Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T11:53:27.142Z Has data issue: false hasContentIssue false

11 - The Water Cycle

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., and Schorghofer, N., Subsurface ice on Mars with rough topography, J. Geophys. Res., 111, E11007, 110. 2006.Google Scholar
Anderson, D. M., and Tice, A. R., Predicting unfrozen water contents in frozen soils from surface area measurements, Highway Res. Rec., 393, 1218, 1972.Google Scholar
Appéré, T., Schmitt, B., Pommerol, A., et al., Spatial and temporal distributions of the water ice annulus during recession of the northern seasonal condensates on Mars, 3rd International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, 2008.Google Scholar
Appéré, T., Schmitt, B., Langevin, Y., et al., Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express, J. Geophys. Res, 116, E05001, 2011.Google Scholar
Arvidson, R. E., Adams, D., Bonfiglio, G., et al., Mars Exploration Program 2007 Phoenix landing site selection and characteristics, J. Geophys. Res., 113, E00A03, 2008.Google Scholar
Barker, E. S., Martian atmospheric water observations: 1972–74 apparition, Icarus, 28, 247268, 1976.Google Scholar
Barker, E. S., Schorn, R. A., Worszczyk, A., Tull, R. G., and Little, S. J., Mars: detection of atmospheric water vapor during the southern hemisphere spring and summer season, Science, 170, 13081310, 1970.Google Scholar
Barnes, J. R., Midlatitude disturbances in the Martian atmosphere: a second Mars year, J. Atmos. Sci., 38, 225234, 1981.Google Scholar
Barr, A. C., and Milkovich, S. M., Ice grain size and the rheology of the Martian polar deposits, Icarus, 194, 513518, 2008.Google Scholar
Bass, D. S., and Paige, D. A., Variability of Mars’ North polar water ice cap. II. Analysis of Viking IRTM and MAWD data, Icarus, 144, 397409, 2000.Google Scholar
Bass, D. S., Herkenhoff, K. E., and Paige, D. A., Variability of Mars’ North Polar Water Ice Cap. I. Analysis of Mariner 9 and Viking Orbiter Imaging Data, Icarus, 144, 382396, 2000.Google Scholar
Beck, P., Pommerol, A., Schmitt, B., and Brissaud, O., Kinetics of water adsorption on minerals and the breathing of the Martian regolith, J. Geophys. Res., 115, E10011, 2011.Google Scholar
Benson, J. L., and James, P. B., Yearly comparisons of the Martian polar caps: 1999–2003 Mars Orbiter Camera observations. Icarus, 174 (2), 513523, 2005.Google Scholar
Benson, J. L., Bonev, B. P., James, P. B., et al., The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars Orbiter Camera observations. Icarus, 165, 3452, 2003.CrossRefGoogle Scholar
Benson, J. L., Kass, D. M., and Kleinböhl, A., Mars’ north polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 116, E03008, doi:10.1029/2010JE003693, 2011.Google Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al., Perennial water ice identified in the south polar cap of Mars, Nature, 428, 627630, 2004.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307, 15761581, 2005.Google Scholar
Böttger, H. M., Lewis, S. R., Read, R. L., and Forget, F., The effect of a global dust storm on simulations of the Martian water cycle, Geophys. Res. Let., 31(22), L22702, 2004.Google Scholar
Böttger, H. M., Lewis, S. R., Read, R. L., and Forget, F., The effects of the Martian regolith on GCM water cycle simulations, Icarus, 177, 174189, 2005.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297, 8185, 2002.Google Scholar
Brown, A. J., Byrne, S., Tornabene, L. L., and Roush, T., Louth Crater: evolution of a layered water ice mound, Icarus, 196 (2), 433445, 2008.Google Scholar
Brutsaert, W., Evaporation Into the Atmosphere, Kluwer Academic, Norwell, MA, 1982.Google Scholar
Bryson, K. L., Chevrier, V., Sears, D. W. G., and Ulrich, R., Stability of ice on Mars and the water vapor diurnal cycle: experimental study of the sublimation of ice through a fine-grained basaltic regolith, Icarus, 196, 446458, 2008.Google Scholar
Burgdorf, M. J., Encrenaz, T., Lellouch, E., et al., ISO observations of Mars: an estimate of the water vapor vertical distribution and the surface emissivity, Icarus, 145, 7990, 2000.Google Scholar
Byrne, S., and Ingersoll, A. P., A Sublimation Model for Martian South Polar Ice Features, Science 299 (February): 1051–53, 2003.Google Scholar
Calvin, W. M., and Titus, T. N., Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES), Planet. Space Sci., 56, 212226, 2008.Google Scholar
Cantor, B. A., James, P. B., and Calvin, W. M., MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars, Icarus, 208, 6181, 2010.Google Scholar
Caplinger, M. A., and Malin, M. C., Mars Orbiter Camera geodesy campaign, J. Geophys. Res., 106 (23), 595–23, 606, doi:10.1029/ 2000JE001341, 2001.Google Scholar
Chamberlain, M. A., and Boynton, W. V., Response of Martian ground ice to orbit-induced climate change, J. Geophys. Res., 112, E06009, 2006.Google Scholar
Chevrier, V., Ostrowski, D. R., and Sears, D. W. G., Experimental study of the sublimation of ice through an unconsolidated clay layer: implications for the stability of ice on Mars and the possible diurnal variations in atmospheric water, Icarus, 196, 459476, 2008.Google Scholar
