We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Psychiatric diagnosis is based on categorical diagnostic classification, yet similarities in genetics and clinical features across disorders suggest that these classifications share commonalities in neurobiology, particularly regarding neurotransmitters. Glutamate (Glu) and gamma-aminobutyric acid (GABA), the brain's primary excitatory and inhibitory neurotransmitters, play critical roles in brain function and physiological processes.
Methods
We examined the levels of Glu, combined glutamate and glutamine (Glx), and GABA across psychiatric disorders by pooling data from 121 1H-MRS studies and further divided the sample based on Axis I disorders.
Results
Statistically significant differences in GABA levels were found in the combined psychiatric group compared with healthy controls (Hedge's g = −0.112, p = 0.008). Further analyses based on brain regions showed that brain GABA levels significantly differed across Axis I disorders and controls in the parieto-occipital cortex (Hedge's g = 0.277, p = 0.019). Furthermore, GABA levels were reduced in affective disorders in the occipital cortex (Hedge's g = −0.468, p = 0.043). Reductions in Glx levels were found in neurodevelopmental disorders (Hedge's g = −0.287, p = 0.022). Analysis focusing on brain regions suggested that Glx levels decreased in the frontal cortex (Hedge's g = −0.226, p = 0.025), and the reduction of Glu levels in patients with affective disorders in the frontal cortex is marginally significant (Hedge's g = −0.172, p = 0.052). When analyzing the anterior cingulate cortex and prefrontal cortex separately, reductions were only found in GABA levels in the former (Hedge's g = − 0.191, p = 0.009) across all disorders.
Conclusions
Altered glutamatergic and GABAergic metabolites were found across psychiatric disorders, indicating shared dysfunction. We found reduced GABA levels across psychiatric disorders and lower Glu levels in affective disorders. These results highlight the significance of GABA and Glu in psychiatric etiology and partially support rethinking current diagnostic categories.
Plasma jets are widely investigated both in the laboratory and in nature. Astrophysical objects such as black holes, active galactic nuclei and young stellar objects commonly emit plasma jets in various forms. With the availability of data from plasma jet experiments resembling astrophysical plasma jets, classification of such data would potentially aid in not only investigating the underlying physics of the experiments but also the study of astrophysical jets. In this work we use deep learning to process all of the laboratory plasma images from the Caltech Spheromak Experiment spanning two decades. We found that cosine similarity can aid in feature selection, classify images through comparison of feature vector direction and be used as a loss function for the training of AlexNet for plasma image classification. We also develop a simple vector direction comparison algorithm for binary and multi-class classification. Using our algorithm we demonstrate 93 % accurate binary classification to distinguish unstable columns from stable columns and 92 % accurate five-way classification of a small, labelled data set which includes three classes corresponding to varying levels of kink instability.
Although attentional bias modification training (ABM) and cognitive behavioural therapy (CBT) are two effective methods to decrease the symptoms of generalized anxiety disorders (GAD), to date, no randomized controlled trials have yet evaluated the effectiveness of an intervention combining internet-based cognitive behavioural therapy (ICBT) and ABM for adults with GAD.
Aims:
This study aimed to investigate the effectiveness of an intervention combining ICBT and ABM for adults with GAD.
Method:
Sixty-three participants diagnosed with GAD were randomly assigned to the treatment group (ICBT with ABM; 31 participants) or the control group (ICBT with ABM placebo; 32 participants), and received 8 weeks of treatment and three evaluations. The CBT, ABM and ABM-placebo training were conducted via the internet. The evaluations were conducted at baseline, 8 weeks later, and 1 month later, respectively.
Results:
Both the treatment and control groups reported significantly reduced anxiety symptoms and attentional bias, with no clear superiority of either intervention. However, the treatment group showed a greater reduction in negative automatic thoughts than the control group after treatment and at 1-month follow-up (η2 = 0.123).
