, or in bioanalytical devices.
The use of virtual reality (VR) interventions for psychosis is on the rise. As information-processing biases such as overconfidence in memory are likely to be involved in the formation and maintenance of delusions, VR could also be used to correct cognitive distortions and in turn ameliorate delusions. The present study illustrates two case studies in which a VR intervention was employed to reduce delusions by means of correcting experiences. Participants navigated four virtual environments via a head-mounted display (HMD) and computer and were asked to recollect previously seen faces and objects and to rate their response confidence. The scenarios were created to elicit false memories. Immediately after each response, they received feedback to correct possible overconfidence in false memories. We present two case studies to illustrate individual differences. Both participants benefited from the intervention: delusions were reduced from pre- to post-assessment (after 3 weeks) as measured with the Positive and Negative Syndrome Scale and Psychotic Symptom Scale. This was corroborated by results on the Paranoia Checklist and the Community Assessment of Psychic Experiences collected immediately after the session. Immediate effects also showed a reduction in delusion conviction rate. The present study provides preliminary evidence that delusions may be ameliorated by a VR paradigm designed to correct memory overconfidence. Cybersickness emerged as a problem in one of the patients.
We developed a model for wind-blown bubbles with temperature and density profiles based on self-similar solutions including thermal conduction. We constructed also heat-conduction bubbles with chemical discontinuities. The X-ray emission is computed using the well-documented CHIANTI code (v6.0.1). These bubble models are used to (re)analyse the high-resolution X-ray spectrum of the hot bubble of BD+30°3639, and they appeared to be much superior to constant temperature approaches.
We found for the X-ray emission of BD+30°3639 that temperature-sensitive and abundance-sensitive line ratios computed on the basis of heat-conducting wind-blown bubbles and with abundances as found in the stellar photosphere/wind can only be reconciled with the observations if the hot bubble of BD+30°3639 is chemically stratified, i.e. if it contains also a small mass fraction (≃ 3 %) of hydrogen-rich matter immediately behind the conduction front. Neon appears to be strongly enriched, with a mass fraction of at least about 0.06.
The glass-forming Ti75Zr10Si15 and Ti60Zr10Nb15Si15 alloys composed of nontoxic elements may represent new materials for biomedical applications. For this study, melt-spun alloy samples exhibiting glass–matrix nanocomposite structures were subjected to thermal oxidation treatments in synthetic air to improve their surface characteristics. 550 °C was identified as the most appropriate temperature to carry out oxidative surface modifications while preserving the initial metastable microstructure. The modified surfaces were evaluated considering morphological and structural aspects, and it was found that the oxide films formed at 550 °C are amorphous and consist mainly of TiO2; their thicknesses were estimated to be ∼560 nm for Ti75Zr10Si15 and ∼460 nm for Ti60Zr10Nb15Si15. The thermally treated sample surfaces exhibit not only higher roughnesses and higher hardnesses but also improved wettability compared to the as-spun materials. By immersion of oxidized samples in simulated body fluid Ca- and P-containing coatings exhibiting typical morphologies of apatite are formed.
Outer-halo globular clusters show large half-light radii and flat stellar mass functions, depleted in low-mass stars. Using N-body simulations of globular clusters on eccentric orbits within a Milky Way-like potential, we show how a cluster’s half-mass radius and its mass function develop over time. The slope of the central mass function flattens proportionally to the amount of mass a cluster has lost, and the half-mass radius grows to a size proportional to the average strength of the tidal field. The main driver of these processes is mass segregation of dark remnants. We conclude that the extended, depleted clusters observed in the Milky Way must have had small half-mass radii in the past, and that they expanded due to the weak tidal field they spend most of their lifetime in. Moreover, their mass functions must have been steeper in the past but flattened significantly as a cause of mass segregation and tidal mass loss.
We present XMM-Newton and Chandra observations of the born-again planetary nebula A 30. These X-ray observations reveal a bright unresolved source at the position of the central star whose X-ray luminosity exceeds by far the model expectations for photospheric emission and for shocks within the stellar wind. We suggest that a “born-again hot bubble” may be responsible for this X-ray emission. Diffuse X-ray emission associated with the petal-like features and one of the H-poor knots seen in the optical is also found. The weakened emission of carbon lines in the spectrum of the diffuse emission can be interpreted as the dilution of stellar wind by mass-loading or as the detection of material ejected during a very late thermal pulse.
Our sample of round/elliptical double-shell PNe around central stars (CSs) with H-rich surface chemistry covers all evolutionary phases across the HRD. By means of high-resolution and high-S/N spectra we determine bulk matter velocities of the inner wind-driven rims and the maximum (= post-shock) gas velocities of the surrounding thermally expanding shells. Studying the details of the internal kinematics allows a look at processes of PN formation and at PN expansion history helping, for instance, to determine expansion distances.
Based on time-dependent radiation-hydrodynamics simulations of the evolution of Planetary Nebulae (PNe), we have carried out a systematic parameter study to address the non-trivial question of how the diffuse X-ray emission of PNe with closed central cavities is expected to depend on the evolutionary state of the nebula, the mass of the central star, and the metallicity of stellar wind and circumstellar matter. We have also investigated how the model predictions depend on the treatment of thermal conduction at the interface between the central ‘hot bubble’ and the ‘cool’ inner nebula, and compare the results with recent X-ray observations. Our study includes models whose properties resemble the extreme case of PNe with Wolf-Rayet type central stars. Indeed, such models are found to produce the highest X-ray luminosities.