Chipera, S. J., and Vaniman, D. T., Experimental stability of magnesium sulfate hydrates that may be present on Mars, Geochimica et Cosmochimica Acta, 71, 241250, 2007.Google Scholar
Chittenden, J. D., Chevrier, V., Roe, L. A., et al., Experimental Study of the Effect of Wind on the Stability of Water Ice on Mars, Icarus, 196, 477, doi:10.1016/j.icarus.2008.01.016, 2008.Google Scholar
Chou, I. M. and Seal, R. R., Determination of epsomite–hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4–H2O, Astrobiology, 3, 619630, 2003.Google Scholar
Clancy, R. T., Grossman, A. W., and Muhleman, D. O., Mapping Mars water vapor with the Very Large Array, Icarus, 100, 4859, 1992.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J., et al., Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate?, Icarus, 122, 3662, 1996.Google Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R., Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108(E9), 5098, doi:10.1029/2003JE002058, 2003.Google Scholar
Clifford, S. M., A model for the hydrological and climatic behavior of water on Mars, J. Geophys. Res., 98, 1097311016, 1993.Google Scholar
Clifford, S. M., and Hillel, D., The stability of ground ice in the equatorial region of Mars, J. Geophys. Res., 88, 24562474, 1983.CrossRefGoogle Scholar
Colaprete, A., Toon, O. B., and Magalhaes, J. A., Cloud formation under Mars Pathfinder conditions, J. Geophys. Res., 104, 90439053, 1999.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., et al, Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature, 435, 184188, 2005.Google Scholar
Conrath, B., Curran, R., Hanel, R., et al., Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res., 78(20), 42674278, 1973.Google Scholar
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P., Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity, Science, 295, 110113, 2002Google Scholar
Cull, S., Arvidson, R. E., Mellon, M., et al. Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations, Journal of Geophysical Research, 115, E00D17, 2010a.Google Scholar
Cull, S., Arvidson, R. E., Morris, R. V., et al., Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations, J. Geophys. Res., 115, E00E19, 2010b.Google Scholar
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G., and Pearl, J. C., Mars: Mariner 9 spectroscopic evidence for H2O ice clouds, Science, 182, 381383, 1973.Google Scholar
Davies, D. W., The vertical distribution of Mars water vapor, J. Geophys. Res., 84, 28752879, 1979.Google Scholar
Davies, D. W., and Wainio, L. A., Measurements of water vapor in Mars’ Antarctic, Icarus, 45, 216230, 1981.Google Scholar
Davies, D. W., The Mars water cycle, Icarus, 45, 398414, 1981.Google Scholar
de Boer, J. H., The Dynamic Character of Adsorption, Oxford University Press, London, 1968.Google Scholar
Douté, S., Schmitt, B., Langevin, Y., et al., South pole of Mars: nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci., 55, 113133, 2007.Google Scholar
Encrenaz, T., Lellouch, E., Rosenqvist, J., et al. The atmospheric composition of Mars: ISM and ground-based observational data. Ann. Geophysicae, 9, 797803, 1991.Google Scholar
Encrenaz, T., Lellouch, E., Cernicharo, J., Paubert, G., and Gulkis, S., A tentative detection of the 183-GHz water vapor line in the Martian atmosphere: constraints upon the H2O abundance and vertical distribution, Icarus, 113, 110118, 1995.Google Scholar
Encrenaz, T., Bezard, B., Owen, T., et al., Infrared imaging spectroscopy of Mars: H2O mapping and determination of CO2 isotopic ratios, Icarus, 179(1), 4354, 2005a.Google Scholar
Encrenaz, T., Melchiorri, R., Fouchet, T., et al., A mapping of Martian water sublimation during early northern summer using OMEGA/Mars Express, Astron. Astrophys., 441, 912, 2005b.Google Scholar
Encrenaz, T., Greathouse, T. K., Richter, M. J., et al., Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus, 195(2), 547556, 2008a.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al., Study of the Martian water vapor over Hellas using OMEGA and PFS aboard Mars Express, Astronomy and Astrophysics, 484(2), 547553, 2008b.Google Scholar
Encrenaz, T., Greathouse, T. K., Bézard, B., et al., Water vapor map of Mars near summer solstice using ground-based infrared spectroscopy, Astronomy and Astrophysics, 520, A33, 2010.Google Scholar
Fanale, F. P., and Cannon, W. A., Adsorption on the Martian regolith, Nature, 230, 502504, 1971.Google Scholar
Fanale, F. P., and Cannon, W. A., Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation, J. Geophys. Res., 79, 33973402, 1974.Google Scholar
Fanale, F. P., Salvail, J. R., Zent, A. P., and Postawko, S. E., Global distribution and migration of subsurface ice on Mars, Icarus, 67, 118, 1986.Google Scholar
Farmer, C. B., and Doms, P. E., Global seasonal variations of water vapor on Mars and the implications for permafrost, J. Geophys. Res., 84, 28812888, 1979.Google Scholar
Farmer, C. B., and LaPorte, D. D., The detection and mapping of water vapor in the Martian atmosphere. Icarus, 16, 3446, 1972.Google Scholar
Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E., Mars: water vapor observations from the Viking Orbiters. J. Geophys. Res., 82 (28), 42254248, 1977.Google Scholar
Fedorova, A. A., Rodin, A. V., and Baklanova, I. V., MAWD observations revisited: seasonal behavior of water vapor in the Martian atmosphere, Icarus, 171(1), 5467, 2004.Google Scholar
Fedorova, A., Korablev, O., Bertaux, J.-L., et al., Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions, J. Geophys. Res., 111, E09S08, doi:10.1029/2006JE002695, 2006.Google Scholar
Fedorova, A. A., Korablev, O. I., Bertaux, J.-L., et al., Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 200(1), 96117, 2009.Google Scholar
Fedorova, A. A., Trokhimovsky, S., Korablev, O., and Montmessin, F., Viking observation of water vapor on Mars: revision from up-to-date spectroscopy and atmospheric models, Icarus, 208, 156164, 2010.Google Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al., Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 7578, 2002.Google Scholar
Feldman, W. C., Mellon, M. T., Maurice, S., et al., Hydrated states of MgSO4 at equatorial latitudes on Mars, Geophys. Res. Lett., 31(16) Art. L16702, 2004.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., Maurice, S., and Prettyman, T. H., Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer, in The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., ed., Cambridge University Press, London, 125148, 2008.Google Scholar
Fialips, C. I., Carey, J. W., Vaniman, D. T., et al., Hydration state of zeolites, clays, and hydrated salts under present-day Martian surface conditions: can hydrous minerals account for Mars Odyssey observations of near-equatorial water-equivalent hydrogen?, Icarus, 178, 7483, 2005.Google Scholar
Flasar, F. M., and Goody, R. M., Diurnal behavior of water on Mars, Planet. Space Sci., 24, 161181, 1976.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al., Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 2415524176, 1999.Google Scholar
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W., Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity, Science, 311 (January): 368–71. doi:10.1126/science.1120335, 2006.Google Scholar
Fouchet, T., Lellouch, E., Ignatiev, N.I., et al., Martian water vapor: Mars Express PFS/LW observations, Icarus, 190, 3249, 2007.Google Scholar
Fouchet, T., Moreno, R., Lellouch, E., et al., Interferometric millimeter observations of water vapor on Mars and comparison with Mars Express measurements, Planetary and Space Science, 59, 683690, 2011.Google Scholar
Goff, J. A., and Gratch, S., Low-pressure properties of water from −160 to 212 F, Transactions of the American Society of Heating and Ventilating Engineers, 25164, New York, 1946.Google Scholar
Grima, C., Kofman, W., Mouginot, J., et al., North polar deposits of Mars: extreme purity of the water ice, Geophys. Res. Lett., 36, L03203, 2009.Google Scholar
Gurwell, M. A., Bergin, E. A., Melnick, G. J., et al., Submillimeter wave astronomy satellite observations of the Martian atmosphere: temperature and vertical distribution of water vapor, Astrophys. J., 539, L143–L146, 2002.Google Scholar
Haberle, R. M., and Jakosky, B. M., Sublimation and transport of water from the North residual polar cap on Mars. J. Geophys. Res., 95(B2), 14231437, 1990.Google Scholar
Haberle, R. M., Leovy, C. B., and Pollack, J. B., Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50, 322367, 1982.Google Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al., Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation, J. Geophys. Res., 98(E2), 3093, doi:10.1029/92JE02946, 1993.Google Scholar
Haberle, R. M., Montmessin, F., Kahre, M. A., et al., Radiative effects of water ice clouds on the Martian seasonal water cycle. 4th International Workshop on the Mars Atmosphere: Modeling and Observations, Extended Abstracts, 223226, Paris, France, 8–11 February 2011.Google Scholar
Harri, A.-M., Genzer, M., Kemppinen, O., et al., Mars Science Laboratory relative humidity observations: initial results., J. Geophys. Res. Planets, 119(9), 21322147, doi:10.1002/2013JE004514, 2014.Google Scholar
Hecht, M. H., Metastability of liquid water on Mars, Icarus, 156, 373386, 2002.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al., Detection of perchlorate and the soluble chemistry of Martian soil: findings from the Phoenix Mars Lander, Science, 325(64), 2009.Google Scholar
Herkenhoff, K. E., and Plaut, J. J., Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus, 144, 243–53, 2000.Google Scholar
Hollingsworth, J. L., Haberle, R. M., Barnes, J. R., et al., Orographic control of storm zones on Mars, Nature, 380(6573), 413416, doi:10.1038/380413a0, 1996.Google Scholar
Holt, J. W., Safaeinili, A., Plaut, J. J., et al., Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars, Science, 322, 12351238, 2008.Google Scholar
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P., Modeling the Martian seasonal water cycle, J. Geophys. Res., 102 (E4), 90639083, 1997.CrossRefGoogle Scholar
Hunten, D. M., Sprague, A. L., and Doose, L. R., Correction for dust opacity of Martian atmospheric water vapor abundances, Icarus, 147, 4248, 2000.Google Scholar