Conclusion:
The results suggest that although not differing in therapeutic efficacy, the intervention combining ICBT and ABM is superior to the intervention combining ICBT and ABM-placebo in the reduction of negative automatic thoughts. ABM may be a useful augmentation of ICBT on reducing anxiety symptoms.
The purpose of the present meta-analysis was to evaluate the association between the inflammatory potential of diet, determined by the dietary inflammatory index (DII®) score, and depression.
Design
Systematic review and meta-analysis.
Setting
A comprehensive literature search was conducted in PubMed, Web of Science and EMBASE databases up to August 2018. All observational studies that examined the association of the DII score with depression/depressive symptoms were included.
Subjects
Four prospective cohorts and two cross-sectional studies enrolling a total of 49 584 subjects.
Results
Overall, individuals in the highest DII v. the lowest DII category had a 23 % higher risk of depression (risk ratio (RR)=1·23; 95 % CI 1·12, 1·35). When stratified by study design, the pooled RR was 1·25 (95 % CI 1·12, 1·40) for the prospective cohort studies and 1·16 (95 % CI 0·96, 1·41) for the cross-sectional studies. Gender-specific analysis showed that this association was observed in women (RR=1·25; 95 % CI 1·09, 1·42) but was not statistically significant in men (RR=1·15; 95 % CI 0·83, 1·59).
Conclusions
The meta-analysis suggests that pro-inflammatory diet estimated by a higher DII score is independently associated with an increased risk of depression, particularly in women. However, more well-designed studies are needed to evaluate whether an anti-inflammatory diet can reduce the risk of depression.
With the increasing usage of Al alloys in vehicle manufacture, it is necessary to join dissimilar Al alloys with lap joint. However, hot cracking is a challenging issue due to the chemical composition and thermal tension, which greatly determines the reliability of automobile operation. Among different Al alloys, the series 5000 (Al–Mg) and 6000 (Al–Mg–Si) are widely used. To better understand the hot cracking behavior, various stack ups of AA5754 and AA6013 were laser welded to investigate the effects of process parameters on hot cracking formation. The chemical composition, microstructure, fusion ratio, and fracture morphology of the weld joint were also examined. The results showed that the order of material stacking affected weld's susceptibility to hot cracking significantly, and the critical process parameters were obtained for tested conditions which could effectively reduce hot cracking. The findings from this work provide guidance for hot cracking prevention in laser welding of dissimilar Al alloys.
The fracture behavior of precracked nanocrystals with grain size gradients is simulated using the molecular dynamics method. A large grain size gradient is found to elevate resistance to crack propagation and transform the fracture mode from intergranular to intragranular when the crack is obstructed by a coarse grain. But the intragranular crack is nipped in its bud due to the difficulty of intragranular fracture. However, intergranular fractures can be always kept in nanocrystals with a small grain size gradient. Both the Schmid factors for the slip systems of grains near the crack tip and the critical stress intensity factors are calculated, and energy partitioning is conducted to analyze the mechanisms behind this phenomenon. The research exhibits the key role of grain size gradient in improving the antifracture ability of nanocrystals.
Light-induced metastability of amorphous/microcrystalline (micromorph) silicon tandem solar cell, in which the microcrystalline bottom cell was deposited in a single-chamber system, has been studied under a white light for more than 1000 hours. Two different light-induced metastable behaviors were observed. The first type was the conventional light-induced degradation, where the open-circuit voltage (Voc), fill factor (FF), and short-circuit current density (Jsc) were degraded, hence the efficiency was degraded as well. This phenomenon was observed mainly in the tandem cells with a bottom cell limited current mismatch. The second type was with a light-induced increase in Voc, which sometimes resulted in an increase in efficiency. The second type of light-induced metastability was observed in the tandem cells with a top cell limited current mismatch. The possible mechanisms for these phenomena are discussed.