As a tool helping to interpret diffuse X-ray emission of PNe, and as a supplement to our RHD simulations, we have started to construct a grid of theoretical X-ray spectra of wind-blown bubbles with temperature and density profiles according to thermal conduction theory. We investigate how the X-ray spectra depend on chemical composition (e.g. H-rich vs. H-deficient) and how temperature and abundance determinations reflect gradients of temperature and chemical composition within the bubbles. These synthetic models shall allow to quickly perform detailed parameter studies without the need for dedicated hydrodynamical simulations. We report on ideas and goals.
X-ray observations of young Planetary Nebulæ (PNe) have revealed diffuse emission in extended regions around both H-rich and H-deficient central stars. In order to also reproduce physical properties of H-deficient objects, we have, at first, extended our time-dependent radiation-hydrodynamic models with heat conduction for such conditions. Here we present some of the important physical concepts, which determine how and when a hot wind-blown bubble forms. In this study we have had to consider the, largely unknown, evolution of the CSPN, the slow (AGB) wind, the fast hot-CSPN wind, and the chemical composition. The main conclusion of our work is that heat conduction is needed to explain X-ray properties of wind-blown bubbles also in H-deficient objects.
In the last years (metallicity-dependent) radiation-hydrodynamics simulations have become a powerful tool to understand the formation and evolution of PNe in terms of simple morphologies and kinematics. Contrary to photoionization models, with their ad-hoc assumptions on structure and physics, the RHD models are self-consistent with respect to their density distribution, velocity field, chemical composition, and stellar evolution. We use our models as simple proxies for real PNe and investigate the reliability of common abundance determination methods, which are based on either plasma diagnostics or static photoionization (PI) models.
From radiation magnetohydrodynamic (RMHD) simulations we track the temporal evolution of a vertical magnetic flux sheet embedded in a two-dimensional non-stationary atmosphere that reaches all the way from the upper convection zone to the low chromosphere. Examining its temporal behavior near the interface between the convection zone and the photosphere, we describe the excitation of propagating longitudinal waves within the magnetic element as a result of convective motion in its surroundings.
We derive the 3D-NLTE lithium abundance in the solar photosphere from the Lii line at 670 nm as measured in several solar atlases. The Li abundance is obtained from line profile fitting with 1D/3D-LTE/3D-NLTE synthetic spectra, considering several possibilities for the atomic parameters of the lines blending the Li feature. The 670 nm spectral region shows considerable differences in the two available disc-centre solar atlases, while the two integrated disc spectra are very similar. We obtain A(Li)3D–NLTE = 1.03. The 1D-LTE abundance is 0.07 dex smaller. The line-lists giving the best fit for the Sun may fail for other stars, while some line-lists fail to reproduce the solar profile satisfactorily. We need a better knowledge of the atomic parameters of the lines blending the Li feature in order to be able to reproduce both the solar spectrum and the spectra of other stars. An improved line-list is also required to derive reliable estimates of the isotopic Li ratio in solar-metallicity stars.
Based on 3D hydrodynamical model atmospheres computed with the CO5BOLD code and 3D non-LTE (NLTE) line formation calculations, we study the effect of the convection-induced line asymmetry on the derived 6Li abundance for a range in effective temperature, gravity, and metallicity covering the stars of the Asplund et al. (2006) sample. When the asymmetry effect is taken into account for this sample of stars, the resulting 6Li/7Li ratios are reduced by about 1.5% on average with respect to the isotopic ratios determined by Asplund et al. (2006). This purely theoretical correction diminishes the number of significant 6Li detections from 9 to 4 (2σ criterion), or from 5 to 2 (3σ criterion). In view of this result the existence of a 6Li plateau appears questionable. A careful reanalysis of individual objects by fitting the observed lithium 6707 Å doublet both with 3D NLTE and 1D LTE synthetic line profiles confirms that the inferred 6Li abundance is systematically lower when using 3D NLTE instead of 1D LTE line fitting. Nevertheless, halo stars with unquestionable 6Li detection do exist even if analyzed in 3D-NLTE, the most prominent example being HD 84937.
We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.
We present 2D local box simulations of near-surface radiative magneto-convection with prescribed magnetic flux, carried out with the MHD version of the CO5BOLD code for the Sun and a solar-like star with a metal-poor chemical composition (metal abundances reduced by a factor 100, [M/H] = −2). The resulting magneto-hydrodynamical models can be used to study the influence of the metallicity on the properties of magnetized stellar atmospheres. A preliminary analysis indicates that the horizontal magnetic field component tends to be significantly stronger in the optically thin layers of metal-poor stellar atmospheres.
Ta based films are important building blocks for modern microelectronic applications. To meet the requirements of miniaturization, atomic layer deposition appears to be an alternative technology in comparison to PVD and CVD. In the present paper investigations of a thermal TBTDET ALD process will be presented with emphasis to the first ALD reaction cycles on native silicon oxide and HF etched silicon surfaces. The investigations show that the substrate chemistry is a crucial parameter for the film growth and appears to be a key to control the ALD deposition. The investigations were done by XPS without any vacuum break between the deposition and the surface analysis.