Ignatiev, N. I., Zasova, L. V., Formisano, V., Grassi, D., and Maturilli, A., Water vapor abundance in Martian atmosphere from revised Mariner 9 IRIS data, Adv. Space Rev., 29(2), 157162, 2002.Google Scholar
Ingersoll, A. P., Mars: occurrence of liquid water, Science, 168, 972973, doi:10.1126/science.168.3934.972, 1970.Google Scholar
Iraci, L. T., Phebus, B. D., Stone, B. M., and Colaprete, A., Water ice cloud formation on Mars is more difficult than presumed: laboratory studies of ice nucleation on surrogate materials, Icarus, 210(2), doi:10.1016/j.icarus.2010.07.020, 2010.Google Scholar
Ivanov, A. B., and Muhleman, D. O., The role of sublimation for the formation of the northern ice cap: results from the Mars Orbiter Laser Altimeter, Icarus, 144, 436448, 2000.Google Scholar
Jakosky, B. M., The role of seasonal reservoirs in the Mars water cycle. I. Seasonal exchange of water with the regolith, Icarus, 55, 118, 1983a.Google Scholar
Jakosky, B. M., The role of seasonal reservoirs in the Mars water cycle. II. Coupled models of the regolith, the polar caps, and atmospheric transport, Icarus, 55, 1939, 1983b.Google Scholar
Jakosky, B. M., The seasonal cycle of water on Mars, Space Science Reviews, 41, 131200, 1985.Google Scholar
Jakosky, B. M., and Barker, E. S., Comparison of ground-based and Viking Orbiter measurements of Martian water vapor: variability of the seasonal cycle, Icarus, 57, 322334, 1984.Google Scholar
Jakosky, B. M., and Farmer, C. B., The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment, J. Geophys. Res., 87, 29993019, 1982.Google Scholar
Jakosky, B. M., and Haberle, R. M., Year-to-year instability of the Mars south polar cap, J. Geophys. Res. 95, 1359. doi:10.1029/JB095iB02p01359, 1990.Google Scholar
Jakosky, B. M., Zurek, R. W., and LaPointe, M. R., The observed day-to-day variability of Mars atmospheric water vapor, Icarus, 73, 8090, 1988.Google Scholar
Jakosky, B. M., Zent, A. P., and Zurek, R. W., The Mars water cycle: determining the role of exchange with the regolith, Icarus, 130, 8795, 1997.Google Scholar
James, P. B., Recession of Martian north polar cap – 1977–1978 Viking observations, J. Geophys. Res., 84, 83328334, 1979.Google Scholar
James, P. B., The Martian hydrologic cycle – effects of CO2 mass flux on global water distribution, Icarus, 64, 249264, 1985.Google Scholar
James, P. B., and Cantor, B. A., Mars Orbiter Camera observations of the Martian south polar cap in 1999–2000, J. Geophys. Res., 106, 2363523652, 2001.Google Scholar
James, P. B., Thomas, P. C., Wolff, M. J., and Bonev, B. P., MOC observations of four Mars years variations in the south polar residual cap of Mars, Icarus, 192, 318326, 2007.Google Scholar
James, P. B., Thomas, P. C., and Malin, M. C., Variability of the south polar cap of Mars in Mars Years 28 and 29, Icarus, 208, 8285, 2010.Google Scholar
Jänchen, J., Morris, R. V., Bish, D. L., Janssen, M., and Hellwig, U., The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under Martian environmental conditions, Icarus, 200, 463467, 2009.Google Scholar
Jaquin, F., Gierasch, P., and Kahn, R., The vertical structure of limb hazes in the Martian atmosphere, Icarus, 68, 442461, 1986.Google Scholar
Kahn, R., The Spatial and Seasonal Distribution of Martian Clouds and Some Meteorological Implications, J. Geophys. Res., 89, 6671–88, 1984.Google Scholar
Kass, D. M., and Yung, Y. L., Water on Mars: isotopic constraints on exchange between the atmosphere and surface, Geophys. Res. Let., 26(24) 36533656, 1999.Google Scholar
Kereszturi, A., Vincendon, M., and Schmidt, F., Water ice in the dark dune spots of Richardson Crater on Mars, Planet. Space Sci., 59, 2642, 2011.CrossRefGoogle Scholar
Kieffer, H. H., Mars south polar spring and summer temperatures: a residual CO2 frost, J. Geophys. Res., 84, 82638288, 1979.Google Scholar
Kieffer, H. H., H2O grain size and the amount of dust in Mars’ residual north polar cap, J. Geophys.Res., 95(B2), 14811493, 1990.Google Scholar
Kieffer, H. H., and Titus, T. N., TES mapping of Mars’ north seasonal cap, Icarus, 154, 162180, 2001.Google Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D., Martian North Pole summer temperature: dirty water ice, Science, 194, 13411344, 1976.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 42494291, 1977.Google Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R., Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, J. Geophys. Res., 105(E4), 96539700, 2000.Google Scholar
Korablev, O., Ignatiev, N., Fedorova, A., et al., Water in Mars atmosphere: comparison of recent data sets. 2nd International Workshop on the Mars Atmosphere: Modeling and Observations, Granada, Spain, 2006.Google Scholar
Kuzmin, R. O., The Cryolithosphere of Mars, Izdatel’stvo Nauka, Moscow, 1983.Google Scholar
Kuzmin, R. O., Bobina, N. N., Zabalueva, E. V., and Shashkina, V. P., Structural inhomogeneities of the Martian cryolithosphere, Solar System Res., 22, 195212, 1988.Google Scholar