In this article, we present a study of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) films by very high frequency-plasma enhanced chemical vapor deposition (VHF-PECVD) using high deposition pressure. Electrical, structural and optical properties of the films were investigated. Dark conductivity as high as 2.75S/cm of p-type nc-Si: H prepared at 2.5Torr pressure has been achieved at a deposition rate of 1.75Å/s for 25nm thin film. By controlling boron and phosphorus contamination, single junction nc-Si: H solar cells incorporated p-layers prepared under high pressure and low pressure, respectively, were deposited. It has been proven that nanocrystalline silicon solar cells with incorporation of p layer prepared at high pressure has resulted in enhanced open circuit voltage, short circuit current density and subsequently high conversion efficiency. Through the optimization of the bottom solar cell and application of ZnO/Al back reflector, 10.59% initial conversion efficiency of micromorph tandem solar cell (1.027cm2) with an open circuit voltage of 1.3864V, has been fabricated, where the bottom solar cell using a high pressure p layer was deposited in a single chamber.
The clogging of the Submerged Entry Nozzle (SEN) duringbillet continuous casting of mid-carbon steel is studied.Clogging materials and inclusions in steel samples taken atladles, tundish and billets are investigated. The total oxygen onthe whole section of the billet is measured. Steel cleanliness atunsteady casting states, including cast start, ladle change, SENchange, cast end, and the special unsteady pouring periodinduced by SEN clogging, are studied. Fluid flow and inclusionmotion and entrapment to SEN surface are also simulated.
The influence of the density of gap states and the band gap width of the intrinsic a-Si:H active layer on the characteristics of a-Si PIN/OLED coupling pair was analyzed by a-Si:H PIN/OLED CAD simulation model. The CAD simulation model was carried out based on a-Si PIN Hack & Shur model and OLED TCL transport model. At the same band gap width, for the intrinsic a-Si:H active layer with the higher density of gap states, the reverse current of a-Si PIN trended to be saturated at the higher reverse bias voltage. As a result, I-V curve of a-Si PIN/OLED around the turn point Vt became smoother with the increase of the density of gap states. At the same state density, the light induced current of a-Si PIN increased against the band gap width, assuming the input light had the same spectrum as AM1.5 solar light. Thus the luminance emitted from OLED increased with the decrease of the band gap width because OLED belongs to the light-emitting device controlled by current. The simulation results also showed that the influence of the state density intensified with the increase of the band gap of a-Si:H.
Nanostructured and thick SiC coatings have been successfully deposited on Si and graphite substrates by thermal plasma physical vapor deposition (TPPVD) using ultrafine SiC powder as a starting material. The control of processing parameters such as substrate temperature, composition of plasma gases, permits to the deposition of SiC coatings with a variety of microstructures and with various morphologies from dense to columnar. The maximum deposition rate reached 200 nm/s. Seebeck coefficient up to −480 μV/K was obtained for the non-doped coatings with stoichiometric composition. Nitrogen doping to the coatings made it possible to decrease the electrical resistivity from 10-2∼10-3 to 10-4∼10-5 Ωm and showing the maximum power factor of 1.0×10-3 Wm-1K-2 at 973 K.
By using the transient-null-current method, we have measured the internal electric field profiles Ei(x) near the p/i interface for two groups of solar cells: (a) a-Si:H p-i-n solar cells with varied i-layer thicknesses, and (b) a-SiGe:H cells with varied Ge content. When using an exponential function of Ei(x) to fit the experimental results, we obtained the field strength at the p/i interface E0, the screening length Lo, and the density of defect states Nd in the i-layer. The thinner the i-layer, the stronger the field strength obtained. For i-layer thickness increasing from 0.1 to 0.5 μm, the field strength E0 decreases from 1.15×105 to 2.0×104 V/cm; Lo decreases from 0.89 to 0.14 μm; and Nd is 3-4×1016 (cm3eV)−1. For the a-SiGe:H cells, as the Ge content increases from 40 to 55 %, E0 increases from 9.3×104 to 1.2×105 V/cm. The correlation of the internal electric field parameters with the cell‘s performance is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.