Lachenbruch, A. H., Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, Geol. Soc. Am. Spec. Paper, 70, 69, 1962.Google Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., et al., Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science, 307, 15811584, 2005.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al., Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. J. Geophys. Res., 112, CiteID E08S12, 2007.Google Scholar
Laskar, J., and Robutel, P., The chaotic obliquity of the planets, Nature, 361, 608612, 1993.Google Scholar
Laskar, J., Levrard, B., and Mustard, J. F., Orbital forcing of the Martian polar layered deposits, Nature, 419, 375377, 2002.Google Scholar
Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F., Three-dimensional modeling of ozone on Mars, J. Geophys. Res., 109, E07004, doi:10.1029/2004JE002268, 2004.Google Scholar
Leffingwell, E. K., Ground-ice wedges: the dominant form of ground-ice on the north coast of Alaska, J. Geol., 23, 635654, 1915.Google Scholar
Leighton, R. B., and Murray, B. C., Behavior of carbon dioxide and other volatiles on Mars, Science, 153, 136144, 1966.Google Scholar
Leovy, C. B., Exchange of water vapor between the atmosphere and surface of Mars, Icarus, 18, 120125, 1973.Google Scholar
Leshin, L. A., Mahaffy, P. R., Webster, C. R., et al., Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity Rover, Science, 341(6153), 1238937, doi:10.1126/science.1238937, 2013.Google Scholar
Levrard, B., Forget, F., Montmessin, F., and Laskar, J., Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity, Nature, 431, 10721075, 2004.Google Scholar
Levy, J., Head, J., and Marchant, D., Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations, J. Geophys. Res., 114, E01007, 2009.Google Scholar
Liu, J., Richardson, M. I., and Wilson, R. J., An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared, J. Geophys. Res., 108, doi:10.1029/2002JE001921, 2003.Google Scholar
Määttänen, A., Vehkamaki, H., Lauri, A., et al., Nucleation studies in the Martian atmosphere, J. Geophys. Res., 110, E02002, doi:10.1029/2004JE002308, 2005.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A., The Influence of Radiatively Active Water Ice Clouds on the Martian Climate, Geophys. Res. Let., 39, doi:10.1029/2012GL053564, 2012.Google Scholar
Malin, M. C., and Edgett, K. S., Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, 23302335, 2000.Google Scholar
Malin, M. C., Caplinger, M. A., and Davis, S. D., Observational evidence for an active surface reservoir of solid carbon dioxide on Mars, Science, 294, 23302335, 2001.Google Scholar
Maltagliati, L., Titov, D. V., Encrenaz, T., et al., Observations of atmospheric water vapor above the Tharsis volcanoes on Mars with the OMEGA/MEx imaging spectrometer, Icarus, 194(1), 5364, 2009.Google Scholar
Maltagliati, L., Montmessin, F., Fedorova, A., et al., Evidence of water vapor in excess of saturation in the atmosphere of Mars, Science, 333, 18681872, 2011a.Google Scholar
Maltagliati, L., Titov, D.V., Encrenaz, T., et al., Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express, Icarus, 213(2), 480495, 2011b.Google Scholar
Maltagliati, L., Montmessin, F., Korablev, O., et al., Annual Survey of Water Vapor Vertical Distribution and Water-Aerosol Coupling in the Martian Atmosphere Observed by SPICAM/MEx Solar Occultations, Icarus, 223, 942–62. doi:10.1016/j.icarus.2012.12.012, 2013.Google Scholar
Mangold, N., High latitude patterned ground on Mars: classification, distribution and climate control, Icarus, 174, 336359, 2005.Google Scholar
Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., et al., Transient liquid water and water activity at Gale Crater on Mars, Nat. Geosci., 8(5), 357361, doi:10.1038/ngeo2412, 2015.Google Scholar
McElroy, M. B., Mars: an evolving atmosphere, Science, 175, 443445, doi:10.1126/science.175.4020.443, 1972.Google Scholar
McEwen, A. S., Dundas, C. M., Mattson, S. S., et al., Recurring slope lineae in equatorial regions of Mars, Nat. Geosci., 7(1), 5358, doi:10.1038/ngeo2014, 2014.Google Scholar
Melchiorri, R., Encrenaz, T., Fouchet, T., et al., Water vapor mapping on Mars using OMEGA/Mars Express. Water vapor mapping on Mars using OMEGA/Mars Express, Planetary and Space Science, 55(3), 333342, 2007.Google Scholar
Melchiorri, R., Encrenaz, T., Drossart, P.,et al., OMEGA/Mars Express: south pole region, water vapor daily variability, Icarus, 201, 102112, 2009.Google Scholar
Mellon, M. T., Small-scale polygonal features on Mars: seasonal thermal contraction cracks in permafrost, J. Geophys. Res., 102, 2561725628, 1997.Google Scholar
Mellon, M. T., and Feldman, W. C., The global distribution of Martian subsurface ice and regional ice stability, 37th Lunar and Planet. Sci. Conf., Houston, 2006.Google Scholar
Mellon, M. T., and Jakosky, B. M., Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. Res., 98, 33453364, 1993.Google Scholar
Mellon, M. T., and Jakosky, B. M., The distribution and behavior of Martian ground ice during past and present epochs, J. Geophys. Res., 100(E11), 781–11, 799, 1995.Google Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R., High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 148, 437455, 2000.Google Scholar
Mellon, M. T, Feldman, W. C., and Prettyman, T. H., The presence and stability of ground ice in the southern hemisphere of Mars, Icarus, 169, 324340, 2004.Google Scholar
Mellon, M. T., Boynton, W. V., Feldman, W. C., et al., Ice-table depth and ice characteristics in Martian permafrost at the proposed Phoenix landing site., J. Geophys. Res., 113, E00A25, 2008.Google Scholar
Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al., Ground ice at the Phoenix landing site: stability state and origin, J. Geophys. Res., 114, E00E07, 2009.Google Scholar
Michelangeli, D. V., Toon, O. B., Haberle, R. B., and Pollack, J. B., Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere, Icarus, 100, 261285, 1993.Google Scholar
Milliken, R. E., Mustard, J. F., Poulet, F., et al., Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface, J. Geophys. Res., 112, E08S07, 2007.Google Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al., Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey, Science, 297, 7881, 2002.Google Scholar
Montmessin, F., Rannou, P., and Cabane, M., New insights into Martian dust distribution and water-ice cloud microphysics, J. Geophys. Res., 107(E6), 5037, doi:10.1029/2001JE001520, 2002.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., Haberle, R.M., Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109, doi:10.1029/2004JE002284, 2004.Google Scholar
Montmessin, F., Fouchet, T., and Forget, F., Modeling the annual cycle of HDO in the Martian atmosphere, J. Geophys. Res., 110, E03006, doi:10.1029/2004JE002357, 2005.Google Scholar
Montmessin, F., Haberle, R. M., Forget, F., et al., On the origin of perennial water ice at the South Pole of Mars: a precession-controlled mechanism?, J. Geophys. Res, 112, E08S17, 2007.Google Scholar
Moroz, V. I., and Nadzhip, A. E., Preliminary measurement results of the water vapor content in the planetary atmosphere from measurements onboard the Mars 5 spacecraft, Cosmic Research, 13(N1), 2830, translation, 1975.Google Scholar
Moroz, V. I., and Nadzhip, A. E., Water vapor in the atmosphere of Mars based on measurements on board Mars 3, Cosmic Research, 13, N5, 658670, translation, 1976.Google Scholar
Mouginot, J., Pommerol, A., Kofman, W., et al., The 3–5 MHz global reflectivity map of Mars by MARSIS/Mars Express: implications for the current inventory of subsurface H2O, Icarus, 210, 612625, 2010.Google Scholar
Mustard, J. F., Murchie, S. L., Pelkey, S. M., et al., Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument, Nature, 454, 305309, 2008.Google Scholar
Navarro, T., Madeleine, J.-B., Forget, F., et al., Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, J. Geophys. Res. Planets, 119(7), 14791495, doi:10.1002/2013JE004550, 2014.Google Scholar
Ojha, L., Wilhelm, M. B., Murchie, S. L., et al., Spectral evidence for hydrated salts in recurring slope lineae on Mars, Nature Geosci., 8, 829832, doi:10.1038/NGEO2546, 2015.Google Scholar
Paige, D. A., The thermal stability of near-surface ground ice on Mars, Nature, 356, 4345, 1992.Google Scholar
Palluconi, F. D., and Kieffer, H. H., Thermal inertia mapping of Mars from 60°S to 60°N, Icarus, 45, 415426, 1981.Google Scholar
Pankine, A. A., Tamppari, L. K., Smith, M. D., Water vapor variability in the north polar region of Mars from Viking MAWD and MGS TES datasets, Icarus, 204, 87102, 2009.Google Scholar
Pankine, A. A., Tamppari, L. K., and Smith, M. D., MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer, Icarus, 210, 5871, 2010.Google Scholar
Pathak, J., Michelangeli, D. V., Komguem, L., Whiteway, J., and Tamppari, L. K., Simulating Martian boundary layer water ice clouds and the lidar measurements for the Phoenix mission, J. Geophys. Res., 113, CiteID E00A05, doi:10.1029/2007JE002967, 2008.Google Scholar
Peixoto, J. P., and Oort, A. H., Physics of Climate, American Institute of Physics, New York, 1992.Google Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E., et al., Mars north polar deposits: stratigraphy, age and geodynamical response, Science, 320, 11821185, 2008.Google Scholar
Picardi, G., Plaut, J. J., Biccari, D., et al., Radar soundings of the subsurface of Mars, Science, 310, 19251928, 2005.Google Scholar
Piqueux, S., Edwards, C. S., and Christensen, P. R., Distribution of the ices exposed near the south pole of Mars using Thermal Emission Imaging System (THEMIS) temperature measurements, J. Geophys. Res., 113, E08014, doi:10.1029/2007JE003055, 2008.Google Scholar
Plaut, J. J., Picardi, G., Safaeinili, A., et al., Subsurface radar sounding of the south polar layered deposits of Mars, Science, 316, 9296, 2007.Google Scholar
Plaut, J. J., Safaeinili, A., Holt, J. W., et al., Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars, Geophys. Res. Lett., 36, L02203, 2009.Google Scholar
Prettyman, T. H., Feldman, W. C., and Titus, T. N., Characterization of Mars’s seasonal caps using neutron spectroscopy, J. Geophys. Res., 114, E08005, 2009.Google Scholar
Putzig, N., and Mellon, M., Apparent Thermal Inertia and the Surface Heterogeneity of Mars, Icarus, 191, 6894. doi:10.1016/j.icarus.2007.05.013, 2007.Google Scholar
Putzig, N. E., Phillips, R. J., Campbell, B. A., et al., Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings, Icarus, 204, 443–57, doi:10.1016/j.icarus.2009.07.034, 2009.Google Scholar
Read, P. L. and Lewis, S. R., The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet, Springer-Praxis Books, 2004.Google Scholar
Rennó, N. O., Bos, B. J., Catling, D., et al., Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site, J. Geophys. Res., 114, E00E03, doi:10.1029/2009JE003362, 2009.Google Scholar
Richardson, M. I., A general circulation model study of the Mars water cycle, Ph.D. thesis, Univ. of Calif., Los Angeles, 1999.Google Scholar
Richardson, M. I., and Wilson, R. J., Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res., 197, E5, 5031, 2002a.Google Scholar
Richardson, M. I., and Wilson, R. J., A topographically forced asymmetry in the Martian circulation and climate, Nature, 416, 298301, 2002b.Google Scholar
Richardson, M. I., Wilson, R. J., and Rodin, A. V., Water ice clouds in the Martian atmosphere: general circulation model experiments with a simple cloud scheme, J. Geophys. Res., 107(E9), 5064, doi:10.1029/2001JE001804, 2002.Google Scholar
Rizk, B., Wells, W. K., , D. M. Hunten, et al., Meridional Martian water abundance profiles during the 1988–1989 season, Icarus, 90, 205213, 1991.Google Scholar
Rodin, A. V., Korablev, O. I., Moroz, V. I., Vertical distribution of water in the near-equatorial troposphere of Mars: water vapor and clouds, Icarus, 125(1), 212229, 1997.Google Scholar
Rodin, A.V., Clancy, R. T., Wilson, R. J., and Richardson, M., Dynamical properties of Mars water ice clouds and their interactions with atmospheric dust and radiation, Adv. Space Res., 23, 15771585, 1999.Google Scholar
Rosenqvist, J., Drossart, P., Combes, M., et al., Minor constituents in the Martian atmosphere from the ISM/Phobos Experiment, Icarus, 98, 254270, 1992.Google Scholar
Savijärvi, H., Mars boundary layer modeling: diurnal cycle and soil properties at the Viking Lander 1 Site, Icarus, 117, 120–27, 1995.Google Scholar
Savijärvi, H., Harri, A.-M., and Kemppinen, O., The diurnal water cycle at Curiosity: role of exchange with the regolith, Icarus, 265, 6369, doi:10.1016/j.icarus.2015.10.008, 2016.Google Scholar
Schmidt, F., Douté, S., Schmitt, B., et al., Albedo control of seasonal south polar cap recession on Mars, Icarus, 200, 374394, 2009.Google Scholar
Sears, D. W. G., and Moore, S. R., On laboratory simulation and the evaporation rate of water on Mars, Geophys. Res. Lett., 32, L16202, doi:10.1029/2005GL023443, 2005.Google Scholar
Seu, R., Phillips, R. J., Biccari, D., et al., SHARAD sounding radar on the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S05, 2007.Google Scholar
Sizemore, H. G. and Mellon, M. T., Effects of soil heterogeneity on Martian ground-ice stability and orbital estimates of ice table depth, Icarus, 185, 358369, 2006.Google Scholar
Sizemore, H. G., and Mellon, M. T., Laboratory characterization of the structural properties controlling dynamical gas transport in Mars-analog soils, Icarus, 197, 606620, 2008.Google Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al., The global topography of Mars and implications for surface evolution, Science, 284, 14951503, 1999.Google Scholar
Smith, D. E., Zuber, M. T., and Neumann, G. A., Seasonal variations of snow depth on Mars, Science, 294, 21412146, 2001.Google Scholar
Smith, M. D., The annual cycle of water vapor as observed by the Thermal Emission Spectrometer, J. Geophys. Res., 107, doi:10.1029/2001JE001522, 2002.Google Scholar
Smith, M. D., Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165, 2004.Google Scholar
Smith, M. D., Mars water vapor climatology from MGS/TES, abstract from the Mars Water Cycle Workshop, 21–23 April 2008, Paris, France, 2008.Google Scholar
Smith, M. D., THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444452, 2009.Google Scholar
Smith, M. D., Conrath, B. J., Pearl, J. C., and Christensen, P. R., Thermal Emission Spectrometer observations of Martian planet-encircling dust storm 2001A, Icarus, 157, 259263, 2002.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al., One Martian year of atmospheric observations using MER Mini-TES, J. Geophys. Res., 111, E12S13, doi:10.1029/2006JE002770, 2006.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., and Murchie, S. L., Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, J. Geophys. Res., 114, doi:10.1029/2008JE003288, 2009.Google Scholar
Smoluchowski, R., Mars: retention of ice, Science, 159, 13481350, 1968.Google Scholar
Spinrad, H., Münch, G., and Kaplan, L. D., The detection of water vapor on Mars, Astrophys. J., 137, 13191321, 1963.Google Scholar
Sprague, A. L., Hunten, D. M., Hill, R. E., Rizk, B., and Wells, W. K., Martian water vapor, 1988–1995, J. Geophys. Res., 101(E10), 2322923241, 1996.Google Scholar
Sprague, A. L., Hunten, D. M., Hill, R. E., Doose, L. R., and Rizk, B., Water vapor abundances over Mars north high latitude regions: 1996–1999, Icarus, 154, 183189, 2001.Google Scholar
Sprague, A. L., Hunten, D. M., Doose, L. R., and Hill, R. E., Mars atmospheric water vapor abundance: 1996–1997. Icarus, 163(1), 88101, 2003.Google Scholar
Sprague, A. L., Hunten, D. M., Doose, L. R., et al., Mars atmospheric water vapor abundance: 1991–1999, Emphasis 1998–1999, Icarus, 184(2), 372400, 2006.Google Scholar
Squyres, S. W., and Carr, M. H., Geomorphic evidence for the distribution of ground ice on Mars, Science, 231, 249252, 1986.Google Scholar
Tamppari, L. K., Zurek, R. W., and Paige, D. A., Viking-era water-ice clouds. J. Geophys. Res., 105, 40874107, 2000.Google Scholar
Tamppari, L. K., Bass, D., Cantor, B., et al., Phoenix and MRO coordinated atmospheric measurements, J. Geophys. Res., 115(E12), E00E17, doi:10.1029/2009JE003415, 2010.Google Scholar
Thomas, P. C., Squyres, S. W., Herkenhoff, K. E., Howard, A. D., and Murray, B. C., Polar deposits of Mars, in Mars, edited by Kieffer, H. H. et al., 767795, Univ. of Arizona Press, Tucson, 1992.Google Scholar
Tillman, J. E., Henry, R. M., and Hess, S. L., Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm, J. Geophys. Res., 84, 29472955, 1979.Google Scholar
Titov, D. V., Moroz, M. I., Grigoriev, A. V., et al., Observations of water vapour anomaly above Tharsis volcanoes on Mars in the ISM (Phobos-2) experiment, Planet. Space Sci., 42, 10011010, 1994.Google Scholar
Titov, D. V., Rosenqvist, J., Moroz, V. I., Grigoriev, A. V., Arnold, G., Evidences of the regolith-atmosphere water exchange on Mars from the ISM (Phobos-2) infrared spectrometer observations, Adv. Space Res., 16(6), 2333, 1995.Google Scholar
Titov, D. V., Markiewicz, W. J., Thomas, N., et al., Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder, J. Geophys. Res., 104, E4, 90199026, 1999.Google Scholar
Titus, T. N., Thermal infrared and visual observations of a water ice lag in the Mars southern summer, Geophys. Res. Lett., 32, L24204, 2005.Google Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R., Exposed water ice discovered near the South Pole of Mars, Science, 299, 10481051, 2003.Google Scholar
Tokar, R. L., Elphic, R. C., Feldman, W. C., et al., Mars odyssey neutron sensing of the south residual polar cap, Geophys. Res. Lett., 30(13), 10–1, 2003.Google Scholar
Tschimmel, M., Ignatiev, N. I., Titov, D. V., et al., Investigation of water vapor on Mars with PFS/SW on Mars Express, Icarus, 195, 557575, 2008.Google Scholar
Tyler, D., and Barnes, J. R., Atmospheric mesoscale modeling of water and clouds during northern summer on Mars, Icarus, 237, 388414, doi:10.1016/j.icarus.2014.04.020, 2014.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., Bibring, J.-P., Gondet, B., Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte Carlo approach: application to the OMEGA observations of high-latitude regions of Mars, J. Geophys. Res., 112, E08S13, 2007.Google Scholar
Vincendon, M., Forget, F., and Mustard, J., Water ice at low to midlatitudes on Mars, J. Geophys. Res., 115, E10001, 2010a.Google Scholar
Vincendon, M., Mustard, J., Forget, F., et al., Near-tropical subsurface ice on Mars, Geophys Res. Lett., 37, L01202, 2010b.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al., Mars water-ice clouds and precipitation, Science, 325, 68, 2009.Google Scholar
Wilson, R. J., Neumann, G. A., and Smith, M. D., Diurnal variation and radiative influence of Martian water ice clouds, Geophys. Res. Lett., 34, L02710, doi:10.1029/2006GL027976, 2007.Google Scholar
Wilson, R. J., Lewis, S. R., Montabone, L., and Smith, M. D., Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35, L07202, doi:10.1029/2007GL032405, 2008.Google Scholar
Yung, Y. L., Wen, J., Pinto, J. P., Pierce, K. K., and Allen, M., HDO in the Martian atmosphere – implications for the abundance of crustal water, Icarus, 76, 146–59, 1988.Google Scholar
Zent, A. P., 2008. A historical search for habitable ice at the Phoenix landing site, Icarus, 196, 285408, 2008.Google Scholar
Zent, A. P., and Quinn, R. C., Simultaneous adsorption of CO2 and H2O under Mars-like conditions and applications to the evolution of the Martian climate, J. Geophys. Res., 100, 53415349, 1995.Google Scholar
Zent, A. P. and Quinn, R. C., Measurement of H2O adsorption under Mars-like conditions: effects of adsorbent heterogeneity, J. Geophys. Res., 102, 90859095, 1997.Google Scholar
Zent, A. P., Haberle, R. M., Houben, H. C., and Jakosky, B. M., A coupled subsurface-boundary layer model of water on Mars, J. Geophys. Res., 98, 33193337, 1993.Google Scholar
Zent, A. P., Howard, D. J., and Quinn, R. C., H2O adsorption on smectites, Application to the diurnal variations of H2O in the Martian atmosphere, J. Geophys. Res, 106, 1466714674, 2001.Google Scholar
Zent, A. P., Hecht, M., Cobos, D., et al., Initial results from the Thermal and Electrical Conductivity Probe (TECP) on Phoenix, J. Geophys. Res., 115, E00E14, 2010.Google Scholar
Zent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., and Chevrier, V. F., A revised calibration function and results for the Phoenix mission TECP relative humidity sensor, J. Geophys. Res. Planets, 121(4), 626651, doi:10.1002/2015JE004933, 2016.Google Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al., Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter, Science, 282, 20532060, doi:10.1126/science.282.5396.2053, 1998.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×